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Abstract

Clinical notes contain rich information, which
is relatively unexploited in predictive model-
ing compared to structured data. In this work,
we developed a new clinical text representa-
tion Clinical XLNet that leverages the tempo-
ral information of the sequence of the notes.
We evaluated our models on prolonged me-
chanical ventilation prediction problem and
our experiments demonstrated that Clinical
XLNet outperforms the best baselines consis-
tently. The models and scripts are made pub-
licly available.

1 Introduction

Unstructured clinical notes within Electronic
Health Records (EHR) contain valuable informa-
tion to support clinical decisions (Murdoch and
Detsky, 2013). However, most prognostic models
used in medical practice currently rely on scoring
systems that only incorporate structured data (Gall
et al., 1986; Gall, 1993; Vincent et al., 1996; Rap-
sang and Shyam, 2014).

A major challenge to utilize unstructured clini-
cal data is in representing notes in ways that allow
effective mining of clinically meaningful knowl-
edge. There are many recent advances in the stan-
dard Natural Language Processing domain, such
as BERT (Devlin et al., 2019), XLNet (Yang et al.,
2019). However, clinical notes are far different
from the general domain text (Wikipedia, Book-
Corpus, etc). For example, clinical notes contain
jargon and abbreviations, different grammar and
syntax. It is notoriously difficult to obtain an effec-
tive note representation. Recently, ClinicalBERT,
which adapts the BERT model from the standard
NLP domain to model clinical notes (Huang et al.,
2019; Alsentzer et al., 2019) achieved superior per-
formance in clinical text prediction. However, pre-
vious works still have the following limitations:

• Notes representation could be improved.

In the standard NLP domain, BERT ignores
the discrepancy of masked positions between
the pretraining and finetuning stage. An au-
toregressive pretraining method named XL-
Net was recently developed and empirically
outperforms BERT on many NLP tasks (Yang
et al., 2019).

• Failure to incorporate the temporal dimen-

sion of clinical notes. Clinical notes have a
temporal dimension where the order of infor-
mation in sequential notes can provide addi-
tional predictive signals. Most previous mod-
els (Huang et al., 2019; Alsentzer et al., 2019)
only aggregate individual risk scores from
each note which ignore the temporal infor-
mation charted in EHR.

In this paper, we present Clinical XLNet, which
processes a patient’s notes and predicts clinical
outcomes. In particular, this model mitigates the
aforementioned limitations via the following tech-
nical contributions:

• Improved clinical notes representation.

We apply the permutation language model-
ing method proposed in XLNet on a corpus
of clinical notes to generate better clinical em-
beddings, as demonstrated in Section. 4.

• Inclusion of temporal information. We
maintain the temporal order of the note embed-
dings generated from Clinical XLNet and feed
them into a bidirectional LSTM layer (Hochre-
iter and Schmidhuber, 1997), which leverages
information along the temporal dimension
(Fig. 1).

We examined Clinical XLNet’s performance on
a new but important clinical NLP task: predicting
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Table 1: Cohort Statistics. For continuous variable, it reports mean with the standard deviation. For categorical
variable, the count is given with percentage.

Statistics All MV � 7d MV < 7d Survive < 90d Survive � 90d

Stays/Admissions 7,287 3,412 3,875 2,680 4,607
Age 64.3 (16.7) 63.8 (16.6) 64.8 (16.9) 69.3 (15.4) 61.4 (16.8)
Male 4,072 (55.8) 1,936 (56.7) 2,136 (55.1) 1,474 (55.0) 2598 (56.4)
Ethnicity

White 5,159 (70.8) 2,431 (71.2) 2,728 (70.4) 1,844 (68.8) 3,315 (72.0)
Black 590 (8.1) 259 (7.6) 331 (8.5) 202 (7.5) 388 (8.4)
Hispanic/Latino 215 (2.9) 89 (2.6) 126 (3.3) 51 (1.9) 164 (3.6)
Asian 150 (2.1) 65 (1.9) 85 (2.2) 54 (2.0) 96 (2.1)
Others 1,173 (16.1) 568 (16.6) 902 (23.3) 529 (19.7) 644 (14.0)

