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Abstract

Explainability is a topic of growing impor-
tance in NLP. In this work, we provide a uni-
fied perspective of explainability as a commu-
nication problem between an explainer and a
layperson about a classifier’s decision. We use
this framework to compare several explainers,
including gradient methods, erasure, and atten-
tion mechanisms, in terms of their communica-
tion success. In addition, we reinterpret these
methods in the light of classical feature selec-
tion, and use this as inspiration for new em-
bedded explainers, through the use of selec-
tive, sparse attention. Experiments in text clas-
sification and natural language inference, us-
ing different configurations of explainers and
laypeople (including both machines and hu-
mans), reveal an advantage of attention-based
explainers over gradient and erasure methods,
and show that selective attention is a simpler
alternative to stochastic rationalizers. Human
experiments show strong results on text clas-
sification with post-hoc explainers trained to
optimize communication success.

1 Introduction

The widespread use of machine learning to assist
humans in decision making brings the need for ex-
plaining models’ predictions (Doshi-Velez, 2017;
Lipton, 2018; Rudin, 2019; Miller, 2019). This
poses a challenge in NLP, where current state-of-
the-art neural systems are generally opaque (Gold-
berg and Hirst, 2017; Peters et al., 2018; Devlin
et al., 2019). Despite the large body of recent work
(reviewed in §7), a unified perspective modeling
the human-machine interaction—a communication
process in its essence—is still missing.

Many methods have been proposed to generate
explanations. Some neural network architectures
are equipped with built-in components—attention
mechanisms—which weigh the relevance of in-
put features for triggering a decision (Bahdanau
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Figure 1: Our framework to model explainability as
communication. Predictions ŷ are made by a classifier
C; an explainer E (either embedded in C or operating
post-hoc) accesses these predictions and communicates
an explanation (a message m) to the layperson L. Suc-
cess of the communication is dictated by the ability of
L and C to match their predictions: ỹ ?

= ŷ. Both the
explainer and layperson can be humans or machines.

et al., 2015; Vaswani et al., 2017). Top-k attention
weights provide plausible, but not always faith-
ful, explanations (Jain and Wallace, 2019; Serrano
and Smith, 2019; Wiegreffe and Pinter, 2019). Ra-
tionalizers with hard attention are arguably more
faithful, but require stochastic networks, which are
harder to train (Lei et al., 2016; Bastings et al.,
2019). Other approaches include gradient methods
(Li et al., 2016a; Arras et al., 2017), querying the
classifier with leave-one-out strategies (Li et al.,
2016a; Feng et al., 2018), or training local sparse
classifiers (Ribeiro et al., 2016).

How should these different approaches be com-
pared? Several diagnostic tests have been proposed:
Jain and Wallace (2019) assessed the explanatory
power of attention weights by measuring their cor-
relation with input gradients; Wiegreffe and Pin-
ter (2019) and DeYoung et al. (2020) developed
more informative tests, including a combination
of comprehensiveness and sufficiency metrics and
the correlation with human rationales; Jacovi and
Goldberg (2020) proposed a set of evaluation rec-
ommendations and a graded notion of faithfulness.
Most proposed frameworks rely on correlations and
counterfactual simulation, sidestepping the main
practical goal of prediction explainability—the abil-
ity to communicate an explanation to a human user.
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In this work, we fill the gap above by propos-
ing a unified framework that regards explainability
as a communication problem. Our framework is
inspired by human-grounded evaluation through
forward simulation/prediction, as proposed by
Doshi-Velez (2017, §3.2), where humans are pre-
sented with an explanation and an input, and must
correctly simulate the model’s output (regardless of
the true output). We model this process as shown
in Figure 1, by considering the interaction between
a classifier (the model whose predictions we want
to explain), an explainer (which provides the ex-
planations), and a layperson (which must recover
the classifier’s prediction). We show that differ-
ent configurations of these components correspond
to previously proposed explanation methods, and
we experiment with explainers and laypeople be-
ing both humans and machines. Our framework
also inspires two new methods: embedded explain-
ers based on selective attention (Martins and As-
tudillo, 2016; Peters et al., 2019), and trainable
explainers based on emergent communication (Fo-
erster et al., 2016; Lazaridou et al., 2016).

