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Abstract

While dementia with Lewy bodies (DLB) is
the second most common type of neurodegen-
erative dementia following Alzheimer’s dis-
ease (AD), it is difficult to distinguish from
AD. We propose a method for DLB detection
by using mental health record (MHR) docu-
ments from a (3-month) period before a pa-
tient has been diagnosed with DLB or AD. Our
objective is to develop a model that could be
clinically useful to differentiate between DLB
and AD across various datasets from differ-
ent healthcare institutions. We cast this as
a classification task using convolutional neu-
ral network (CNN), an efficient neural model
for text classification. We experiment with
different representation models, and explore
the features that contribute to model perfor-
mances. In addition, we apply temperature
scaling, a simple but efficient model calibra-
tion method, to produce more reliable predic-
tions. We believe the proposed method has
important potential for clinical applications us-
ing routine healthcare records, and for general-
ising to other relevant clinical record datasets.
To the best of our knowledge, this is the first at-
tempt to distinguish DLB from AD using men-
tal health records, and to improve the reliabil-
ity of DLB predictions.

1 Introduction

Alzheimer’s disease (AD) is the most prevalent
type of dementia, characterised by progressive cog-
nitive impairment such as memory loss. Dementia
with Lewy bodies (DLB), also known as Lewy
body dementia, is the second most common type of
neurodegenerative dementia following Alzheimer’s

disease (AD), with the defining features of fluc-
tuating cognition, recurrent visual hallucinations,
rapid eye movement (REM) sleep behaviour dis-
order, and Parkinsonian motor symptoms in addi-
tion to dementia (Walker et al., 2015). Particularly
in the early stages, prior to diagnosis, DLB and
AD are difficult to distinguish, hence the detection
rates of DLB are sub-optimal, with a large propor-
tion of cases missed or misdiagnosed as AD (Kane
et al., 2018). Detection of DLB is, however, crucial
as compared to AD and other forms of dementia
(e.g. Parkinson’s disease dementia (PDD)1). DLB
has a worse prognosis across key outcomes such
as mortality, hospitalisation, move into residential
care, quality of life, and healthcare costs (Mueller
et al., 2017). Moreover, not only is early diagno-
sis paramount, different types of treatments can
have different impacts on these patient groups, e.g.
antipsychotics, which adds to the importance of
accurate and timely diagnoses.

Due to the challenges in recognising DLB clini-
cally, it has been difficult to recruit large research
cohorts of representative patients with DLB, and
the increasing use of routinely collected healthcare
data has been suggested as a potential solution to
this shortage. Applying classical methods of symp-
tom ascertainment using natural language process-
ing (NLP) in routinely collected data is however
difficult in patients with DLB, as clinicians tend to
record the defining features only if they have also

1The distinction between DLB and PDD is largely around
the degree of cognitive impairment and timing of motor symp-
toms, and they are on a continuum, hence the distinction is
less clinically important in this case. Thus, we do not focus
on this distinction here.
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made the correct DLB diagnosis (Mueller et al.,
2018). Therefore, we applied novel neural mod-
els of NLP to test whether these can be clinically
useful to distinguish DLB and AD, and to provide
assistance to mitigate expensive outcomes from
misdiagnoses of DLB.

This task is challenging because DLB and AD
share certain clinical and biological similarities
that make them particularly difficult to differenti-
ate. Motivated by the emergence of neural mod-
els and NLP methods applied to the biomedical
domain, we cast this as a binary text classifica-
tion task, where we use convolutional neural net-
works (CNNs) (LeCun et al., 1998; Krizhevsky
et al., 2012; Kim, 2014) to address it. Addition-
ally, the generalisation of well-trained models is
notably more difficult, since different formats and
grammatical patterns emerge in MHRs across dif-
ferent healthcare institutions. In order to test the
efficiency of our proposed methodology, we use
three datasets from two different MHR (clinical
documentation) systems and healthcare institutions,
with the aim of comparing the model’s perfor-
mances on similar datasets containing relevant data,
but with different contextual structures.

To assist the analysis of our experimental results,
and to bridge the gap between model accuracy and
confidence, we also study an approach where the
model confidence estimates are calibrated. Con-
fidence calibration is important for classification
models. Classification networks must not only be
accurate, but should also indicate when they are
likely to be incorrect; a well-calibrated network
matches its confidence to its accuracy so that it is
confident when it is accurate, and uncertain when
it is not. We use the calibration method named tem-
perature scaling, where expected calibration error
(ECE), the expectation of the differences between
confidence and accuracy, is used as the primary
empirical metric to measure calibration (Guo et al.,
2017).