Notes
Word Count 1774 (1645) 1745 (1610) 1799 (1674) 1811 (1730) 1753 (1593)
Note Count 9.78 (4.70) 9.54 (4.51) 10.0 (4.86) 9.72 (4.70) 9.82 (4.70)

prolonged mechanical ventilation (PMV). Mechan-
ical ventilation is to use an artificial breathing ma-
chine to assist or replace patient’s breath. PMV
stands for longer than normal period of mechanical
ventilation. PMV consumes substantial healthcare
resources, results in financial and emotional bur-
dens for patients and their families, and is associ-
ated with high one-year mortality around 50-60%
(Mcgee, 2010; Nelson et al., 2015; Unroe, 2010).
It is projected that over 600, 000 patients in the
United States will require PMV by 2020 (Zilber-
berg et al., 2008).

Patients with PMV can have a surgical proce-
dure called tracheostomy to establish better airway
access for long-term mechanical ventilation (Cox
et al., 2004). Tracheostomy is associated with im-
proved patient comfort, decreased duration of ICU
and hospital stay, and reduced mortality (Mallick
and Bodenham, 2010). However, the decision to
place a tracheostomy is challenging for two main
reasons: (1) tracheostomy may not be necessary
if a patient’s condition improves without requiring
PMV, and (2) tracheostomy may not be helpful
if the patient is at high risk of short-term mortal-
ity. Thus, an early and correct decision of tra-
cheostomy is critical and depends on the likelihood
of PMV and short-term mortality. Accurately pre-
dicting these factors using patients’ clinical notes
could support clinical decision making.

We compared Clinical XLNet with several state-
of-the-art baselines including BERT (Devlin et al.,
2019), XLNet (Yang et al., 2019), and Clinical-
BERT (Huang et al., 2019) on both PMV and mor-
tality predictions. We performed meticulous co-
hort curation in MIMIC-III dataset (Johnson et al.,
2016) to set up an actionable prediction task ac-

cording to the real clinical setting. Clinical notes
used in this prediction task were strictly within the
48-hour time window starting from the initial me-
chanical ventilation event. Experimental results
showed that Clinical XLNet outperformed the best
baselines consistently (Section. 4).

2 Data

We use the Multiparameter Intelligent Monitoring
in Intensive Care III (MIMIC-III) dataset (John-
son et al., 2016) hosted on PhysioNet (Goldberger
et al., 2000) for our model development and ex-
periment. It consists of 61,532 ICU stays out of
58,976 hospital admissions from 46,476 patients in
the intensive care unit of the Beth Israel Deaconess
Medical Center (BIDMC) between 2001 and 2012
and it has 2,083,180 clinical note events.

Cohort Selection. Comprehensive inclusion and
exclusion criteria were applied to the MIMIC-III
dataset to generate our patient cohort who were
above 18 years old, and were on mechanical ven-
tilation for at least 2 days with more than 6 hours
each day. We excluded patients who were organ
donors or transferred patients from other hospitals.
As certain diseases always lead to PMV, to allevi-
ate confounding, we further removed patients with
neuromuscular disease, head and neck cancer, and
extensive burns (Oakden-Rayner et al., 2020). For
each hospital admission, we used the first ICU stay.
For clinical notes, we included nursing and respira-
tory notes within 48 hours from the start of the first
ventilation event. The reason for only selecting
nursing-related notes was to expand the cohort as
MIMIC-III is missing physician notes from 2001
to 2008. Additional criteria that are applied in our
data curation process are in Fig. 2 in the appendix.
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In the end, we obtained a cohort of 7,287 unique
patients and their corresponding 73,224 clinical
notes. Table. 1 shows the cohort demographics.