Overall, our contributions are:

• We draw a link between recent techniques for
explainability of neural networks and classic fea-
ture selection in linear models (§2). This leads
to new embedded methods for explainability
through selective, sparse attention (§3).

• We propose a new framework to assess explana-
tory power as the communication success rate
between an explainer and a layperson (§4).

• We experiment with text classification, natural
language inference, and machine translation, us-
ing different configurations of explainers and
laypeople, both machines (§5) and humans (§6).

2 Revisiting Feature Selection

A common way of generating explanations is by
highlighting rationales (Zaidan and Eisner, 2008).
The principle of parsimony (“Occam’s razor”) ad-
vocates simple explanations over complex ones.
This principle inspired a large body of work in tra-
ditional feature selection for linear models. We
draw here a link between that work and modern
approaches to explainability.

Table 1 highlights the connections. Traditional
feature selection methods (Guyon and Elisseeff,
2003) are mostly concerned with model inter-
pretability, i.e., understanding how models behave

globally. Feature selection happens statically dur-
ing model training, after which irrelevant features
are permanently deleted from the model. This
contrasts with prediction explainability in neu-
ral networks, where feature selection happens dy-
namically at run time: here explanations are input-
dependent, hence a feature not relevant for a par-
ticular input can be relevant for another. Are these
two worlds far away? Guyon and Elisseeff (2003,
§4) proposed a typology for traditional feature se-
lection with three classes of methods, distinguished
by how they model the interaction between their
main two components, the feature selector and the
learning algorithm. We argue that this typology
can also be used to characterize various explanation
methods, if we replace these two components by
the explainer E and the classifier C, respectively.

• Wrapper methods, in the wording of Guyon
and Elisseeff (2003), “utilize the learning ma-
chine of interest as a black box to score subsets
of variables according to their predictive power.”
This means greedily searching over subsets of
features, training a model with each candidate
subset. In the dynamic feature selection world,
this is somewhat reminiscent of the leave-one-
out method of Li et al. (2016b), the ablative ap-
proach of Serrano and Smith (2019), and LIME
(Ribeiro et al., 2016), which repeatedly queries
the classifier to label new examples.

• Filter methods decide to include/exclude a fea-
ture based on an importance metric (such as
feature counts or pairwise mutual information).
This can be done as a preprocessing step or by
training the model once and thresholding the fea-
ture weights. In dynamic feature selection, this
is done when we examine the gradient of the
prediction with respect to each input feature, and
then select the features whose gradients have
large magnitude (Li et al., 2016a; Arras et al.,
2016; Jain and Wallace, 2019),1 and when thresh-
olding softmax attention scores to select relevant
input features, as analyzed by Jain and Wallace
(2019) and Wiegreffe and Pinter (2019).

• Embedded methods, in traditional feature se-
lection, embed feature selection within the learn-
ing algorithm by using a sparse regularizer such
as the `1-norm (Tibshirani, 1996). Features that
receive zero weight become irrelevant and can

1In linear models this gradient equals the feature’s weight.
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Static selection (model interpretability) Dynamic selection (prediction explainability)

Wrappers Forward selection, backward elimination (Kohavi and
John, 1997)

Input reduction (Feng et al., 2018), representation era-
sure (leave-one-out) (Li et al., 2016b; Serrano and
Smith, 2019), LIME (Ribeiro et al., 2016)

Filters Pointwise mutual information (Church and Hanks,
1989), recursive feature elimination (Guyon et al., 2002)

Input gradient (Li et al., 2016a), layerwise relevance
propagation (Bach et al., 2015), top-k softmax attention

Embedded `1-regularization (Tibshirani, 1996), elastic net (Zou
and Hastie, 2005)

Stochastic attention (Xu et al., 2015; Lei et al., 2016;
Bastings et al., 2019), sparse attention (this paper, §3)

Table 1: Overview of static and dynamic feature selection techniques.

be removed from the model. In dynamic feature
selection, this encompasses methods where the
classifier produces rationales together with its
decisions (Lei et al., 2016; Bastings et al., 2019).
We propose in §3 an alternative approach via
sparse attention (Martins and Astudillo, 2016;
Peters et al., 2019), where the selection of words
for the rationale resembles `1-regularization.