In this paper, we present our preliminary work
towards automatically distinguishing individuals
diagnosed with DLB or AD using neural network
models and MHR texts. This methodology can
provide an efficient technique for detecting and in-
tervening DLB. Our contributions are threefold: 1)
we introduce a CNN approach for the classification
on DLB and AD using MHRs; 2) we investigate the
performance of the proposed model on two MHR
datasets from two different healthcare institutions

with different formats and patterns; 3) we also ap-
ply a neural model calibration method to help in
understanding when the model predictions tend to
be brittle, so that the model can output confidence
scores with higher reliability.

2 Related Work

With the success of neural models for many NLP
tasks, deep learning methods, as well as word em-
beddings, have started to be applied to the biomed-
ical and/or clinical domains (Cohen and Demner-
Fushman, 2014; Wang et al., 2018; Kormilitzin
et al., 2020) including mental health, such as au-
tomatic detection and classification of cognitive
impairment.

For example, three neural models (CNNs-,
LSTM-RNNs-, and CNN-LSTM-based) were ap-
plied to distinguish AD and Control patients from
DementiaBank (Karlekar et al., 2018; Becker et al.,
1994). CNN-LSTM model achieves state-of-the-art
performance on the AD classification task. Since
neural models are usually black-boxes and it is hard
to interpret the reasoning for final classification
decisions, various visualisation techniques have
been proposed for neural networks (Mahendran and
Vedaldi, 2015; Samek et al., 2016; Li et al., 2016;
Kádár et al., 2017). Karlekar et al. (2018) illus-
trated two visualisation methods for interpretation,
based on activation clustering and first-derivative
saliency methods, to assist the analysis and con-
solidation of distinctive grammatical patterns of
contextual information from AD patients.

Early detection plays a crucial part in the study
of dementia. Pan et al. (2019) proposes a hierarchi-
cal model that encompasses both the hierarchical
and sequential structures of picture description with
attention mechanism, and detecting signs of cogni-
tive decline at both the word and sentence levels, by
using the DementiaBank and an in-house database
of Cookie Theft picture descriptions (Mirheidari
et al., 2017). Pan et al. (2019) shows both the
proposed hierarchical structure and the attention
mechanism contribute to the improvement in AD
detection.

Most NLP studies addressing dementia use lan-
guage transcripts from clinical cohorts, such as
the DementiaBank (Becker et al., 1994). To our
knowledge, very few studies have used MHR docu-
ments and NLP for modelling detection of demen-
tia types, and we are not aware of any studies using
NLP and MHRs for detection of DLB. McCoy Jr.
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et al. (2020) presents a study using electronic health
record (EHR) data for stratifying risk for dementia
onset, using a bespoke NLP approach for scoring
symptoms in the clinical texts. This NLP approach,
however, relies on pre-defined terms, and addresses
a slightly different clinical problem.

When applying neural networks to real-world
decision-making systems, classification networks
must not only be accurate, but also should indicate
when they are likely to be incorrect. A network
should provide a calibrated confidence measure in
addition to its prediction. Calibrated confidence es-
timates are also important for model interpretability.
Guo et al. (2017) identify methods, which can al-
leviate miscalibrated problems in neural networks,
and offer insight and intuition into network training
and architectural trends that may cause miscalibra-
tion. Good confidence estimates can provide valu-
able extra information to establish trustworthiness
in early detection of cognitive impairment.

3 Methodology

Our proposed approach uses a CNN model to
distinguish DLB and AD patients. We com-
pare the performance of using an embedding
layer (Emb-layer) and pre-trained embeddings
(BioWord2Vec) on our classification task, and fi-
nally apply a post-processing method (temperature
scaling) for model calibration.

3.1 Input representation: word embeddings

We compare two approaches for the input, using
high-dimensional word vectors (Mikolov et al.,
2013): 1) a randomly initialised embedding layer
and trained with the neural network, and 2) pre-
trained biomedical word embeddings.

For the pre-trained embeddings, we use
BioWord2Vec, distributed word representa-
tions proposed in Zhang et al. (2019).2 The
biomedical word embeddings are learnt based
on medical subject heading (MeSH) terms and
text sequences, employing the fastText (Bo-
janowski et al., 2017) subword embedding model.