Cohort Labels. Our cohort was labeled with
PMV and 90-day mortality as a binary outcome.
PMV was defined as being on mechanical ventila-
tion for more than 7 days with at least 6 hours each
day (Boles JM, 2007). Short-term mortality was
defined as death occurring within 90 days of the
first ICU admission. We use 90 days in contrast to
30 days because recent studies showed that 30 days
mortality may underestimate the evaluation (Mise
et al., 2015; Hirji et al., 2020).

3 Methods

This section presents our Clinical XLNet frame-
work (Fig. 1). Clinical XLNet is an extension of
XLNet (Yang et al., 2019) on the clinical text do-
main. It first generates a deep latent representation
for clinical notes and then by applying a bidirec-
tional LSTM (Bi-LSTM) layer, it also leverages
the sequential order of notes.

Problem Settings. Our target task aims to lever-
age a patient’s clinical notes to predict variables
such as PMV and mortality. We denote a patient
as P, and each patient P is associated with an or-
dered sequence of notes {N1, · · · ,Ni}, where i is
the total number of notes.

To predict mortality LM and PMV LP, we aim to
learn two mappings M : {N1, · · · ,Ni} �! [0, 1]

and P : {N1, · · · ,Ni} �! [0, 1] where [0, 1] is a
probability that measures the likelihood of having
mortality and PMV respectively.

Pretraining Clinical XLNet. The XLNet is pre-
trained on common language corpora such as Book-
Corpus, Wikipedia, Common Crawl and etc. How-
ever, these corpora are different from clinical notes
which are filled with jargon, abbreviations and dif-
ficult syntax and grammar. Hence, to learn an
effective representation of clinical notes, we fur-
ther pre-trained the XLNet using nursing, nurs-
ing/others, and respiratory therapy notes available
in the MIMIC-III dataset. The clinical notes used
in pre-training were NOT in the holdout test set to
avoid biased results.

XLNet is a stack of Transformer-XL en-
coder (Dai et al., 2019). For pre-training, it uses
Permutation Language Modeling (PLM) to tackle
the challenge of [MASK] token information gap

between pre-training and finetuning in BERT (De-
vlin et al., 2019). For each sequence, it is appended
with a [CLS] classification token at the beginning
of the sequence for downstream task usage. For a
more detailed description, we refer the readers to
the original paper (Yang et al., 2019).

A patient is associated with many notes, and
each notes length varies. Since XLNet can only
take 512 maximum tokens, we follow (Huang et al.,
2019) to first concatenate all the notes and partition
them into snippets Ni. Then, we use the last en-
coder layer hidden representation Ei of the [CLS]
token to represent the note snippet. As we train
with a supervised signal in the downstream task,
[CLS] token would gather useful information in the
entire note sequence due to the Transformer-XL’s
self-attention mechanism. Now, given a temporally
ordered sequence of note snippets associated with
a patient, we obtain a temporally-ordered sequence
of notes representations {E1, · · · ,Ei}.

Finetuning Clinical XLNet. To leverage the
temporal information among the note snippets, we
feed {E1, · · · ,Ei} into a sequential modeling layer.
Specifically, we use Bi-LSTM model (Graves and
Schmidhuber, 2005; Hochreiter and Schmidhuber,
1997). We use bidirectional model because not only
the latter notes depend on the previous notes as pa-
tients develop their symptoms in a temporal order
but also the latter notes may contain useful clinical
knowledge to help enrich the representation of pre-
vious notes. The output of the Bi-LSTM layer HN

is then fed into a predictor neural network, which
at last, generates a probability p that measures the
likelihood of downstream target variable, PMV, and
mortality. The network is then tuned using binary
classification loss.