In §4, we frame each of the cases above as a
communication process, where the explainer E
aims to communicate a short message with the
relevant features that triggered the classifier C’s
decisions to a layperson L. The three cases above
are distinguished by the way C and E interact.

3 Embedded Sparse Attention

The case where the explainer E is embedded in the
classifier C naturally favors faithfulness, since the
mechanism that explains the decision (the why) can
also influence it (the how).

Attention mechanisms (Bahdanau et al., 2015)
allow visualizing relevant input features that con-
tributed to the model’s decision. However, the tra-
ditional softmax-based attention is dense, i.e., it
gives some probability mass to every feature, even
if small. The typical approach is to select the top-k
words with largest attention weights as the explana-
tion. However, this is not a truly embedded method,
but rather a filter, and as pointed out by Jain and
Wallace (2019) and Wiegreffe and Pinter (2019), it
may not lead to faithful explanations.

An alternative is to embed in the classifier an at-
tention mechanism that is inherently selective, i.e.,
which can produce sparse attention distributions
natively, where some input features receive exactly
zero attention. An extreme example is hard atten-
tion, which, as argued by DeYoung et al. (2020),
provides more faithful explanations “by construc-
tion” as they discretely extract snippets from the
input to pass to the classifier. A problem with hard

attention is its non-differentiability, which com-
plicates training (Lei et al., 2016; Bastings et al.,
2019). We consider in this paper a different ap-
proach: using end-to-end differentiable sparse at-
tention mechanisms, via the sparsemax (Martins
and Astudillo, 2016) and the recently proposed
1.5-entmax transformation (Peters et al., 2019),
described in detail in §A. These sparse attention
transformations have been applied successfully to
machine translation and morphological inflection
(Peters et al., 2019; Correia et al., 2019). Words
that receive non-zero attention probability are se-
lected to be part of the explanation. This is an em-
bedded method akin of the use of `1-regularization
in static feature selection. We experiment with
these sparse attention mechanisms in §5.

4 Explainability as Communication

We now have the necessary ingredients to describe
our unified framework for comparing and designing
explanation strategies, illustrated in Figure 1.

Our fundamental assumption is that explainabil-
ity is intimately linked to the ability of an ex-
plainer to communicate the rationale of a decision
in terms that can be understood by a human; we use
the success of this communication as a criterion for
how plausible the explanation is.

4.1 The Classifier-Explainer-Layperson setup
Our framework draws inspiration from Lewis’ sig-
naling games (Lewis, 1969) and the recent work
on emergent communication (Foerster et al., 2016;
Lazaridou et al., 2016; Havrylov and Titov, 2017).
Our starting point is the classifier C : X → Y
which, when given an input x ∈ X , produces
a prediction ŷ ∈ Y . This is the prediction that
we want to explain. An explanation is a message
m ∈ M, for a predefined message spaceM (for
example, a rationale). The goal of the explainer
E is to compose and successfully communicate
messages m to a layperson L. The success of the
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communication is dictated by the ability of L to
reconstruct ŷ from m with high accuracy. In this
paper, we experiment with E and L being either
humans or machines. Our framework is inspired
by human-grounded evaluation through forward
simulation/prediction, as proposed by Doshi-Velez
(2017, §3.2). More formally:

• The classifier C is the model whose predictions
we want to explain. For given inputs x, C pro-
duces ŷ that are hopefully close to the ground
truth y. We are agnostic about the kind of model
used as a classifier, but we assume that it com-
putes certain internal representations h that can
be exposed to the explainer.

• The explainer E produces explanations for C’s
decisions. It receives the input x, the classifier
prediction ŷ = C(x), and optionally the internal
representations h exposed by C. It outputs a
message m ∈M regarded as a “rationale” for ŷ.
The message m = E(x, ŷ, h) should be simple
and compact enough to be easily transmitted and
understood by the layperson L. In this paper, we
constrain messages to be bags-of-words (BoWs)
extracted from the textual input x.

