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Abstract

Extracting and modeling temporal informa-
tion in clinical text is an important element
for developing timelines and disease trajecto-
ries. Time information in written text varies
in preciseness and explicitness, posing chal-
lenges for NLP approaches that aim to accu-
rately anchor temporal information on a time-
line. Relative and incomplete time expressions
(RI-Timexes) are expressions that require ad-
ditional information for their temporal anchor
to be resolved, but few studies have addressed
this challenge specifically. In this study, we
aimed to reproduce and verify a classification
approach for identifying anchor dates and rela-
tions in clinical text, and propose a novel rela-
tion classification approach for this task.

1 Introduction

Temporal information is a crucial aspect of the anal-
ysis of clinical texts in electronic health records
in order to improve understanding of disease tra-
jectories. Being able to extract and model time
information, such as dates and durations of events,
leads to knowledge about the temporal context of
clinically important information like symptoms or
treatments, and can be used e.g. to reconstruct
a patient’s timeline. With such timelines, a wide
range of applications can be developed, such as
population-based observational retrospective stud-
ies on temporal patterns in diseases and treatments,
or individualised patient summaries.

Several solutions have been proposed and devel-
oped to extract and normalize temporal information
from text both in the general and clinical NLP do-
mains (Leeuwenberg and Moens, 2019; Derczyn-
ski, 2017; Tissot et al., 2019). The most widely
used model for annotating temporal information

and cues for NLP applications is the TimeML
model (Pustejovsky et al., 2010), where time ex-
pressions (timexes) are a core element. These are
typically annotated into types (e.g. dates, dura-
tions) and normalized to a temporal value that can
be used for further temporal reasoning.

However, accurate normalization of relative and
incomplete temporal expressions is still an under-
studied area. Relative and incomplete time expres-
sions (RI-Timexes), as defined in (Sun et al., 2015)
are time expressions that require another timex for
their value to be resolved. For example, in the
following sentences “He arrived on 09/18/2002.
Three days later, he was transferred to the Medi-
cal Intensive Care Unit.”, the normalized temporal
value of the date timex “09/18/2002” does not de-
pend on any context. Such expressions are called
absolute timexes. RI-Timexes, on the other hand,
require additional contextual information. For ex-
ample, to assign and compute the normalized tem-
poral value of the RI-Timex “Three days later”, we
need information about what this expression refers
to in the narrative – in this case, the previous date
timex “09/18/2002”. The temporal expression that
the relative timex refers to is called the anchor. An
anchor relation, which specifies the link between
the two expressions, can also be defined. With
these two pieces of information, it becomes feasi-
ble to compute a normalized value for the RI-Timex
(09/21/2002 in this case).

In the clinical domain, two of the most widely
used temporal extraction and normalization tools
are the java-based libraries HeidelTime (Strötgen
and Gertz, 2010) and SUTime (Chang and Man-
ning, 2012). Their approach to normalize relative
time expressions is to define one main anchor date
for the whole document (Document Creation Time,
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DCT), and all timexes in the document are resolved
relatively to this. This method might work well on
e.g. short texts that refer to a single event, but
is not necessarily appropriate for longer narrative
notes, for example clinical assessments relating to
a patient’s history.

Adaptations and variations of these systems were
used by several teams in the 2012 i2b2 NLP Chal-
lenge on Temporal Relations in Clinical Data (Sun
et al., 2013a), and the best performing system
on timex normalization yielded value accuracy of
0.73 (Sun et al., 2013b). In the analysis of these
results, it was found that relative time expressions
were a major source of submitted system’s errors.
In the proposed solutions, the main approaches re-
lied on either defining a single anchor date (the
DCT) for the whole text, or creating a set of rules
that anchors expressions based on specific signal
words, such as “operation”, or “birth” (Sun et al.,
2015). According to Leeuwenberg and Moens
(2019), almost all current state-of-the-art NLP sys-
tems use handcrafted rules based on lexical patterns
to solve timex normalization. However, such rules
have limitations, and not many deal with anchoring
RI-Timexes in clinical notes.

One study specifically addresses the problem of
anchoring RI-Timexes (Sun et al., 2015). They pro-
pose two simplification hypotheses, for identifying
and classifying the anchor date and anchor relation
respectively: they restrict the anchor date possi-
bilities to four different temporal expressions (ad-
mission date, discharge date, previous timex, and
previous absolute timex), and the anchor relation to
three possibilities (before, after, and equal/during).
This allows them to approach the problem as a
multi-class classification problem. They manually
annotated three corpora following these hypothe-
ses, and proposed a supervised machine-learning
approach, along with a rule-based approach for the
final relative value normalization.