Pre-Finetuning. As each patient is associated
with many notes snippets and each snippet cor-
responds to a large model, it is computationally
infeasible to train the model end-to-end. In order
to alleviate the memory cost of end-to-end training
for every clinical note, we propose to approximate
the task-specific note representation through an ad-
ditional pre-finetuning stage. We assume that any
part of the notes associated with a patient is cor-
related to the label. Thus, during pre-finetuning,
we use one piece of note as input, and further train
the pre-trained Clinical XLNet through the down-
stream task label signal from the corresponding pa-
tient. The pre-finetuned network can then generate
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Figure 1: Clinical XLNet framework. A. We first pre-trained the XLNet embedding with MIMIC-III clinical
notes dataset using Permutation Language Modeling. After pre-training, given a clinical note, the model outputs a
numerical vector to be used as a note representation. B. To alleviate the computation burden from training end-to-
end, the pre-finetuning stage uses the supervised signal to further tune the pre-trained network with input consisting
of individual note Ni. The pre finetuned stage then generates a static task-specific note representation. C. Given
a sequence of a patient’s notes {N1, · · · ,Ni}, the pre-finetuned Clinical XLNet network generates a sequence of
representation of notes {E1, · · · ,Ei}. The ordered representation sequence is then fed into a bidirectional LSTM
layer, which then outputs a fixed size latent vector HN, representing the entire sequence. HN is finally fed into a
predictor neural network to generate a probability p measuring the likelihood of the target variable.

a task specific note representation. Then, during the
finetuning stage, we freeze the note representation
module, and use a static fixed note representation
from the pre-finetuned Clinical XLNet to feed into
the Bi-LSTM layer.

4 Experiments

To evaluate our model, we examined the predic-
tion performance under a realistic setup. We used
the first 48 hours of clinical notes starting from
the initial mechanical ventilation event to predict
two variables: mechanical ventilation longer than
7 days and 90-days mortality. 1

Hyperparameters. For the data split, we first
obtain a 10% holdout test set. Then we generate
different 8:1 train:validation splits using different
random seeds for model performance robustness
examination. For the pre-training, we further pre-
train the XLNet embedding for another 200K steps
using 16 batch size. For the pre-finetuning, we use
32 batch size with learning rate 1e-5 for four epochs
with early stopping on the area under the receiver
operating characteristic curve (AUROC) score of
validation. For finetuning, we used a two layers
Bi-LSTM module with batch size 128 and learning
rate 1e-4. The pre-training and pre-finetuning pro-

1Code and models are available at https://github.
com/lindvalllab/clinicalXLNet.

Table 2: AUROC result with three independent data
splits mean and standard deviation.

Method PMV Mortality
LSTM 0.613 ± 0.006 0.590 ± 0.034
LSTM + Attention 0.604 ± 0.009 0.743 ± 0.007
HAN 0.606 ± 0.007 0.715 ± 0.013
RCNN 0.620 ± 0.003 0.744 ± 0.010
BERT 0.616 ± 0.022 0.734 ± 0.047
XLNet 0.611 ± 0.007 0.664 ± 0.017
ClinicalBERT 0.648 ± 0.011 0.774 ± 0.006
Clinical XLNet 0.663 ± 0.011 0.779 ± 0.006

Clinical XLNet- mean 0.656 ± 0.003 0.773 ± 0.003

cess was conducted on a server with 2 Intel Xeon
E5-2670v2 2.5GHZ CPUs, 128GB RAM, and 2
NVIDIA Tesla P40 GPUs.

Baselines. We conducted a thorough set of exper-
iments with several popular baselines:

• LSTM (Hochreiter and Schmidhuber, 1997)
is the classic language modeling method that
uses long term document memory.

• LSTM + Attention adds an attention layer on
top of the sequence output of LSTM hidden
layers.

• Hierarchical Attention Networks

(HAN) (Hochreiter and Schmidhuber, 1997)
is a hierarchical LSTM designed specifically
for document level text classification.

https://github.com/lindvalllab/clinicalXLNet.
https://github.com/lindvalllab/clinicalXLNet.
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• Recurrent Convolutional Neural Network

(RCNN) (Yang et al., 2016) uses a recurrent
structure on the classic CNN network to cap-
ture contextual information as far as possible.