• The layperson L is a simple model (e.g., a lin-
ear classifier)2 that receives the message m as
input, and predicts a final output ỹ = L(m). The
communication is successful if ỹ = ŷ. Given a
test set {x1, . . . , xN}, we evaluate the commu-
nication success rate (CSR) as the fraction of
examples for which the communication is suc-
cessful:

CSR =
1

N

N∑
n=1

[[
C(xn) = L(E(xn, C(xn)))

]]
,

(1)
where [[·]] is the Iverson bracket notation.

Under this framework, we regard the commu-
nication success rate as a quantifiable measure of
explainability: a high CSR means that the layper-
sonL is able to replicate the classifierC’s decisions
a large fraction of the time when presented with the
messages given by the explainer E; this assesses
how informative E’s messages are.

2The reason why we assume the layperson is a simple
model is to encourage the explainer to produce simple and
explanatory messages, in the sense that a simple model can
learn with them. A more powerful layperson could potentially
do well even with bad explanations.

Our framework is flexible, allowing different
configurations for C, E, and L, as next described.
In §5, we show examples of explainers and laypeo-
ple for text classification and natural language in-
ference tasks (additional experiments on machine
translation are described in §G).

Relation to filters and wrappers. In the wrap-
per and filter approaches described in §2, the clas-
sifier C and the explainer E are separate compo-
nents. In these approaches, E works as a post-hoc
explainer, querying C with new examples or re-
questing gradient information.

Relation to embedded explanation. By con-
trast, in the embedded approaches of Lei et al.
(2016) and the selective sparse attention introduced
in §3, the explainer E is directly embedded as an
internal component of the classifier C, returning
the selected features as the message. This approach
is arguably more faithful, as E is directly linked to
the mechanism that produces C’s decisions.

4.2 Joint training of explainer and layperson
So far we have assumed thatE is given beforehand,
chosen among existing explanation methods, and
that L is trained to assess the explanatory ability of
E. But can our framework be used to create new
explainers by training E and L jointly? We will
see how this can be done by letting E and L play a
cooperative game (Lewis, 1969). The key idea is
that they need to learn a communication protocol
that ensures high CSR (Eq. 1). Special care needs
to be taken to rule out “trivial” protocols and ensure
plausible, potentially faithful, explanations. We
propose a strategy to ensure this, which will be
validated using human evaluation in §6.3

Let Eθ and layperson Lφ be trained models
(with parameters θ and φ), learned together to opti-
mize a multi-task objective with two terms:

• A reconstruction term that controls the infor-
mation about the classifier’s decision ŷ. We use
a cross-entropy loss on the output of the layper-
son L, using ŷ (and not the true label y) as the
ground truth: L(φ, θ) = − log pφ(ŷ | m), where
m is the output of the explainer Eθ.

• A faithfulness term that encourages the ex-
plainer E to take into account the classifier’s
3Other approaches, such as Lei et al. (2016) and Yu et al.

(2019), develop rationalizers from cooperative or adversarial
games between generators and encoders. However, those
frameworks do not aim at explaining an external classifier.
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decision process when producing its explanation
m. This is done by adding a squared loss term
Ω(θ) = ‖h̃(Eθ), h‖2 where h̃ is E’s prediction
of C’s internal representation h.

The objective function is a combination of these
two terms, LΩ(φ, θ) := λΩ(θ)+L(φ, θ). We used
λ = 1 in our experiments. This objective is min-
imized in a training set that contains pairs (x, ŷ).
Therefore, in this model the message m is latent
and works as a “bottleneck” for the layperson L,
which does not have access to the full input x, to
guess the classifier’s prediction ŷ—related mod-
els have been devised in the context of emergent
communication (Lazaridou et al., 2016; Foerster
et al., 2016; Havrylov and Titov, 2017) and sparse
autoencoders (Trifonov et al., 2018; Subramanian
et al., 2018).

We minimize the objective above with gradient
backpropagation. To ensure end-to-end differentia-
bility, during this joint training we use sparsemax
attention (§3) to select the relevant words in the
message. One important concern in this model is to
prevent E and L from learning a trivial protocol to
maximize CSR. To ensure this, we forbid E from
including stopwords in its messages and during
training we use a linear schedule for the probability
of the explainer accessing the predictions of the
classifier (ŷ), which are hidden otherwise. At the
end of training, the explainer will access it with
probability β. In our experiments, we set β to 20%
(chosen on the validation set as described in §F.2).