To our knowledge, there have been no further
studies on alternative approaches for identifying
and classifying anchor dates and relations for RI-
Timexes in clinical text. Our long-term goal is to
develop approaches for modelling time informa-
tion that can be used for clinical timeline recon-
struction, for which novel approaches for identi-
fying, anchoring and normalizing RI-Timexes are
needed. Our contribution in this study is a) we
aimed to reproduce the findings published in Sun
et al. (2015), allowing to verify the viability of

their hypothesis, and to define a baseline against
which we could compare new approaches; b) we
propose an alternative annotation model for an-
choring RI-Timexes, and developed and applied
a new, adapted, annotation model; and c) we pro-
pose a new computational approach and model the
problem as a relation classification problem, using
a BERT transformer model (Devlin et al., 2019)
trained on clinical data (Alsentzer et al., 2019).1

2 Materials and Methods

2.1 Data
We used the 2012 i2b2 NLP temporal challenge
dataset (Sun et al., 2013a). This data is a sub-
set of the MIMIC III database (Johnson et al.,
2016), which contains de-identified electronic
health record data associated with over 40K pa-
tients admitted to the Beth Israel Deaconess Medi-
cal Center in Boston, Massachusetts between 2001
and 2012, available under a data use agreement.

2.1.1 2012 TIMEX i2b2
The 2012 i2b2 data set contains 310 discharge sum-
maries, annotated with time expressions, events,
and temporal links in the TimeML format (Puste-
jovsky et al., 2003). They contain an ‘Admission’
section, which usually presents the clinical history
of the patient and the reason for their hospitalisa-
tion, and a ‘Discharge’ section, which summarizes
the course of the hospital stay (annotated as SEC-
TIME). The annotation guidelines are presented
in (Sun et al., 2013a). For our study, we only used
the timex annotations, of which there are 4185 in
total, out of which 2,992 are dates and times. The
dataset is divided into a training set of 190 docu-
ments and a test set of 120 documents.

2.1.2 2015 RI-TIMEX i2b2 subset
We also had access to RI-Timex annotations
from Sun et al. (2015), for a subset of the 2012
i2b2 data set (henceforth called 2015 RI-Timex
i2b2 subset). These annotations specify anchor
dates and anchor relations for 484 relative and in-
complete temporal expressions, for 104 documents
from the 2012 i2b2 data set (all of which are part
of the 2012 i2b2 test set). The data was annotated
based on the following assumptions:

1. The anchor date for a RI-Timex is either one
of the section times (i.e. the ‘Admission Date’

1Annotation guidelines and code are available at
https://github.com/KCL-Health-NLP/NeuralTime
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or the ‘Discharge Date’), the previous timex
or the previous absolute timex. Here, “pre-
vious” is to be understood as “when going
backward in the text” – the “previous timex”
is the temporal expression that comes directly
before the RI-Timex in the text, the previous
absolute timex is the first of the previous ex-
pressions to be an absolute timex. Note that
these four possibilities are not mutually exclu-
sive, as the previous timex can be the previous
absolute timex as well.

2. Anchor relations are restricted to three possi-
bilities: ‘Before’, ‘Equal’ or ‘After’ the anchor
date.

The annotations were generated through the fol-
lowing process: a) to isolate the RI-Timexes, they
applied a pattern-based filter on all timexes anno-
tated with the types ‘date’ and ‘time’ to identify
absolute timexes; b) the remaining timexes were
manually reviewed to identify RI-Timexes; c) each
identified RI-Timex was then assigned an anchor
date that could be ‘Admission’, ‘Dicharge’, ‘Previ-
ous Timex’, or ‘Previous Absolute Timex’, and an
anchor relation ‘Before’, ‘Equal’ or ‘After’; d) an
‘Other’ category exists for cases where none of the
four possibilities works. In particular, they chose
the anchor date and relation using a limited con-
text window containing the neighboring sentences.
Tables 1 and 2 show the distribution of the anchor
date types and anchor relation categories. For our
study, we randomly divided these 484 annotations
into a training set and a test set, respectively cover-
ing 411 and 73 examples. Note that sometimes, the
discharge, previous timex and previous absolute
timex could refer to the same actual timex, which
is why the numbers of anchor relations in the table
add up to more than the total of RI-Timexes.

A D PT PAT Other
∑

Training 246 81 143 118 6 594
Test 43 14 27 21 1 106
Total 289 95 170 139 7 700

Table 1: Anchor date type distribution: 2015 RI-Timex
i2b2 data. A: Admission Date: D: Discharge Date: PT:
Previous Timex; PAT: Previous Absolute Timex

2.2 2020 RI-TIMEX i2b2: Corpus
development

To generate a new gold standard with RI-Timex an-
chor date type and relation annotations on the entire

Before Equal After None
∑

Training 51 169 185 6 411
Test 8 28 36 1 73
Total 59 197 221 7 484

Table 2: Anchor relation annotation distribution: 2015
RI-Timex i2b2 data.

