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Abstract 

We present work on extraction of 

radiotherapy treatment information from 

the clinical narrative in the electronic 

medical records.  Radiotherapy is a central 

component of the treatment of most solid 

cancers. Its details are described in non-

standardized fashions using jargon not 

found in other medical specialties, 

complicating the already difficult task of 

manual data extraction. We examine the 

performance of several state-of-the-art 

neural methods for relation extraction of 

radiotherapy treatment details, with a goal 

of automating detailed information 

extraction. The neural systems perform at 

0.82-0.88 macro-average F1, which 

approximates or in some cases exceeds the 

inter-annotator agreement. To the best of 

our knowledge, this is the first effort to 

develop models for radiotherapy relation 

extraction and one of the few efforts for 

relation extraction to describe cancer 

treatment in general. 

1 Introduction 

Radiotherapy is the use of ionizing radiation, 

which is radiation with enough energy to remove 

electrons from atoms and molecules, to treat 

disease (Gunderson and Tepper, 2020). The 

predominant indication for radiotherapy is the 

treatment of cancer, where it exerts its 

antineoplastic effect via DNA damage, which 

preferentially kills cancer cells over health tissue 

cells (McDermott and Orton, 2010). Radiotherapy 

plays a central role in the curative and palliative 

treatment of many cancers. It is estimated that up 

to 30% of cancer patients receive radiotherapy as 

a part of their first-line treatment, and 

approximately 50% of all cancer patients receive 

radiotherapy during the course of their cancer care 

(Delaney et al., 2005; Smith et al., JCO 2010). 

Despite its importance in cancer treatment, 

radiotherapy is included in cancer registries in only 

high-level, often cursory detail, if at all. For 

example, radiotherapy details are only available by 

custom request in the publicly available 

Surveillance, Epidemiology, and End Results 

Program (SEER) cancer registry, acknowledging 

incompleteness and errors in this manually 

extracted data (Surveillance, Epidemiology, and 

End Results Program). The reason for this is 

multifold. First, radiotherapy is a highly technical 

field not extensively taught in medical school, and 

uses its own jargon not found in other medical 

texts. Additionally, radiation treatment details are 

frequently not entered into the electronic medical 

records (EMR) as structured data. Instead, 

radiotherapy is described in clinical free text using 

descriptive and very non-standardized language. 

Radiotherapy treatment descriptions are more 

similar to the documentation of operative 

procedures than to documentation of medication 

regimens. Because radiation is personalized to 

each patient’s disease and anatomy, it cannot be 

described with standard reporting of the type of 

radiation, dose, and frequency. Additionally, 

radiotherapy is often delivered in multiple phases, 

each treating a different anatomical site to different 

doses and with different types of radiation, yielding 

complex descriptions of treatment courses. These  

features, in concert with a lack of widely used 

standardized nomenclatures (Mir et al., 2020; 

Phillips et al., 2020; Traverso et al., 2018),  limit 

manual data extraction, hindering the potential of 
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big data to improve cancer research and clinical 

care. 

While algorithms for named entity recognition 

have previously been reported for  radiotherapy 

details (Bitterman et al., 2020) and other cancer 

therapies (Yin et al., 2018; Wang et al., 2019; Yim 

et al, 2016; Savova et al., 2019), relation extraction 

remains a relatively underexplored task in clinical 

NLP (Sheikhalishahi et al., 2019). There are few 

examples of relation extraction models for cancer 

characteristics in general (Bozkurt et al., 2016; 

Savova et al., 2017; Sheikhalishahi et al., 2019), 

and to the best of our knowledge none for cancer 

treatment, including radiotherapy. Identifying 

treatment entities in isolation and not linking them 

to a specific treatment instance is insufficient to 

coherently describe cancer therapies, especially 

because concurrent and serial treatments are often 

described together in the same note. For example, 

extracting frequency without linking it to a specific 

treatment is not informative by itself. Relation 

extraction is a critical component of information 

extraction for radiotherapy as this treatment is 

often given in multiple sequential or nested phases. 

Linking relevant treatment entities with the same 

phase is necessary to summarize how and why a 

treatment was delivered, necessary components to 

understanding treatment outcomes and quality. 

However, this is a very challenging task even for 

expert human annotators, as demonstrated by the 

challenges in accurate extraction of such data for 

SEER. Therefore, there is a need for more reliable 

relation extraction methods for radiotherapy. 