5 Experiments

We experimented with our framework on two NLP
tasks: text classification and natural language infer-
ence. Additional experiments on machine transla-
tion are reported in §G, with similar conclusions.

We used 4 datasets (SST, IMDB, AgNews, Yelp)
for text classification and one dataset (SNLI) for
NLI, with statistics and details in Table 5 (§B).

Classifier C. For text classification, the input
x ∈ X is a document and the output set Y is a
set of labels (e.g. topics or sentiment labels). The
message is a bag of words (BoW) extracted from
the document. As in Jain and Wallace (2019) and
Wiegreffe and Pinter (2019), our classifier C is an
RNN with attention. For NLI, the input x is a pair
of sentences (premise and hypothesis) and the la-
bels in Y are entailment, contradiction, and neutral.
We let messages be again BoWs, and we constrain

CLASSIFIER SST IMDB AGN. YELP SNLI

BoW (L) 82.54 88.96 95.62 68.78 69.81
RNN, softmax (C) 86.16 91.79 96.28 75.80 78.34
–,1.5-entmax (Cent) 86.11 91.72 96.30 75.72 79.20
–, sparsemax (Csp) 86.27 91.52 96.37 75.72 78.78
Bernoulli (Cbern) 81.99 86.99 95.68 70.12 79.24
HardKuma (Chk) 84.13 91.06 96.38 74.36 85.49

Table 2: Accuracies of the original classifiers on text
classification and natural language inference.

them to be selected from the premise (and concate-
nated with the full hypothesis). We used a similar
classifier as above, but with two independent BiL-
STM layers, one for each sentence. We used the
additive attention of Bahdanau et al. (2015) with
the last hidden state of the hypothesis as the query
and the premise vectors as keys.

We also experimented with RNN classifiers that
replace softmax attention by 1.5-entmax (Cent) and
sparsemax (Csp), and with the rationalizer mod-
els of Lei et al. (2016) (Cbern) and Bastings et al.
(2019) (Chk). Details about these classifiers and
their hyperparameters are listed in §D. Table 2 re-
ports the accuracy of all classifiers used in our ex-
periments. The attention-based models all perform
very similarly and generally better than the ratio-
nalizer models, except for SNLI, where the latter
use a stronger model with decomposable attention.
As expected, in general, all these classifiers outper-
form a bag-of-words model which is the model we
use as the layperson.

Layperson L and explainer E. We used a sim-
ple linear BoW model as the layperson L. For NLI,
the layperson sees the full hypothesis, encoding
it with a BiLSTM. The BoW from the explainer
is passed through a linear projection and summed
with the last hidden state of the BiLSTM.

We evaluated the following explainers:

1. Erasure, a wrapper similar to the leave-one-out
approaches of Jain and Wallace (2019) and Ser-
rano and Smith (2019). We obtain the word with
largest attention, zero out its input vector, and
repass the whole input with the erased vector
to the classifier C. We produce the message by
repeating this procedure k times.

2. Top-k gradients, a filter approach that ranks
word importance by their “input × gradient”
product, | ∂ŷ∂xi

· xi| (Ancona et al., 2018; Wiegr-
effe and Pinter, 2019). The top-k words are
selected as the message.
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SST IMDB AGNEWS YELP SNLI

CLF. EXPLAINER CSR ACCL CSR ACCL CSR ACCL CSR ACCL CSR ACCL

C Random 69.41 70.07 67.30 66.67 92.38 91.14 58.27 53.06 75.83 68.74
C Erasure 80.12 81.22 92.17 88.72 97.31 95.41 78.72 68.90 77.88 70.04
C Top-k gradient 79.35 79.24 86.30 83.93 96.49 94.86 70.54 62.86 76.74 69.40
C Top-k softmax 84.18 82.43 93.06 89.46 97.59 95.61 81.00 70.18 78.66 71.00
Cent Top-k 1.5-entmax 85.23 83.31 93.32 89.60 97.29 95.67 82.20 70.78 80.23 73.39
Csp Top-k sparsemax 85.23 81.93 93.34 89.57 95.92 94.48 82.50 70.99 82.89 74.76