2These non-contextualised embedding have performed the
best in our setting. We have also conducted the experiments
using the contextualised BioBERT (Lee et al., 2019) embed-
dings available at that time but it has a comparative worse
performance due to its specifics of the subword tokenisa-
tion and larger clinical document lengths, as compared to the
standard configurations in the BioBERT pre-training frame-
work. During the preparation of this paper, more work on ad-
vanced pre-trained word embeddings emerged and we applied
BioWord2Vec, one that was most relevant to our datasets.

BioWord2Vec outperforms the current state-of-
the-art non-contextualised word embeddings in
most BioNLP and/or ClinicalNLP tasks, suggesting
that the sub-word information and domain knowl-
edge are indeed able to improve the quality of
biomedical word representations and better capture
their semantics.

3.2 Convolutional Neural Network
We apply the convolutional neural network (CNN)
model (Kim, 2014) on our DLB and AD classifica-
tion task. The input to the model are all documents
of each patient concatenated and represented as a
matrix using each of the embedding configurations.
We use filters that slide over full rows of the matrix.
The height of the filters may vary, but sliding win-
dows over 3-5 words at a time are typical. Next, we
max-pool (a sample-based discretisation process)
the result of the convolutional layer into a long
feature vector, add dropout regularisation, and the
result is then passed to a softmax layer that outputs
probabilities over two classes.

We use a logistic regression (LR) model as a
baseline. Documents are pre-processed by tokenis-
ing and lowercasing. We compare two different
text representations: bag-of-words (BoW) and term
frequency-inverse document frequency (TF-IDF)
counts. For TF-IDF counts, we selected a mini-
mum document frequency of 5 and a maximum of
5,000 features.

3.3 Temperature Scaling
Temperature scaling is a post-processing technique
which can almost perfectly restore network calibra-
tion (Guo et al., 2017), and can be easily added to
any models. For classification problems, the neural
network model outputs a vector known as the logits.
The logits vector is passed through a softmax func-
tion to get class probabilities. Temperature scaling
simply divides the logits vector by a learnt scalar
parameter, i.e.

P (ŷ) =
exp(z/T )∑
j exp(zj/T )

(1)

where ŷ is the prediction, z is the logit, and T is
the learnt parameter. T is learnt on the validation
set, where T is chosen to minimise negative log-
likelihood (NLL). Intuitively, temperature scaling
simply softens the neural network outputs. This
makes the network slightly less confident, which
in turn makes the confidence scores reflect true
probabilities.
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This post-processing calibration method is ap-
plied on our DLB and AD classification task, to
narrow the gap between model confidence and ac-
curacy. The calibrated confidence provides further
assistance when deciding whether the individual
prediction might be reliable or incorrect.

A scalar summary statistic for calibration can be
useful to compare two distributions: accuracy and
confidence. The difference between accuracy and
confidence is defined as:

EP̂

[∣∣∣P (Ŷ = y|P̂ = p)− p
∣∣∣] (2)

where Ŷ is a class prediction, and P̂ is its associ-
ated confidence, i.e. the probability of correctness.

In practice, the model predictions are grouped
into M interval bins (each of size 1

M ). Ex-
pected calibration error (ECE) is computed as the
weighted average of the bins’ accuracy/confidence
differences:

ECE =
M∑

m=1

|Bm|
N
|acc(Bm)− conf(Bm)| (3)

where Bm is a set of indices where the predic-
tion confidence of samples falls into the interval(
m−1
M , m

M

]
, and n is the total number of samples

across all bins. Perfect calibration is achieved when
ECE = 0, that is acc(Bm) = conf(Bm) ∀ bins
m.

4 Materials and Experimental Setup

By applying two types of word embeddings
(Emb-layer and BioWord2Vec) for word rep-
resentations, convolutional neural network (CNN)
for model training, and temperature scaling for
model calibration, we investigated and evaluated
the efficiency of our proposed methodology on
three datasets from two healthcare institutions.

4.1 Datasets
We use de-identified mental health records (MHRs)
from (1) the Clinical Record Interactive Search
(CRIS 3) database at the South London and Maud-
sley (SLaM (Perera et al., 2016)) NHS Trust;
and (2) the Clinical Records Anonymisation and
Text Extraction (CRATE 4) database at the Cam-
bridgeshire & Peterborough NHS Foundation Trust

3The de-identified CRIS database has received ethical
approval for secondary analysis: Oxford REC C, reference
18/SC/0372.