Relations can be modeled in various ways in 

neural networks, including inserting special tokens 

around the arguments of interest and using this 

augmented text as input into the model (Dligach et 

al., 2017), and using token position embeddings to 

encode the relative distance of words to the 

arguments (Zeng et al., 2014; Nguyen and 

Grishman et al., 2015; Shi and Lin et al., 2019; 

Wang et al., 2019).  Using the former approach, we 

aimed to investigate several approaches for relation 

extraction from clinical texts describing 

radiotherapy, with a goal of augmenting reporting 

of cancer treatment details for research and clinical 

purposes. 

The contributions of the work described in the 

paper are (1) the definition of the task of 

radiotherapy information extraction from the EMR 

clinical narrative, (2) the creation of resources for 

the task (annotation guidelines and corpus), (3) the 

exploration of state-of-the-art neural methods to 

this highly impactful clinical task, and (4) 

establishing a baseline for the task. 

2 Data 

Data for this work consisted of texts describing 

radiotherapy from three complementary sources. 

First, we included 270 clinical descriptions of 

radiotherapy regimens from HemOnc.org, which is 

a publicly available wiki of cancer and blood 

disorder treatment regimens and interventions. 

Second, we included 73 radiotherapy descriptions 

from a state cancer registry. These are abstractions 

from patients’ EMR, often copied and pasted from 

clinician notes, describing details of cancer 

treatment for use by cancer registrars within a 

patient-level XML. We used the entire text of the 

XML categories that contained radiotherapy 

details as model input. Third, 79 completed breast 

and colorectal cancer clinician notes that contained 

radiotherapy details from the THYME corpus from 

Clinical TempEval (Bethard et al., 2015) and an 

internal corpus with breast cancer notes. 

Annotation guidelines for radiotherapy 

properties and treatment instances were developed 

(Bitterman et al., 2020).1 If an overall radiotherapy 

treatment course was delivered in more than one 

Dose-Treatment Site relationship is represented as: 

…She presented after a screening mammogram showed a nodule in the left breast upper outer quadrant. 

After lumpectomy, she was treated with radiation to a dose of 50 Gy in 25 fractions to the left breast, 

followed by a boost of RT_DosageStart 10 Gy RTDosage_End in 5 fractions to the TxSiteStart tumor bed 

TxSiteEnd… 

Figure 1: Mock text segment describing radiotherapy with start and stop tokens, illustrating the Dose-

Treatment Site relationship between the two bolded entities: 10 Gy (Dose) and tumor bed (Treatment Site). 

The zigzag and dashed lines indicate adjacent spans describing two different radiotherapy instances, and 

italicized entities are non-related anatomical/treatment sites close to the anchor dose mention. Both of these 

characteristics limited rule-based approaches to relation extraction in radiotherapy texts. 

 

 

1https://github.com/RTParse/RTAnnot 

https://github.com/RTParse/RTAnnot
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phase, as described above, each phase was 

considered a separate radiotherapy instance 

(Figure 1). Gold annotations for relations between 

the following key properties were created: Dose, 

Fraction Number, Fraction Frequency, Treatment 

Site, and Boost. Radiotherapy is most often 

delivered in many small doses, or fractions, over a 

given period of time. Dose is any description of 

radiation dosage in the text, either the total dose or 

fractional doses, generally described using the unit 

Gray (Gy). Fraction Number is any mention of the 

number of fractions delivered, and Fraction 

Frequency is the frequency of fraction delivery. 

Treatment site is the actual or relative anatomical 

site that is targeted with radiotherapy. Boost is a 

mention that conveys the treatment instance is a 

second phase of radiotherapy that brings a smaller 

treatment site to a higher dose.  Properties that 

described the same treatment instance were linked 

together as a relation.  

Two expert human annotators completed gold 

annotations for 47 radiotherapy instances 

containing 310 relation instances to calculate inter-

annotator agreement, after which a single human 

annotator completed the gold annotations. As most 

radiotherapy instances included Dose, we chose to 

classify the relations between each Dose mention 

and every other property mentioned in the radiation 

instance. Thus, Dose mentions served as the anchor 

for the relations within a radiotherapy instance and 

were labeled as Dose-Mention. Of note, Dose-

Dose refers to a relation of two different Dose 

mentions in the same radiotherapy instance. In our 

dataset, there were on average 1.4 radiation 

instances per document. Documents were split into 

train, development, and test sets. The gold 

annotated HemOnc.org corpus will be made 

publicly available for research purposes. 