2012 i2b2 data set, we defined a new annotation
model to represent these concepts, which allowed
us to not limit ourselves to only the four anchor
date possibilities defined by Sun et al. (2015).

2.2.1 Absolute timex filtering
To identify potential RI-Timexes, we started by
reproducing the method of filtering out the most
common absolute timexes. Following Sun et al.
(2015)’s methodology, we applied this filtering only
to the timexes of type ‘Date’ and ‘Time’. The total
number of ‘Date’ and ‘Time’ timexes in the 2012
i2b2 dataset is 2,992, and 586 SECTIMEs (3.578
in total). The format we defined as representative
of absolute timexes to filter out are, with “x” as a
digit includes:

a) xx/xx/xx
b) xx/xx/xxxx
c) xx/xx
d) x/xx
e) the four previous format with ‘-‘ instead of ‘/’
f) all other expressions similar to x:xx
After this first filtering step, we obtained 1668

absolute timexes filtered and 1324 relative timexes.

2.2.2 Annotation guidelines
The goal of this annotation task is to differentiate
absolute from RI-Timexes, and to link the latter
to anchor dates. In our annotation guidelines, we
define the following concepts:

Absolute time expression: an expression which
contains all the information needed to normalize it
to a standard date, e.g. “12/05/2020”;

Relative time expression: an expression whose
temporal meaning is stated as a relative value
against another time expression, e.g. “two days” in
“two days before the admission”;

Incomplete time expression: an expression
which holds only partial information : the context
is needed to determine the calendar date, e.g. “in
December”;

Anchor date: the reference point which can be
used to infer the normalized value of a relative or
incomplete temporal expression;
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Anchor relation: the nature of the temporal link
between a relative or incomplete expression and
their anchor date.

We kept the anchor relation restricted to the three
possibilities: ‘Before’, ‘Equal’ or ‘After’. The main
difference between our annotation model and the
one from Sun et al. (2015) is that we did not restrict
the options for the anchor date, which could be any
of the date and time timexes in the text.

We used the annotation tool that was developed
for the i2b2 challenge (MAE). We generated an-
notation tags for RI-Timexes, and for the absolute
timexes. Examples of relative and absolute time ex-
pressions as XML tags are shown in Figure 1. The
annotators were given the following instructions:

a) for every absolute timex, decide whether it
is truly an absolute timex or a RI-Timex that was
mislabelled in the filtering, which is done by modi-
fying the “absolute” attribute;

b) for every RI-Timex instance, decide whether
it is truly a RI-Timex;

c) for every true RI-Timex, chose an anchor,
i.e. another date – this is done by creating an
ANCHORLINK, which is a link entity between
a RI-Timex and another time expression, the an-
chor date; the anchorlink has a ‘relation’ attribute
which the annotator needs to complete with either
‘before’, ‘equal’ or ‘after’.

Three annotators worked on the annotations: two
computer scientists, and researcher in life sciences.
We divided the annotation process into three phases.
Phase 1: we had three annotators, and each pair
of annotators double-annotated a set of ten docu-
ments, for which inter-annotator agreement (IAA)
was calculated, and we analysed disagreements
to refine the guidelines. Phase 2: two annotators
double-annotated a new set independently using
the updated guidelines, after which IAA was again
calculated. In the final phase, the remaining set
was split in two and annotated separately.

2.3 Experimental setup

2.3.1 Baseline: Binary classification
We reproduced the methodology of Sun et al.
(2015). To predict the anchor date for a given
RI-Timex, four binary classifiers were trained, to
discern if the RI-Timex is anchored to one of the
four possible anchor dates. Similarly, for anchor
relations, three binary classifiers were trained.

Sun et al. (2015) used SVM classifiers from the
LibSVM implementation. These types of classi-

fiers are especially adapted to text classification, as
they can handle high dimensional inputs such as
those created by one-hot encoded word vectors. We
used the SVM algorithms of the sklearn library. As
the hyperparameters were not specified in Sun et al.
(2015), we performed hyperparameter optimization
using 10-fold cross validation on the training set of
both data sets. The optimized hyperparameters are
included in the appendix.

The following set of features are used in Sun
et al. (2015):

* The bag-of-word representation of a window
of 8 tokens before and after the timex, as well as
the timex itself. All numbers are normalized to a
uniform token

* The bag-of-word of the previous timex
* The TimeML type of the previous timex (Date,

Duration, Frequency, or Time)
We developed our binary-classification models

with a mostly equivalent but slightly modified set
of features:

* The numbers written in all letters were not
normalized

* We did not include the type of the previous
timex, as we only considered Date and Time types

In the original paper, the expression “previ-
ous timex” was ambiguous as it was not clear
whether or not it included the previous absolute
time expression. We chose to use bag of word
representation of both the previous timex and the
previous absolute timex.