4The de-identified CRATE database has received ethical
approval - NHS Research Ethics 17/EE/0442.

Dataset / # patients DLB AD
CRIS 90 750
CRIS† 90 90
CRATE 98 80

Table 1: Dataset Statistics - number of DLB and AD
patients in each dataset. The ground truth for CRIS is
extracted without human annotation.

(CPFT). From each MHR database, we extract doc-
uments for patients diagnosed either with DLB or
AD.

Acquisition of ground truth differed for the two
datasets. For CRIS, the MHRs are identified using
an information extraction technique that matched
any text strings associated with a diagnosis state-
ment of Lewy body dementia or disease. The
performance of this automatic extraction was veri-
fied by DLB experts as described in Mueller et al.
(2018). For CRATE, two experienced clinicians
with knowledge of DLB diagnostic criteria and
symptom presentation have determined ground
truth DLB cases in a set of records pre-selected by
an information extraction procedure. Cases were
identified as ground truth DLB if a diagnosis had
been given by a clinician within the healthcare insti-
tution and was the most recent recorded diagnosis
within the MHR (see Price et al. (2017) for more
details on data collection for CRATE). To have a
more comparable dataset to CRATE, we also cre-
ated CRIS†, in which we randomly selected AD
cases from CRIS to obtain a more balanced distri-
bution, while the DLB cases remain identical to
CRIS.

Within each dataset, we have information about
the Patient ID and the Diagnosis Date of
DLB and AD patients respectively. For each patient
with any of these diagnoses, we use only the text
written upon the first consultation until the date 3
months before the diagnosis (concatenated into one
document). The intuition is that we would like to
remove MHRs closer to the date of diagnosis that
could be more informative of the two diseases, and
hence making the differentiation using NLP trivial.
There is a total of 90 DLB patients and 750 AD
patients in CRIS5, and 98 DLB patients and 80 AD
patients in CRATE6 (see Table 1). In CRIS†, the

5The distribution of DLB and AD patients from CRIS
is close to the real distribution because diagnosed DLB is
currently about 5% of all dementias and there is evidence that
DLB should be around 10%, AD is around 70% (Mueller et al.,
2017).

6The more balanced distribution of CRATE is an outcome
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Datasets Max Min Median
CRIS 206,228 319 4,406
CRIS† 187,438 463 4,243
CRATE 733,388 28 2,710

Table 2: Statistics of document length, where Max,
Min, and Median refer to the number of words of the
document.

Datasets Vocabulary size Overlap
CRIS 186,002 47,360 (25.5%)
CRIS† 65,444 31,343 (47.9%)
CRATE 66,785 20,220 (29.9%)

Table 3: Statistics of vocabulary (BioWord2Vec con-
tains 2,324,849 distinct words in total where 2,309,172
words come from the PubMed and 15,677 from
MeSH.). The reason that there is a larger overlap in
CRIS† might be from higher contextual consistency be-
tween CRIS† and BioWord2Vec.

AD cases were extracted randomly from CRIS with
the aim of making the results more comparable by
equalising the number of DLB and AD patients
(closer to the distribution in CRATE).

The length of each document varies in the
datasets, ranging from tens of words to hundreds
of thousands (see Table 2). On average, documents
are longer in CRIS and CRIS†. Since the standard
CNN model used for text classification takes the
maximum length of samples as the uniform length,
we considered normalising the length to its median
for optimised usage of computational resources 7

(as shown in Table 2) to pad/cut documents to the
same length, and use the latest diagnosis records as
the training samples if the document exceeds the
median.

4.2 Experimental Setup

In our binary classification task we consider DLB
cases as positive and AD cases as negative. We pre-
process the datasets by lowercasing and tokenising
using regular expression operations. We use 5-
fold cross-validation (CV) to segment the training
datasets and ensure that particular subgroups have
no deterministic effect on final model performance.
All our models use an Adam optimizer (Kingma
and Ba, 2014), with a learning rate of 0.001. We

of the manual extraction.
7For the CNN model, we use the sequence length 4,406

for CRIS and 2,710 for CRATE; for CRIS†, we applied the
same median length (2,710) as CRATE, in order to make the
results more comparable.

used a 2-D CNN. Filter sizes of [3, 4, 5] were used
with 128 filters per filter size. Batch size was set
to 32. To avoid overfitting, we apply dropout to
the output of all the functional layers (Srivastava
et al., 2014), with the dropout rate set to 0.5. The
final criteria are calculated by averaging the 5-fold
cross-validation results.