3  Methods 

We explored two state-of-the-art neural network 

methods for this task. First, we used Flair (Akbik 

et al,, 2018), which is a pre-trained character 

language model trained on one billion words of 

text (Chelba et al., 2013) to train a multi-layer Long 

Short-Term Memory (LSTM) (Hochreiter and 

Schmidhuber, 1997) to generate contextual 

embeddings. Text is then passed into this model, 

put into an LSTM to obtain a text representation, 

and this is passed into a final linear layer for 

classification. We were motivated to explore this 

approach as we hypothesized that the contextual 

character embedding may be better at handling the 

rare and misspelled words in cancer texts, as well 

as numbers and short abbreviations common in 

radiation descriptions. Models had a hidden state 

of 128 and a dropout of 0.15-0.24, and were trained 

for 100 epochs using a mini-batch size of 8 and 

learning rate starting at 0.2 with an anneal factor of 

0.5, using an SGD optimizer (Robbins and Monro, 

1951; Kiefer and Wolfowitz, 1952; Bottou et al., 

2016). Second, we assessed the performance of 

bidirectional encoder representations from 

transformers (BERT) base uncased model, fine-

tuned on this relation task using a recurrent neural 

network to predict the class label (Devlin et al.; 

2019). We chose to explore this method given the 

excellent relation classification performance of 

attention-based models in biomedical texts (Verga 

et al., 2018; Wei et al., 2019; Lee et al., 2020). 

These models had a hidden size of 128 and dropout 

of 0.5, and were trained for 30 epochs using a mini-

batch size of 8 and learning rate starting at 0.00003 

with an anneal factor of 0.5, using an Adam 

optimizer (Kingma and Ba, 2014). For all, the 

model that performed best on the development set 

was evaluated on the held-out test set. Rule-based 

methods were considered, but as there are often 

more than one radiotherapy instance mentioned in 

a clinical text, frequently in close proximity and 

described in nested fashion, we did not feel there 

was a straightforward approach (Figure 1).  

To generate candidate relations, we extracted 

text windows encompassing two different token 

lengths on each side of the gold annotated Dose 

mention anchor: 46 tokens and 90 tokens (95th and 

99th percentile of token span lengths between 

Dose-Mentions in the same gold radiotherapy 

instances in the train and development sets, 

respectively). Every Dose-Mention pair in the text 

window was considered a candidate relation. For 

each relation candidate, start and stop tokens were 

inserted around the Dose and candidate property 

(Figure 1). The text segment was labeled with a 

Relation IAA 

Dose-Dose 0.94 

Dose-Treatment Site 0.90 

Dose-Frequency 1.00 

Dose-Fraction Number 0.98 

Dose-Boost 0.67 

None 0.74 

Table 1: Inter-Annotator Agreement (IAA) for 

the six relation categories. 

 

 

 



197

 

positive Dose-Property relation if the Dose and 

candidate property were in the same radiotherapy 

instance. 

The precision (True Positives/Predictions), 

recall (True Positives/Gold Positives), and F1 score 

((2*Precision*Recall)/(precision+recall)) are 

reported for each model. Error analysis via manual 

inspection was carried out to better understand how 

and where the models performed poorly. 

4 Evaluation 

Table 1 shows the IAA for each of the relation 

categories. IAA was ≥ 0.9 for all categories except 

for Dose-Boost (0.67) and None (0.74). Of note, 

there were only 6 total Boost mentions in the pilot 

dataset, limiting interpretation of this IAA. 

Table 2 shows the performance of the Flair and 

BERT relation classification models. Overall, the 

best performing model was the BERT model fine-

tuned on the 92 token text windows (macro-

average F1: 0.88), followed by the Flair model 

fine-tuned on the 92 token text windows (macro-

average F1: 0.86). Precision for the Flair model 

with this window was on average slightly higher 

than that for the BERT model. The models fine-

tuned on the 180 text windows had slightly worse 

performance (BERT model macro-F1: 0.85, Flair 

model macro-F1: 0.82).  