2.3.2 Relation classification approach
A common way to model the resolution of tempo-
ral relations in text is to classify pairs of temporal
entities. We define our problem as a relation clas-
sification problem where, given two temporal ex-
pressions r and p, with r being a RI-Timex and p a
potential anchor date, the task is to decide whether
or not r is anchored to p, and the nature of the
anchor relation: ‘Before’, ‘Equal’ or ‘After’.

Model Choice: recent literature has shown
some attempts to use neural models to classify tem-
poral relations in text (Lin et al., 2019). We propose
to use the BERT transformer model, to solve our
anchor date relation problem. Transformer models
such as BERT are trained on large corpora to gen-
erate a contextual language model, and can be fine-
tuned to specific NLP tasks. This enables transfer
learning and allows state-of-the-art performances
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Figure 1: Examples: RI-Timex and Absolute Time Expression annotations in XML tag format.

using relatively small task-specific data sets, with-
out having to retrain the model from scratch. We
use a version of BERT that was pre-trained on the
whole MIMIC corpus (Alsentzer et al., 2019), mak-
ing it especially adapted to the i2b2 dataset.

Input Definition: While not constrained within
a sentence by previous models (Lin et al., 2019),
BERT was not designed to solve problems of long-
distance relations within a text. There is a limita-
tion on the size of the input text sequences it can
accept (512 tokens). As our problem might require
longer text sequences, we defined an adapted in-
put representation. For example, the method used
by Lin et al. (2019) was to pass as input to BERT a
single sequence of tokens with the relevant timexes
tagged. For this method to work, both of the expres-
sions from the candidate relation have to be part of
a 512 token window in the text. We performed data
analysis to quantify how many of our annotated
relations were long-distance relations, and in par-
ticular, how many of the linked expressions were
more than 512 tokens apart. We observed that the
percentage of timexes where the number of tokens
between the RI-Timex and its anchor date is greater
that 512 is 33%.

We solved this problem by using the sequence
pair classification feature of BERT: we transformed
the inputs into a window of about 200 tokens
around the two expressions. 7.6% of the anchor
dates are located after the RI-TIMEX in the text,
which means that the window of tokens had to
cover both sides of each expression to be able to
capture the relationship between them.

Data Augmentation: To create our candidate
relation pairs, we generated all (RI- timex, potential
anchor) pairs, where the potential anchors were all
timexes from the Date or Time annotations. There
are 17 786 examples of such pairs in total. 93%
(16 638) pairs are not an anchor pair; 6.5% (1148)

pairs are. To improve class representation, we used
two techniques:

• Oversampling, which means augmenting the
number of cases for the underrepresented
class. There was a natural way of increas-
ing the number of anchor dates, using the
normalized value of the absolute timexes. In
particular, for each RI-timex, we used every
absolute timex that had the same normalized
value as the original anchor date, as additional
anchors. This method doubled the number
of training examples that were actually an-
chor/timex pairs.

• Undersampling, which is the process of reduc-
ing the number of examples from the domi-
nant class. We report results obtained when
keeping only 50% of the training examples
that were not an anchor/timex pair.

After oversampling and undersampling, we ob-
tained 5316 training examples, out of which 1304
(24%) are anchor dates. 20% of the train set was
used as a validation set to assess the performance
of the model during training. We did not apply ei-
ther oversampling nor undersampling on the blind
test set. Table 3 reports the label distribution. We
used the implementation of ClinicalBert from the
huggingface transformers library (Alsentzer et al.,
2019). We fine-tuned the model using an NVIDIA
GPU. Technical details and hyper-parameters are
reported in the appendix.

Is ï B E A
∑

Training 1086 138 459 452 4222
Validation 255 36 111 108 1094
Test 501 76 199 226 8474

Table 3: Label distribution on the 2020 RI-Timex data
for the BERT inputs

Output definition: Our goal is for the model
to predict if the first expression is anchored to the
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second one and, if it is, what is the nature of the
relation between them (Before, Equal or After).
We cast this as a multi-label classification problem,
where the model outputs a vector of four probabili-
ties: the probability that the relation is an anchor
(”Is ï”) relation, and the probabilities that this
relation is of the type Equal, Before or After. This
way, if the model is sure that the first timex is an-
chored to the second, but unsure about the nature
of their relation, it has the possibility to output dif-
ferent levels of probability for these two elements.

2.4 Evaluation approach and metrics

2.4.1 Inter-Annotator Agreement Evaluation
We evaluate the anchor date annotations as either
strict or relaxed. The relaxed version takes into
account that there are often several valid options as
anchor dates: two links are considered equivalent if
their anchor dates have the same normalized value.