In the ablation study, we remove important
words from the training data and to trace changes
in model performance. These important words are
either the most informative of DLB and AD (e.g.
Model B where a list of terms, expressions, and
abbreviations related to the diagnoses of DLB and
AD; and was composed manually), or obtained
from our baseline model which contribute the most
to the LR predictions (Model C). We believe these
words are also indicative to neural models. Four
models are designed and compared:

• Model A: The training data are the raw text
for all the datasets.
• Model B: “lewy”, “body”, “bodies”, “dlb”,

“ad”, “lbd”, “dementia” are removed from
original text.
• Model C: “parkinson”, “hallucinations”, “vi-

sual”, “symptoms” are removed from original
text.
• Model D: Words mentioned in Model B and

Model C are all removed from original text.

We use the temperature scaling calibration
method, which does not affect the model’s accuracy.
We would want the confidence estimates (output
probabilities) to be calibrated. For example, given
100 predictions, each with confidence of 0.8, we
expect that 80 should be correctly classified. A
perfect calibration should be an identity function
between accuracy and confidence. We decide to
measure calibration by using expected calibration
error (ECE).

4.3 Evaluation

In order to test the efficiency of our model, we re-
port the performances based on precision, recall,
and F1-score. All the reported results are the aver-
age of 5-fold cross-validation (CV). We also report
F1-scores for each fold. In addition, to better un-
derstand the underlying data, we extract the top-20
words contributing the most to the DLB classifi-
cation in the LR model with both the BoW and
TF-IDF counts representations.
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Datasets Model Word Representation Precision Recall F1-score
CRIS LR BoW 0.76 0.63 0.66 (0.48, 0.72, 0.73, 0.67, 0.70)

TF-IDF 0.91 0.52 0.49 (0.51, 0.44, 0.50, 0.67, 0.34)
CNN Emb-layer 0.92 0.85 0.87 (0.91, 0.87, 0.82, 0.87, 0.88)

BioWord2Vec 0.75 0.55 0.63 (0.11, 0.78, 0.58, 0.91, 0.80)
CRIS† LR BoW 0.71 0.67 0.68 (0.69, 0.72, 0.80, 0.54, 0.65)

TF-IDF 0.75 0.75 0.75 (0.72, 0.75, 0.72, 0.80, 0.75)
CNN Emb-layer 0.87 0.81 0.73 (0.63, 0.78, 0.76, 0.77, 0.74)

BioWord2Vec 0.76 0.85 0.78 (0.81, 0.68, 0.83, 0.80, 0.82)
CRATE LR BoW 0.75 0.65 0.69 (0.78, 0.75, 0.52, 0.59, 0.81)

TF-IDF 0.71 0.85 0.77 (0.75, 0.69, 0.79, 0.84, 0.78)
CNN Emb-layer 0.88 0.59 0.70 (0.68, 0.67, 0.71, 0.73, 0.73)

BioWord2Vec 0.63 0.82 0.71 (0.71, 0.71, 0.71, 0.69, 0.73)

Table 4: DLB classification results (CRIS, CRIS†, and CRATE), using a logistic regression (LR) model with
bag-of-words (BoW) or TF-IDF counts representation, and using CNN with embeddings from the training data
(Emb-layer) or pre-trained embeddings (BioWord2Vec): precision, recall, and F1-score, average from 5-fold
cross-validation (F1-scores for each fold are shown in brackets).

Dataset LR F1-score Features (words)
CRIS BoW 0.66 hallucinations, [person name], today, night, [person

name], currently, [person name], body, symptoms, [person
name], parkinson, score, continues, review

TF-IDF 0.49 hallucinations, rivastigmine, parkinson, formcheckbox, lithium,
quetiapine, [person name], reg, visual, [person name],
[person name], night

CRATE BoW 0.69 [person name], hallucinations, mr, place, change, opmh, al-
lowance, [person name], [person name], note, stanground,
[person name], time, [person name], mental

TF-IDF 0.77 mr, hallucinations, parkinson, [person name], care, ext, liai-
son, transfer, mood, able, risk, review, visual, carers, symptoms,
admission, lodge, [person name]

Table 5: Top-20 words contributing the most to the DLB detection using logistic regression (LR) with BoW and
TF-IDF counts representation (a minimum document frequency of 5 and a maximum of 5,000 features).