Cent Selec. 1.5-entmax 83.96 82.15 92.55 89.96 97.30 95.66 81.38 70.41 77.25 71.44
Csp Selec. sparsemax 85.23 81.93 93.24 89.66 95.92 94.48 83.55 71.60 82.04 73.46
Cbern Bernoulli 82.37 78.42 91.66 86.13 96.91 94.43 84.93 66.89 76.81 69.65
Chk HardKuma 85.17 80.40 94.72 90.16 97.11 95.45 87.39 71.64 74.98 71.48

Table 3: CSR and layperson accuracy (ACCL) for several explainers. For each explainer, we indicate the corre-
sponding classifier from Table 2; in all cases the layperson is a BoW model. Only explainers of the same classifier
can be compared in terms of CSR. Top rows report performance for random, wrapper and filter explainers, for fixed
k-word messages (the values of k for the several datasets are {5, 10, 10, 10, 4}, respectively). Bottom rows corre-
spond to embedded methods where k is given automatically via sparsity. The average k obtained by 1.5-entmax,
sparsemax, Bernoulli and HardKuma are: SST: {4.65, 2.59, 6.10, 4.82}; IMDB: {28.23, 12.94, 39.40, 24.18};
AGNEWS {5.65, 4.14, 4.01, 9.68}; YELP: {60.61, 23.86, 9.15, 33.18}; SNLI: {12.96, 8.27, 15.04, 6.40}.

3. Top-k and selective attention: We experi-
mented both using attention as a filter, by se-
lecting the top-k most attended words as the
message, and embedded in the classifier C, by
using the selective attentions described in §3
(1.5-entmax and sparsemax).

4. The rationalizer models of Lei et al. (2016)
and Bastings et al. (2019). These models com-
pose the message by stochastically sampling ra-
tionale words, respectively using Bernoulli and
HardKuma distributions. For SNLI, since these
models use decomposable attention instead of
RNNs, we form the message by selecting all
premise words that are linked with any hypothe-
sis word via a selected Bernoulli variable.

We also report a random baseline, which randomly
picks k words as the message. We show examples
of messages for all explainers in §I.

Results. Table 3 reports results for the communi-
cation success rate (CSR, Eq. 1) and for the accu-
racy of the layperson (ACCL). For each explainer,
we indicate which classifier it is explaining; note
that the CSR is only comparable across explainers
that use the same classifier. The goal of this ex-
periment is to answer the following questions: (i)
How do different explainers (wrappers, filters, em-
bedded) compare to each other? (ii) Are selective
sparse attention methods effective? (iii) How is the
trade-off between message length and CSR?

The first thing to note is that, as expected, the
random baseline is much worse than the other ex-

plainers, for all text classification datasets.4 Among
the non-trivial explainers, the attention and era-
sure outperform gradient methods: the erasure
and top-k attention explainers have similar CSR,
with a slight advantage for attention methods. Note
that the attention explainers have the important ad-
vantage of requiring a single call to the classifier,
whereas the erasure methods, being wrappers, re-
quire k calls. The worse performance of top-k
gradient (less severe on AGNEWS) suggests that
the words that locally cause bigger output changes
are not necessarily the most informative ones.5

Regarding the different attention models (soft-
max, entmax, and sparsemax), we see that sparse
transformations tend to have slightly better
ACCL, in addition to better ACCC (see Table 2).
The embedded sparse attention methods achieved
communication scores on par with the top-k atten-
tion methods without a prescribed k, while produc-
ing, by construction, more faithful explanations.
Both our proposed models (sparsemax and 1.5-
entmax) seem generally more accurate than the
Bernoulli model of Lei et al. (2016) and compa-
rable to the HardKuma model of Bastings et al.
(2019), with a much simpler training procedure,

4This is less pronounced in SNLI, as the hypothesis alone
already gives strong baselines (Gururangan et al., 2018).