Qualitative error analysis of each model 

revealed five main categories of failure: 1) human 

errors in gold labeling, 2) false positives due to two 

mentions being in close proximity despite relating 

to different treatment instances, 3) false negatives 

Flair/BERT Models Precision Recall F1 

 

92 Token 

Windows 

180 Token 

Windows 

92 Token 

Windows 

180 Token 

Windows 

92 Token 

Windows 

180 Token 

Windows 

Dose-Dose 0.77/0.88 0.79/0.68 0.75/0.82 0.83/0.81 0.76/0.85 0.81/0.74 

Dose-Treatment Site 0.84/0.79 0.61/0.76 0.86/0.88 0.92/0.89 0.85/0.83 0.73/0.82 

Dose-Fraction 

Frequency 0.79/0.78 0.84/0.88 0.95/0.90 1.00/1.00 0.86/0.84 0.91/0.93 

Dose-Fraction 

Number 0.95/0.94 0.90/0.87 0.93/0.96 0.92/0.95 0.94/0.95 0.91/0.91 

Dose-Boost 1.00/0.85 0.56/0.60 0.69/0.85 0.69/0.92 0.82/0.85 0.62/0.73 

None 0.95/0.95 0.98/0.98 0.95/0.94 0.94/0.95 0.95/0.95 0.96/0.96 

Average 0.88/0.87 0.78/0.80 0.86/0.89 0.88/0.92 0.86/0.88 0.82/0.85 

Table 2: Results of the two Flair and two BERT relation classification models, developed using two different text 

windows around the anchor Dose entity. The first result is from Flair, the second – from BERT (Flair/BERT) 

 

Error Type Text Gold Label 

Predicted 

Label 

Human error in gold labeling 

“…2 Gy fractions once per day x 15 

fractions (total dose: 30 Gy)…” None 

Dose-

Frequency 

False positive due to two 

mentions in close proximity 

“…Synchronously, PTV1 and PTV2 

received 45 and 50.4 Gy, 

respectively...” None Dose-Dose 

False negative due to distant 

related mentions 

“…1.5 Gy fractions x 16 fractions, 

given twice per day (4 to 6 hour 

interval between treatments) on days 

1 to 5, 8 to 10. Total dose during 

consolidation is 24 Gy...” Dose-Dose None 

Incorrect label in texts with 

atypical treatment description 

"...additional treatment up to a total 

of 55.8 Gy was administered to 

original bony tumors and the 

postinduction chemotherapy soft 

tissue volumes plus a 2 cm 

margin..." 

Dose-

Treatment Site None 

Table 3: Examples of error types identified in qualitative error analysis. The mentions being classified are 

bolded in the text. 
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because related mentions were distant and/or 

crossing sentence boundaries 4) incorrect labeling 

in texts with very atypical descriptions of 

treatment, 5) incorrect labeling in tabular text, and 

6) other/unknown. Examples of errors are shown 

in Table 3. All models suffered from similar 

methods of failure, and texts describing 

radiotherapy courses with several phases appeared 

to be particularly challenging. Interestingly, the 

BERT model fine-tuned on the 180 token text 

windows was better able to correctly label relations 

in tables than the other models, although there were 

only rare examples of tables in these corpora.  

Additionally, in the Flair models using the 92 

and 180 token window texts, there were 3 and 8 

true positive relations, respectively, that were 

labeled with an incorrect label other than “None”. 

All incorrect labels in the BERT models were 

either a “None” label assigned to a true relation, or 

a false positive relation assigned to a true “None” 

relation. 

5  Discussion and Conclusion 

The neural models had very good performance on 

the radiotherapy relations explored in these 

experiments, often approaching or exceeding IAA. 

The performance of the BERT and Flair models 

were overall comparable, with the best BERT 

model outperforming the best Flair model. 

Interestingly, the size of the text windows used for 

fine-tuning appeared to have a larger impact on 

performance than the type of model itself, with 

shorter texts yielding better results. This may be 

due to the frequent repetition of similar but 

unrelated entities and treatments in clinical texts, 

and optimizing this parameter should be explored 

when developing models for clinical relation 

extraction. 

These findings suggest that neural methods may 

be a good avenue for clinical relation extraction for 

complex, highly specialized treatments such as 

radiotherapy. Future work will develop models to 

extract relations between Dose and additional 

relevant entities, and will investigate end-to-end 

entity and relation extraction systems for robust 

information extraction pipelines. 
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