2.4.2 Classification Evaluation
An important part of our work is to compare our
results with those obtained by Sun et al. (2015).
Direct comparison is impossible as we did not have
access to their full annotated data. However, to the
best of our knowledge, we did the maximum to
reproduce their precise methodology. The authors
only report results on 10-fold cross validation on
the training set. Furthermore, they only report ac-
curacy. We report precision, recall and f-score on
both the 10-fold CV and the test sets, as well as
accuracy on the test set.

3 Results

We report results for our annotation process:
the inter-annotator agreements, and a compari-
son between our annotations and the annotations
from Sun et al. (2015). We also report results for
our classification experiments: the two attempts to
reproduce Sun et al. (2015)’s methodology with
distinct datasets and our anchor date predictions
with a fine-tuned BERT model.

3.1 2020 RI-TIMEX i2b2 Annotation

Our annotation guidelines and resulting annota-
tions are similar to the model used by Sun et al.
(2015). The main difference is that we allow the
anchor date to be any timex within the document,
whereas they restrict the possibilities to four cases:
one of the section times (Admission and Discharge
date), the previous timex or the previous absolute

timex. Results on the inter-annotator agreement on
a subset of the corpus are presented in Table 4.

Phase 1 Phase 2
B1 P1 B2 P2 B3 P3 B4 P1

A: Strict 78 83 43 60
A: Relaxed 80 100 49 76

Table 4: Annotation agreement results on a subset
10 docs in each batch (B), and annotator pair (P) in
two phases for guideline refinement. Adjudication was
done by one of the annotators after consensus discus-
sions with all annotators. A: Anchoring annotations of
each identified RI-Timex.

Tables 5 and 6 show the resulting distributions
of anchor date types and anchor relations, respec-
tively. Note that as the anchor date categories are
not mutually exclusive, the percentages do not add
up to 100%. The ‘Other’ category for the anchor
date types represents anchors that did not fall into
the four categories used in Sun et al. (2015). They
represent 7% of cases, thus indicating a substantial
number of cases that were not naturally anchored
to the four previously used categories.

A D PAT PRT O N
∑

n 523 191 281 177 83 18 1273
% 45.0 16.4 24.2 15.2 7.1 1.5 -

Table 5: Distribution of annotation labels on the 2020
RI-Timex corpus: anchor date types. A: Admission; D:
Discharge; PAT: Previous Absolute Timex; PRT: Previ-
ous Timex; O: Other; N: None

Before Equal After None Total
n 161 476 512 18 1167
% 13.7 40.8 43.8 1.5 100

Table 6: Distribution of annotation labels on the 2020
RI-Timex corpus: anchor relations.

3.2 Classification
3.2.1 Baseline: Binary classification
We reproduced Sun et al. (2015)’s methodology on
the 2015 RI-Timex subset and the 2020 RI-Timex
data: bag-of-word representation of the time ex-
pression, the previous timex, and previous absolute
timex with an SVM model.

Results on the 2015 RI-Timex subset and the
2020 RI-Timex data are presented in Table 7(a)
and (b), respectively. For comparison, Table 8
shows the classification results reported by Sun
et al. (2015) on the feature set that we used. Note
that they only reported accuracy for this task.
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Anchor dates Anchor relations
Scores A D PT PAT Before Equal After

Phase → CV T CV T CV T CV T CV T CV T CV T

Precision 76.7 80.4 82.2 63.6 71.5 75.0 69.5 74.3 90.5 100 78.1 82.8 85.5 86.5
Recall 82.6 86.0 60.6 50.0 70.8 55.3 70.5 78.8 66.7 50 72.6 87.7 83.7 88.9
F-score 79.4 83.1 68.8 56.0 70.8 63.6 69.4 76.5 76.0 66.7 74.3 84.2 84.1 87.7
Accuracy - 79.5 - 84.9 - 67.1 - 78.1 - 94.5 - 87.7 - 87.7

(a) 2015 RI-Timex data
Precision 77.7 81.1 75.3 81.6 93.8 84.2 82.7 77.2 87.9 86.0 82.4 74.7 84.3 84.7
Recall 73.7 79.2 64.8 44.4 80.0 82.5 76.6 83.6 63.6 56.5 78.4 80.4 84.1 78.4
F-score 74.5 80.1 68.2 57.5 86.2 83.3 78.7 80.3 72.3 69.2 80.0 77.4 84.0 81.4
Accuracy - 80.4 - 88.4 - 90.0 - 85.3 - 92.1 - 81.8 - 84.1

(b) 2020 RI-Timex data

Table 7: Results on the 2015 RI-Timex data (a) and 2020 RI-Timex data (b), anchor dates and relations. A:
Admission; D: Discharge; PT: Previous Timex; PAT: Previous Absolute Timex. Each row presents results for the
two evaluation phases: 10-fold cross validation (CV) and test set (T).

