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Introduction

Welcome to the First Workshop on Automatic Simultaneous Translation (AutoSimTrans). Simultaneous
translation, which performs translation concurrently with the source speech, is widely useful in many
scenarios such as international conferences, negotiations, press releases, legal proceedings, and medicine.
It combines the AI technologies of machine translation (MT), automatic speech recognition (ASR), and
text-to-speech synthesis (TTS), and is becoming a cutting-edge research field.

As an emerging and interdisciplinary field, simultaneous translation faces many great challenges, and is
considered one of the holy grails of AI. This workshop will bring together researchers and practitioners
in machine translation, speech processing, and human interpretation, to discuss recent advances and open
challenges of simultaneous translation.

We organized a simultaneous translation shared task on Chinese-English. We released a dataset for open
research, which covers speeches in a wide range of domains, such as IT, economy, culture, biology, arts,
etc.

We also have two sets of keynote speakers: Hua Wu, Colin Cherry, Jordan Boyd-Graber, Qun Liu
from simultaneous translation, Kay-Fan Cheung and Barry Slaughter Olsen from human interpretation
research. We hope this workshop will greatly increase the communication and crossfertilization between
the two fields.

We look forward to an exciting workshop.

Hua Wu, Colin Cherry, Liang Huang, Zhongjun He, Mark Liberman, James Cross, Yang Liu
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Abstract

Simultaneous Translation is a great challenge
in which translation starts before the source
sentence finished. Most studies take transcrip-
tion as input and focus on balancing trans-
lation quality and latency for each sentence.
However, most ASR systems can not pro-
vide accurate sentence boundaries in realtime.
Thus it is a key problem to segment sentences
for the word streaming before translation. In
this paper, we propose a novel method for
sentence boundary detection that takes it as a
multi-class classification task under the end-
to-end pre-training framework. Experiments
show significant improvements both in terms
of translation quality and latency.

1 Introduction

Simultaneous Translation aims to translate the
speech of a source language into a target language
as quickly as possible without interrupting the
speaker. Typically, a simultaneous translation sys-
tem is comprised of an auto-speech-recognition
(ASR) model and a machine translation (MT)
model. The ASR model transforms the audio signal
into the text of source language and the MT model
translates the source text into the target language.

Recent studies on simultaneous translation (Cho
and Esipova, 2016; Ma et al., 2019; Arivazhagan
et al., 2019) focus on the trade-off between trans-
lation quality and latency. They explore a policy
that determines when to begin translating with the
input of a stream of transcription. However, there
is a gap between transcription and ASR that some
ASR model doesn’t provide punctuations or can-
not provide accurate punctuation in realtime, while
the transcription is always well-formed. See Fig-
ure 1 for illustration. Without sentence boundaries,
the state-of-the-art wait-k model takes insufficient
text as input and produces an incorrect translation.

Therefore, sentence boundary detection (or sen-
tence segmentation) 1 plays an important role to
narrow the gap between the ASR and transcrip-
tion. A good segmentation will not only improve
translation quality but also reduce latency.

Studies of sentence segmentation falls into one
of the following two bins:

• The strategy performs segmentation from a
speech perspective. Fügen et al. (2007) and
Bangalore et al. (2012) used prosodic pauses
in speech recognition as segmentation bound-
aries. This method is effective in dialogue
scenarios, with clear silence during the conver-
sation. However, it does not work well in long
speech audio, such as lecture scenarios. Ac-
cording to Venuti (2012), silence-based chunk-
ing accounts for only 6.6%, 10%, and 17.1%
in English, French, and German, respectively.
Indicating that in most cases, it cannot effec-
tively detect boundaries for streaming words.

• The strategy takes segmentation as a standard
text processing problem. The studies consid-
ered the problem as classification or sequence
labeling, based on SVM, (Sridhar et al., 2013)
conditional random filed (CRFs) (Lu and Ng,
2010; Wang et al., 2012; Ueffing et al., 2013).
Other researches utilized language model, ei-
ther based on N-gram (Wang et al., 2016)
or recurrent neural network (RNN)(Tilk and
Alumäe, 2015).

In this paper, we use classification to solve the
problem of sentence segmentation from the per-
spective of text. Instead of predicting a sentence
boundary for a certain position, we propose a multi-
position boundary prediction approach. Specifi-
cally, for a source text x = {x1, ..., xT }, we calcu-
late the probability of predicting sentence boundary

1We use both terms interchangeably in this paper.
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src One of two things is going to happen . Either it ’s going to …

Reference Eines von zwei Dingen wird passieren. Entweder wird ...