• BERT (Devlin et al., 2019) uses transformer
encoder with the same pre-train and finetune
procedure as Clinical XLNet.

• XLNet (Yang et al., 2019) is Clinical XLNet
without pre-training on clinical text.

• ClinicalBERT (Huang et al., 2019; Alsentzer
et al., 2019) further pre-trains on BERT using
MIMIC-III notes dataset.

• Clinical XLNet-mean is an ablation study
that uses the average of the prediction scores
from each note, instead of the bidirectional
LSTM layers.

Note that for BERT, XLNet, and ClinicalBERT,
we all attach a bidirectional-LSTM layer on top of
them to leverage the sequential dimension of notes.
And for ClinicalBERT, we pre-train using the same
corpus as the Clinical XLNet. These steps ensure a
fair comparison between note representation power.
Note that it is computationally infeasible to test the
ablation of pre-finetuning.

Results. Table. 2 reports the result for our pro-
longed mechanical ventilation and 90-days mor-
tality tasks. Clinical XLNet achieves the best re-
sults with AUROC score of 0.663 (± 0.011) and
0.779 (± 0.006) for PMV and 90-days mortality re-
spectively. From the difference between clinically
pre-trained embedding Clinical XLNet & Clinical
BERT and no pre-trained model BERT & XLNet,
we demonstrate the necessity of pre-training on
domain-specific corpus. From the difference be-
tween Clinical BERT and Clinical XLNet, we show
our Clinical XLNet has better note representation.
From the difference between Clinical XLNet and
Clinical XLNet-mean, we see the usage of sequen-
tial modeling of the temporal dimension of notes.

5 Discussion

In this work, we propose a method for predict-
ing prognosis based on only contextual informa-
tion available from clinician notes. The proposed
method is based on the recent advancements in the
field of NLP. Therefore we compare it with other
recently proposed methods in NLP for a fair com-
parison. We perform one ablation study to show

the relevance of the proposed sequential modeling
of the notes embedding in the time domain and we
compare against several state of the art baselines
which have been used extensively in the natural
language domain as well as in the clinical context.

Clinical Relevance. Our work provides timely
aid in clinical decision making. For a patient under
the ICU observation, the clinical team could start
the evaluation to consider a tracheotomy procedure
as soon as 48 hours after mechanical ventilation.
The time period of 48 hours was chosen in con-
sultation with a team of clinicians. Furthermore,
a predictive analytics on the prolonged mechani-
cal ventilation for seven days or more is important
for clinicians in deciding the tracheotomy deci-
sion. Besides, the doctors could reduce the risk
of a burdensome procedure and treatment by con-
sidering the patient’s 90-days mortality prediction.
This approach assist patients and their families by
providing more time to process and make a major
decision.

Model Efficiency. The proposed method uses
XLNet (Yang et al., 2019) which uses Trans-
formerXL (Dai et al., 2019) as the base architecture
to extract embedding from the notes. Since every
set of notes require their individual embeddings, we
run the base architecture for multiple runs where
the number of runs is proportional to the number of
notes. Therefore, obtaining the embedding for the
whole sequence of notes is computationally expen-
sive both during the training as well as inference.
However, there is a recent line of work (Lan et al.,
2019) which can allow executing the transformer
based models at a much lesser computational cost.

Limitations and Future Work. Our proposed
method only mines task relevant information from
clinical notes from nurses and respiratory thera-
pists. However, one can utilize other sources of
data as well such as structured notes. While struc-
tured data are commonly used in prognostic mod-
els, our preliminary study showed that they did not
improve the performance by any significant factor.
One future direction could be to explore a novel
architecture design that could utilize both sources
of information to improve the performance further.
Another future direction would be to explore ways
of combining multiple sources of clinical notes
such as physician notes, admission notes, and dsis-
charge notes.
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