A D PT PAT Before Equal After
77.56 92.47 68.91 75.16 93.4 81.4 92.1

Table 8: Accuracy for the 10-fold Cross validation on
the training set reported by (Sun et al., 2015). A: Ad-
mission; D: Discharge; PT: Previous Timex; PAT: Pre-
vious Absolute Timex.

3.2.2 Relation classification
Table 9 shows the results on the validation set after
15 epochs of fine-tuning the Clinical BERT model
on our relation classification task, and on the final
model applied on the test set. The results on the
validation set range between 81-91% precision and
85-91% recall, yielding an average overall F-score
of 87.6%. Results drop on the blind test sets, with
an average of 70% recall and 32% precision. For
comparison purposes, we also computed results
on the test set where we performed oversampling.
When the number of positive anchor relations went
from 501 to 1086 (for 8474 total testing examples),
the precision rose to 62-70%, and the average f-
score is 67.2. Detailed results on this oversampled
test set are presented in the appendix.

4 Discussion and Conclusion

We present a study on identifying and classify-
ing anchor dates and relations specifically for RI-
Timexes in clinical text. We attempted to reproduce
the findings by Sun et al. (2015), in order to pro-
duce a baseline against which we could compare
new approaches. Because the full dataset used in
that study was not available, we developed new
guidelines and produced a new reference standard
of annotations with anchor date types and rela-
tions (2020 RI-TIMEX i2b2 data). We applied

Is ï B E A Avg
Valid. P 85.2 85.0 86.5 83.0 85.5

R 88.2 94.4 81.0 86.1 86.7
F 86.7 89.4 83.7 84.5 85.8

Test P 34.0 35.4 29.4 29.4 32.2
R 76.2 60.5 57.2 72.1 70.3
F 47.0 44.6 39.2 41.8 44.1

Table 9: Results of the anchor relation classification
by BERT on the validation and test sets. Is ï: Is an
anchor: B: Before; E: Equal; A: After. P: Precision; R:
Recall; F: F-score.

the methodology presented in Sun et al. (2015) on
the 2015 RI-Timex subset, and our 2020 RI-Timex
i2b2 data, reaching comparable results. We also
propose to approach this problem as a relation clas-
sification task. To this end, we re-train the Clinical
BERT model on our data. Results on the validation
set were promising, but dropped on the test set.

4.1 Annotations and Corpus development

The additional guidelines that were defined after
the first phase to solve ambiguous cases are pre-
sented in the appendix. One example concerns
expressions relating to post-operation timelines –
it was decided that all post-operative expressions
should be anchored to the operation date, the ex-
ception to that rule being if there was another time
expression which can serve as anchor for the post-
operative expression with the relation ‘EQUAL’.

An analysis of the annotation disagreements on
the second round revealed that the main disagree-
ments were due to longer, more complicated cases.
For instance, in one case, there were two operation
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dates in the same document, in another there were
two admission dates. Other examples included
cases where events were unclear. “Day of trans-
fer”, for example, could refer to a transfer between
services or to the admission date.

Our annotation model allowed us to select more
possibilities for anchor date types, while still being
able to map our data to the 2015 RI-Timex sub-
set. We observed that 7% of the RI-Timexes were
anchored to dates located later in the text, indicat-
ing that the four categories proposed by Sun et al.
(2015) had limitations.

Multi-anchor dates are still a challenge. For ev-
ery RI-Timex, there are often more than one timex
that can be an appropriate anchor date. This can
be problematic if a machine learning model tries
to mimic manual annotation labels. Not only does
it need to learn what constitutes an acceptable an-
chor date, but also how to discriminate between
potential alternative anchor dates. A solution for
this problem could be to modify the guidelines and
annotate as many anchor relations as possible.

4.2 Classification approaches

Sun et al. (2015) only report classification accu-
racy, and comparison with our results show that
this distorts results to be more advantageous. For
instance, the ”Before” category and the ”Discharge
date” category are under-represented in the two
datasets that we used. We can see that there is a
sharp difference between the accuracy and f-score
on these categories. In both cases, the accuracy is
high but does not represent the actual performance
of the model. It is notable that the results we have
using our annotations are better than the one we
obtained using their data subset. This is probably
linked to the total number of samples. Another
explanation would be that our annotations better
capture the natural anchoring of RI-Timexes and
are thus easier to predict for the model.

There could be several explanations to the differ-
ence in results between the validation set (around
90% f-score on average) and the test set (45%) on
our BERT-based relation classification approach.
One is that the model’s hyperparameters were cho-
sen to maximise results on the validation set, thus
leading to a form of overfitting on the validation set,
even though the model was never trained on this
data. However, we repeated the experiment with
the same hyperparameters and a different random
validation set, and the results were similar. Further-

more, this would not explain the difference between
the precision (about 30%) and recall (70%).