5 Results

Overall classification results are reported in Table 4.
Two kinds of word representations are used with the
LR model: BoW and TF-IDF. Using BoW features
resulted in higher F1-score (0.66) as compared to
TF-IDF features (0.49) for CRIS; while the oppo-
site is observed for CRATE (0.69 for BoW and 0.77
with TF-IDF features). In general, CNN achieves
better results compared to the baseline LR (0.87
for CNN with Emb-layer on CRIS), and lower
deviation for each fold in 5-fold cross-validation.
On CRATE, the LR model with TF-IDF features
performs best (0.77).

Comparing the performances of random ini-
tialised word embeddings (Emb-layer) and
pre-trained BioWord2Vec, the result using

Emb-layer achieves higher F1-score (0.87)
than BioWord2Vec (0.63) for CRIS. Results on
CRATE using Emb-layer and BioWord2Vec
are, on the other hand, quite close considering F1-
scores and their stabilities for 5-fold CV.

However, for CRIS†, using pre-trained em-
beddings BioWord2Vec (0.78) performs better
than Emb-layer (0.73), with more compara-
ble data sizes of DLB and AD. Our proposed
model CNN with BioWord2Vec achieves the
highest F1-score (0.78) among four models (LR
with BoW and TF-IDF, CNN with Emb-layer
and BioWord2Vec). With the same settings, the
F1-score is also higher than that of CRIS (0.63)
with lower deviation, which might be the outcome
of a more balanced dataset. In comparison to
CRATE (0.71), although the F1-score on CRIS†
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Datasets CNN A B C D
CRIS Emb-layer 0.879 0.490 0.810 0.321

BioWord2Vec 0.636 0.633 0.543 0.500
CRIS† Emb-layer 0.738 0.652 0.730 0.733

BioWord2Vec 0.784 0.785 0.637 0.700
CRATE Emb-layer 0.703 0.649 0.692 0.667

BioWord2Vec 0.712 0.702 0.690 0.640

Table 6: Comparison of models (F1-scores) with dif-
ferent input texts.

(0.77) is slightly higher, the CRATE has a com-
paratively lower deviation. This result might be
inherited from the fact that there is a significant
increase in the overlap between CRIS† and CRATE
datasets (see Table 3).

We also report the top-20 most important fea-
tures contributing to the prediction in the LR
model using BoW and TF-IDF counts represen-
tations (see Table 5). It is obvious that “halluci-
nations”, “parkinson”, “visual”, “symptoms” are
ranked highly in both CRIS and CRATE.

Inspired by the important features from LR, our
baseline method, we removed the top-ranked im-
portant words from the pilot training data. We
observed that after removing the core dementia-
related words we still obtain similar F1-scores for
CRATE using both types of embeddings (see Table
6: models B-D compared to A). These words, how-
ever, seem to contribute more to the predictions of
CRIS patients and as informative as DLB symp-
toms in this case. Results for CRIS† indicate the
efficiency of a more balanced dataset and higher
vocabulary overlap with BioWord2Vec, where
we obtained less performance decrease when re-
moving informative words. This would imply the
remainder sets of words could also contribute to
the model predictions.

Using Model A as the base model for model cal-
ibration, where raw text serves input to our CNN
model with the BioWord2Vec word representa-
tion, we obtain well-calibrated model for all CRIS,
CRIS†, and CRATE (see Table 7).

It is worth noting that models trained on three
datasets experience some degrees of miscalibration.
(1) The confidences of two models (before and af-
ter calibration) decrease from over-confident to a
reliable level after temperature scaling. The dif-
ference between two confidence scores indicates
the performance of calibration and the model’s sta-
bility. If the confidence level drops significantly
(for instance, CRATE), this means there is more
uncertainty in the calibrated model estimates, but

less gap between accuracy and confidence. (2) Ac-
cording to Guo et al. (2017), the ECE is typically
between 4% to 10% on benchmark datasets. In our
experiment, we expected the scores of ECE to be
higher, as MHRs are much more free-formed and
noisy. Through the comparison of ECE before and
after calibration, we can observe that temperature
scaling does calibrate on the datasets, which is also
supported by the reduction in confidence and NLL.
(3) The NLL is often used to define how well a
neural network classifies data. A high NLL means
the classification is inaccurate. A low NLL other-
wise indicates the prediction matches that of the
expected value. The NLL decrease in our models
on the datasets means that the calibration produces
more reliable prediction outputs.