5A potential reason is that attention directly influences C’s
decisions, being an inside component of the model. Gradients
and erasure, however, are extracted after decisions are per-
formed. The reason might be similar to filter methods being
generally inferior to embedded methods in static feature se-
lection, since they ignore feature interactions that may jointly
play a role in model’s decisions.
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Figure 2: Message sparsity analysis for IMDB (top)
and SNLI (bottom). For SNLI, k = 0 corresponds to
a case where the layperson only sees the hypothesis.
The rightmost entry represents an explainer that simply
passes forward all words to the layperson.

not requiring gradient estimation over stochastic
computation graphs.

Finally, Figure 2 shows the trade-off between the
length of the message and the communication suc-
cess rate for different values of k both for IMDB
and SNLI (see Figure 4 in §G for the IWSLT exper-
iments, with similar findings). Interestingly, we ob-
serve that CSR does not increase monotonically
with k. As k increases, CSR starts by increas-
ing but then it starts dropping when k becomes
too large. This matches our intuition: in the two
extreme cases where k = 0 and where k is the doc-
ument length (corresponding to a full bag-of-words
classifier) the message has no information about
how the classifier C behaves. By setting k = 0,
meaning that the layperson L only looks at the hy-
pothesis, the CSR is reasonably high (∼74%), but
as soon as we include a single word in the message
this baseline is surpassed by 4 points or more.

6 Human Evaluation

To fully assess the quality of the explanations in a
more realistic forward simulation setting, we per-
formed human evaluations, where the layperson L
is a human instead of a machine.

Joint training of E and L. So far we compared
several explainers, but what happens if we train E
andL jointly to optimize CSR directly, as described
in §4.2? We experiment with the IMDB and SNLI
datasets, comparing with using humans for either
the layperson, the explainer, or both.

Human layperson. We randomly selected 200
documents for IMDB and SNLI to be annotated

by humans. The extracted explanations (i.e. the
selected words) were shuffled and displayed as a
cloud of words to two annotators, who were asked
to predict the label of each document when seeing
only these explanations. For SNLI, we show the
entire hypothesis as raw text and the premise as a
cloud of words. The agreement between annotators
and other annotation details can be found in §H.

Human explainer. We also consider explana-
tions generated by humans rather than machines.
To this end, we used the e-SNLI corpus (Camburu
et al., 2018), which extends the SNLI with human
rationales. Since the e-SNLI corpus does not pro-
vide highlights over the premise for neutral pairs,
we removed them from the test set.6

We summarize our results in Table 4. We ob-
serve that, also with human laypeople, top-k at-
tention achieves better results than top-k gradient,
in terms of CSR and ACC, and that the ACC of
erasure, attention models, and human explainers
are close, reinforcing again the good results for
these explainers. Among the different attention
explainers, we see that selective attention explain-
ers (§3) got very high ACCH , outperforming top-k
explainers for SNLI. We also see that the joint
explainer (§4.2) outperformed all the other explain-
ers in ACCL and CSRL and achieved very high
human performance on IMDB, largely surpassing
other systems in CSRH and ACCH . This shows the
potential of our communication-based framework
to develop new post-hoc explainers with good for-
ward simulation properties. However, for SNLI, the
joint explainer had much lower CSRH and ACCH ,
suggesting that for this task more sophisticated ex-
plainers are required.

7 Related Work

There is a large body of work on analysis and in-
terpretation of neural networks. Our work focuses
on prediction explainability, different from trans-
parency or model interpretability (Doshi-Velez,
2017; Lipton, 2018; Gilpin et al., 2018).

Rudin (2019) defines explainability as a plausi-
ble reconstruction of the decision-making process,
and Riedl (2019) argues that it mimics what hu-
mans do when rationalizing past actions. This in-
spired our post-hoc explainers in §4.2 and their use
of the faithfulness loss term.

6Note that the human rationales from eSNLI are not ex-
planations about C, since the humans are explaining the gold
labels. Therefore, we have CSR=ACC always.
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CLF. EXPLAINER
IMDB SNLI

k CSRH CSRL ACCH ACCL k CSRH CSRL ACCH ACCL

C Erasure 5.0 89.25 94.00 86.25 90.00 4.0 72.50 73.50 83.50 70.00
C Top-k gradient 5.0 73.50 84.50 73.00 80.50 4.0 65.75 72.50 76.75 68.00
C Top-k softmax 5.0 89.25 93.00 88.25 88.00 4.0 72.00 76.50 82.75 71.50
Cent Top-k 1.5-entmax 5.0 89.25 92.50 85.75 86.50 4.0 70.00 81.50 80.50 76.50
Csp Top-k sparsemax 5.0 89.00 89.50 87.50 88.00 4.0 68.25 88.00 80.25 77.00