The likelier explanation lies in the oversampling
process that we applied to the validation set but
not to the test set. We have seen that to ensure
inter-annotator agreement on which anchor date to
pick, we had to define very precise, unambiguous
guidelines which favored some solutions over oth-
ers. These guidelines might be very difficult for
the model to capture. Furthermore, the nature of
the input means that the model only has access to
the RI-Timex and the potential anchor date, but
does not have any information about a competing
anchor date that could have been preferred by a
human annotator. By generating more instances
of coherent anchor date/timex tuples, we decrease
the complexity of the problem and allow it to gen-
eralise better. The fact that when we oversample
the test set the results change dramatically supports
this hypothesis. The results would probably im-
prove even more if we could generate all anchoring
relations accurately.

Another issue is the way input is processed in
these types of transformer models. In our work, the
model only had access to a small part of the con-
text (200 token window of text on each side of the
expression). To be able to reach the performance
of a human, the model would need to be able to
access and analyse the whole text, just as annota-
tors did. One very interesting solution is the use
of a context-aware neural network, as presented in
Meng and Rumshisky (2018). The neural network
reads the text linearly while using an external mem-
ory to store relations, and can then use the global
context to classify them. Other alternatives could
be to still leverage the power of pre-trained trans-
former models, by using solutions to pass entire,
long texts to the model instead (Pappagari et al.,
2019). A deep learning approach is potentially not
the most appropriate to represent complex tempo-
ral relations, for example Li et al. (2020) recently
reported good results using an ontology.

4.3 Conclusion

Our results on reproducing previous findings were
promising. Our newly developed corpus results in
comparable results using the same classification
approach, but highlights limitations in the previous
approach. Casting the problem as a relation clas-
sification task shows promise, but might require
further considerations.
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Appendix

Annotation Instructions and Guidelines
The goal of this annotation task is to differentiate absolute from relative or incomplete time expressions,
and to link the latter to anchor dates.

• Absolute time expression : an expression which contains all the information needed to normalize it
to a standard date. Eg : “12/05/2020”

• Relative time expression : an expression whose temporal meanings is stated as a relative value against
another time expression. Eg “ two days before the admission”

• Incomplete time expression : an expression which holds only partial information : the context is
needed to determine the calendar date. Eg : “in December”

• Anchor date : The reference point which can be used to infer the normalized value of a relative or
incomplete temporal expression.

Instructions

1. Load the data in the annotation tool

Once loaded, the following tabs should appear :

• - RTIMEX3 : these are the relative time expressions, the main focus of the annotation process
• - ATIMEX3 : the absolute time expressions, here to provide anchorage for the RTIMEX3
• - SECTIME : These are special annotations for the admission and discharge date
• - ANCHORLINK : These links will be created by the annotator to join a RTIMEX3 to an anchor

date (an ATIMEX3 or SECTIME).

2. The text should appear along with the annotations outlined in different colors. The RTIMEX3 are in
blue, the ATIMEX3 in red, the discharge and admission date are usually double annotated as both
absolute time expressions and SECTIME so they are underlinded. The ANCHORLINKs are empty
as they will be created during the annotation process 6. The process is as follows : The focus should
be on each RTIMEX3 annotations until they are all annotated

• First, the “relative” column must be filled : with “TRUE” if the expression is indeed a relative
time expression, “FALSE” if it is an absolute timex3 which was not correctly filtered. Common
example would be : “May 1997”, “On Christmas of 2002”, “April 2nd 2015”

• If “relative” is TRUE, an ANCHORLINK has to be created This is done by holding down
the ctrl key (or the command key, if you are on a Mac) and left click each of the entities that
will be included in the link, with the RTIMEX3 first and the Anchor Date second. For precise
instructions on how to select the appropriate anchor date, see the “Guidelines” section. A link
window will pop up and ask you to confirm the two dates and the link type. Special case -
if the anchor date is the admission or discharge date : because these are double annotated as
ATIMEX3 and SECTIME, the program will let you choose between the two instances. They
have the same value so it does not matter too much but the SECTIME should be preferred.

• Once the ANCHORLINK is created, the “relation” attribute has to be filled with either BEFORE,
EQUAL or AFTER

3. Check the ATIMEXEs : sometimes, an expression marked as an absolute time expression is in fact a
relative one. For this, the “absolute” attribute of the A-TIMEXes as to be filled with True or False. If
the expression is in fact a relative one, it has to be anchored.

4. Output the file Once all the RI-TIMEXES are filtered and anchored, choose the “Export as XML”
option in the File menu, and save the file with its original name in a separate folder.