6 Discussion

To our knowledge, this is the first study on auto-
matically distinguishing dementia with Lewy bod-
ies (DLB) from Alzheimer’s disease (AD) using
MHRs. We investigated the performance of CNN
models using different embedding representations
on MHRs from two different healthcare institutions,
and incorporating the method of model calibration
into DLB classification to obtain reliable predic-
tions.

To be able to apply NLP models to real-world
biomedical tasks, we need first to embrace the chal-
lenges of the datasets. In our case, we face a range
of such challenges: small data size, hence reduced
reliability of predictions; class imbalance; noisy
data; and contextual differences between datasets.
These might be the reasoning behind higher devia-
tion and instability of F1-scores observed in some
predictions (see Table 4).

We attempted to mitigate these challenges by
using a set of fairly standard techniques. We use
5-fold CV to ensure that every example appears dur-
ing both training and testing. Using 5-fold CV, im-
portant information is more likely to be learnt, and
consequently obtaining better approximations and
enhancing robustness, whereas with larger datasets
there is more chance to have a proper distribution
of information for both training and testing.

Since most MHRs are written with different
formats and grammatical patterns, we considered
using pre-trained biomedical word embeddings
(BioWord2Vec) to get a unified word representa-
tion across different datasets. Those embeddings
helped our models to rely less on explicit indica-
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Datasets Confidence ECE (%) NLL
CRIS 0.97→ 0.87 (∆ = 0.10) 8.234→ 4.701 7.335→ 3.027
CRIS† 0.88→ 0.81 (∆ = 0.07) 11.627→ 9.525 2.853→ 1.531
CRATE 0.88→ 0.65 (∆ = 0.23) 15.745→ 8.351 1.089→ 0.633

Table 7: Model Calibration on CNN/BioWord2Vec combination (Before Calibration→ After Calibration).

tors of diagnoses (e.g. direct mentions of a diag-
nosis) while producing predictions and stabilised
performance over cross-validation splits. However,
using those embeddings might be hindered by ex-
cessive noise (concatenation of words and punc-
tuation, misspellings) in data and hence poor vo-
cabulary overlap. Better performance in this case
can naturally be achieved if more in-domain data is
available and embeddings are trained from scratch.

Finally, to improve the reliability of model pre-
dictions, temperature scaling, a simple but effi-
cient calibration method, is used to narrow the
gap between accuracy and confidence. The ECE
scores from both before and after calibrations are
used as the primary measures of model calibration.
The well-calibrated model decreases in confidence.
This can reflect the true probability of model pre-
dictions, and can provide a good assistance and
reference when evaluating the model outputs.

Our proposed model and calibration method
could prove useful clinically. Currently in clini-
cal care there is a high level of under-diagnosis as
well as lack of confidence in making a DLB diag-
nosis. Moreover, appropriate treatment is crucial,
e.g. it is important to avoid antipsychotic prescrib-
ing for this patient group. Although the F1-scores
and calibration results are not always perfect, they
indicate that using routine healthcare data could be
valuable for predictive model development even in
cases where it is hard to obtain large datasets.

7 Conclusion

In this paper, we propose to use a CNN approach
for the task of detecting DLB patients by dis-
tinguishing them from AD patients. Our well-
calibrated models are relatively robust after using
temperature scaling, where calibrated probabilities
are more informative of good probability estimates
and true predictions. The proposed model is inves-
tigated on two MHR datasets from two different
healthcare institutions, and achieves competitive re-
sults using two types of embeddings (Emb-layer
and BioWord2Vec). The pre-trained biomedi-
cal word embeddings (BioWord2Vec) are effi-

cient for all three datasets whilst CRIS relies much
more on in-domain word distributions. In particu-
lar, BioWord2Vec can achieve lower deviations
on model performance in ablation study.

Future work will be focused on the effectiveness
of contextualised embeddings for a more general
methodology where the detection of DLB can be re-
alised across healthcare institutions. We would also
like to investigate more effective pre-processing
techniques to purify and clean the raw texts be-
fore feeding into advanced models, and to miti-
gate the noise commonly existed in health records.
The code is available at https://github.com/

zixuwang1996/dlb_ad_classification.
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