Cent Selec. 1.5-entmax 27.2 86.50 92.50 84.00 89.50 12.9 75.25 77.00 87.00 77.00
Csp Selec. sparsemax 12.8 87.75 92.50 86.75 89.00 8.0 72.25 82.00 85.00 79.00
Cbern Bernoulli 39.4 79.00 93.50 75.00 87.00 15.2 74.50 76.00 86.75 69.50
Chk HardKuma 24.3 83.75 93.50 80.75 89.00 6.4 79.25 71.50 87.50 68.50

C Joint E and L 2.7 96.75 98.50 89.25 91.50 2.8 58.00 93.50 70.00 78.50
- Human highlights - - - - - 2.8 83.25 83.50 83.25 83.50

Table 4: Results of the human evaluation. Reported are average message length k, human layperson CSRH /ACCH ,
and machine layperson CSRL/ACCL. Only explainers of the same classifier can be compared in terms of CSR.

Recent works questioned the interpretative abil-
ity of attention mechanisms (Jain and Wallace,
2019; Serrano and Smith, 2019). Wiegreffe and
Pinter (2019) distinguished between faithful and
plausible explanations and introduced several diag-
nostic tools. Mullenbach et al. (2018) use human
evaluation to show that attention mechanisms pro-
duce plausible explanations, consistent with our
findings in §6. None of these works, however, con-
sidered the sparse selective attention mechanisms
proposed in §3. Hard stochastic attention has been
considered by Xu et al. (2015); Lei et al. (2016);
Alvarez-Melis and Jaakkola (2017); Bastings et al.
(2019), but a comparison with sparse attention and
explanation strategies was still missing.

Besides attention-based methods, many other ex-
plainers have been proposed using gradients (Bach
et al., 2015; Montavon et al., 2018; Ding et al.,
2019), leave-one-out strategies (Feng et al., 2018;
Serrano and Smith, 2019), or local perturbations
(Ribeiro et al., 2016; Koh and Liang, 2017), but
a link with filters and wrappers in the feature se-
lection literature has never been made. We believe
the connections revealed in §2 may be useful to
develop new explainers in the future.

Our trained explainers from §4.2 draw inspi-
ration from emergent communication (Lazaridou
et al., 2016; Foerster et al., 2016; Havrylov and
Titov, 2017). Some of our proposed ideas (e.g.,
using sparsemax for end-to-end differentiability)
may also be relevant to that task. Our work is
also related to sparse auto-encoders, which seek
sparse overcomplete vector representations to im-
prove model interpretability (Faruqui et al., 2015;
Trifonov et al., 2018; Subramanian et al., 2018). In

contrast to these works, we consider the non-zero
attention probabilities as a form of explanation.

Some recent work (Yu et al., 2019; DeYoung
et al., 2020) advocates comprehensive rationales.
While comprehensiveness could be useful in our
framework to prevent trivial communication proto-
cols between the explainer and layperson, we argue
that it is not always a desirable property, since it
leads to longer explanations and an increase of hu-
man cognitive load. In fact, our analysis of CSR
as a function of message length (Figure 2) sug-
gests that shorter explanations might be preferable.
This is aligned to the “explanation selection” prin-
ciple articulated by Miller (2019, §4): “Similar to
causal connection, people do not typically provide
all causes for an event as an explanation. Instead,
they select what they believe are the most relevant
causes.” Our sparse, selective attention mecha-
nisms proposed in §3 are inspired by this principle.

8 Conclusions

We proposed a unified framework that regards ex-
plainability as a communication problem between
an explainer and a layperson about a classifier’s
decision. We proposed new embedded methods
based on selective attention, and post-hoc explain-
ers trained to optimize communication success. In
our experiments, we observed that attention mech-
anisms and erasure tend to outperform gradient
methods on communication success rate, using
both machines and humans as the layperson, and
that selective attention is effective, while simpler
to train than stochastic rationalizers.
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