127

5. Upload the data

Guidelines for Ambiguous Cases :

• SELECTING THE ANCHOR DATE When selecting the anchor date, the first potential anchor dates
to study are : the previous absolute timex, the previous timex, the admission date and the discharge
date. One should prioritize absolute anchor dates over relative ones, and if there is still an ambiguity,
“EQUAL” relations over “BEFORE” and “AFTER”. These four possibilities are to be prioritised, but
other anchor dates are valid as well.

• POSTOPERATIVE DAYS As a general rule, expressions relating to the “post-operation” concept
should be anchored to the day of the operation. The exception to that rule is if there is another time
expression which can serve as anchor for the POD with the relation “EQUAL”

• AGE RELATED EXPRESSIONS : Some time expressions annotated as dates age in fact age
expressions. If this case arises, one has to change the type of the expression to “AGE RELATED”.

• INCOMPLETE EXPRESSIONS Some expressions are not relative but rather incomplete: their
normalized value depends on one or more missing information, such as the year. ex “Labor Day” In
this case, they should still be annotated as RI-TIMEXs, and if they cannot be anchored, it is possible
to change the “mod” attribute of the expressions to “EXT”, to signify that there is a need for external
information.

• NON-ANNOTATED EXPRESSIONS Sometimes, expression which should be annotated as either
RI-TIMEXs or A-TIMEX are not annotated at all : this is likely an error coming from i2b2’s gold
standard, and we should let them as is. No annotation should be added to the documents.

• INCOMPLETE TIMES Eg “2.30 pm” They are to be anchored to the day they belong to. Usually
they are wrongly annotated as absolute time expressions.

• SECTION TIMES Usually, imprecise expressions found at the beginning of a document relate to the
Admission date, and those found at the end to the Discharge date.

SVM Classification : Optimized Hyperparameters
Here we report the optimized hyperparameters for each binary classification category:

• Admission Date : ’C’: 1000, ’gamma’: 0.0001, ’kernel’: ’rbf’

• Discharge Date : ’C’: 100, ’gamma’: 0.001, ’kernel’: ’rbf’

• Previous Timex : ’C’: 100, ’gamma’: 0.001, ’kernel’: ’rbf’

• Previous Absolute Timex = ’C’: 100, ’gamma’: 0.001, ’kernel’: ’rbf’

• Before = ’C’: 1000, ’gamma’: 0.0001, ’kernel’: ’rbf’

• Equal = ’C’: 100, ’gamma’: 0.001, ’kernel’: ’rbf’

• After = ’C’: 1000, ’gamma’: 0.0001, ’kernel’: ’rbf’

BERT Relation Classification : Model Specification
The BERT model was trained for 15 epochs on a NVIDIA GPU with the following characteristics :

NVIDIA-SMI 415.18 — Driver Version: 415.18 — CUDA Version: 10.0

The hyperparameters were :
Length of input : 512
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Learning rate : 2e-5
Number of training epochs : 15
Gradient accumulation steps : 0.9
Batch size : 5
fp16 : False

Additional Results

Detailed results and distribution of BERT Relation classification

Is ï B E A Avg
Valid. P 85.2 85.0 86.5 83.0 85.5

R 88.2 94.4 81.0 86.1 86.7
F 86.7 89.4 83.7 84.5 85.8

Test P 34.0 35.4 29.4 29.4 32.2
R 76.2 60.5 57.2 72.1 70.3
F 47.0 44.6 39.2 41.8 44.1

O. Test P 70.6 70.0 62.1 62.3 67.0
R 73.0 49.1 56.8 71.5 67.5
F 71.7 57.7 59.4 66.6 67.2

Table 10: Results of the anchor relation classification by BERT on the validation and test sets.O.Test : Oversampled
Test Set; Is ï: Is an anchor: B: Before; E: Equal; A: After. P: Precision; R: Recall; F: F-score.

Is ï B E A Total
Train. 1049 138 459 452 4222
Valid. 255 36 111 108 1094
Test 501 76 199 226 8474
O. Test 1086 185 419 482 8474

Table 11: Distributions of examples in the anchor relation classification dataset .O.Test : Oversampled Test Set; Is
ï: Is an anchor: B: Before; E: Equal; A: After. P: Precision; R: Recall; F: F-score.

Package Versions

Package versions on the local system
Python version : 3.7.6

gensim==3.8.1
h5py==2.10.0
matplotlib==3.2.1
nltk==3.4.5
numpy==1.18.1
pandas==1.0.3
scikit-learn==0.22.2.post1
scipy==1.4.1
sklearn==0.0
spacy==2.2.3
torch==1.5.0+cpu
torchvision==0.6.0+cpu
tqdm==4.43.0
transformers==2.11.0
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Package Versions on the GPU server (BERT model training)
Python version : 3.7.6

torch==1.5.1+cu92
torchvision==0.6.1+cu92