wait3 Eines von zwei Dingen wird passieren. Entweder wird …

src without 

boundary
One of two things is going to happen either it ’s going to …

wait3 Eines von zwei Dingen wird passieren entweder es ist geht dass …

Figure 1: An English-to-German example that translates from a streaming source with and without sentence bound-
aries. We take the wait-K model (Ma et al., 2019) for illustration, K=3 here. The wait3 model first performs three
READ (wait) action at the beginning of each sentence (as shown in blue), and then alternating one READ with
one WRITE action in the following steps. Given the input source without sentence boundaries (in the 4thline), the
wait3 model (in the 5thline) doesn’t take the three READ action at the beginning of following sentences. There-
fore, the English phrase “it’s going to”, which should have been translated as “wird”, produced a meaningless
translation “es ist geht dass” with limited context during wait3 model inference.

after xt , t = T, T − 1, ..., T −M . Thus the la-
tency of translation can be controlled within L+M
words, where L is the length of the sentence. In-
spired by the recent pre-training techniques (Devlin
et al., 2019; Sun et al., 2019) that successfully used
in many NLP tasks, we used a pre-trained model for
initialization and fine-tune the model on the source
side of the sentence. Overall, the contributions are
as follows:

• We propose a novel sentence segmentation
method based on pre-trained language repre-
sentations, which have been successfully used
in various NLP tasks.

• Our method dynamically predicts the bound-
ary at multiple locations, rather than a specific
location, achieving high accuracy with low
latency.

2 Background

Recent studies show that the pre-training and fine-
tuning framework achieves significant improve-
ments in various NLP tasks. Generally, a model
is first pre-trained on large unlabeled data. After
that, on the fine-tuning step, the model is initialized
by the parameters obtained by the pre-training step
and fine-tuned using labeled data for specific tasks.

Devlin et al. (2019) proposed a generalized
framework BERT, to learn language representa-
tions based on a deep Transformer (Vaswani et al.,
2017) encoder. Rather than traditionally train a
language model from-left-to-right or from-right-
to-left, they proposed a masked language model
(MLM) that randomly replace some tokens in a
sequence by a placeholder (mask) and trained the
model to predict the original tokens. They also
pre-train the model for the next sentence prediction

(NSP) task that is to predict whether a sentence is
the subsequent sentence of the first sentence. Sun
et al. (2019) proposed a pre-training framework
ERNIE, by integrating more knowledge. Rather
than masking single tokens, they proposed to mask
a group of words on different levels, such as enti-
ties, phrases, etc. The model achieves state-of-the-
art performances on many NLP tasks.

In this paper, we train our model under the
ERNIE framework.

3 Our Method

Given a streaming input x = {x1, ..., xt, ..., xT },
the task of sentence segmentation is to determine
whether xt ∈ x is the end of a sentence. Thus the
task can be considered as a classification problem,
that is p(yt|x, θ), where yt ∈ {0, 1}. However,
in simultaneous translation scenario, the latency
is unacceptable if we take the full source text as
contextual information. Thus we should limit the
context size and make a decision dynamically.

As the input is a word streaming, the sentence
boundary detection problem can be transformed as,
whether there exists a sentence boundary until the
current word xt. Thus we can use the word stream-
ing as a context to make a prediction. We propose a
multi-class classification model to predict the prob-
ability of a few words before xt as sentence bound-
aries (Section 3.1). We use the ERNIE framework
to first pre-train a language representation and then
fine-tune it to sentence boundary detection (Section
3.2). We also propose a dynamic voted inference
strategy (Section 3.3).

3.1 The Model

For a streaming input x = {x1, ..., xt}, our goal
is to detect whether there is a sentence boundary
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𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑡𝑡−2 𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑜𝑜 … ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜 𝑜𝑜𝑒𝑒𝑡𝑡ℎ𝑜𝑜𝑒𝑒 𝑒𝑒𝑡𝑡

𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸0 𝐸𝐸1 𝐸𝐸2 … 𝐸𝐸𝑡𝑡−2 𝐸𝐸𝑡𝑡−1 𝐸𝐸𝑡𝑡

…

…

…

𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶

ϕ 0 − 1 − 2Classes 
𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡𝑆𝑆𝑎𝑎𝑥𝑥

Masked
Language

Model

𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑜𝑜…ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜 𝑜𝑜𝑒𝑒𝑡𝑡ℎ𝑜𝑜𝑒𝑒 𝑒𝑒𝑡𝑡
𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑜𝑜…ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜 𝑜𝑜𝑒𝑒𝑡𝑡ℎ𝑜𝑜𝑒𝑒 𝑒𝑒𝑡𝑡 ". "
𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑜𝑜…ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜 𝑜𝑜𝑒𝑒𝑡𝑡ℎ𝑜𝑜𝑒𝑒 ". " 𝐼𝐼𝑡𝑡
𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑜𝑜…ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜". " 𝐸𝐸𝑒𝑒𝑡𝑡ℎ𝑜𝑜𝑒𝑒 𝑒𝑒𝑡𝑡

Figure 2: Illustration of the dynamic classification
model. M = 2 means there are 4 classes. We use
ERNIE to train a classifier. Class φ means that there is
no sentence boundary in the stream till now. Class −m
m = 0, 1, 2 means that xt−m is the end of a sentence
and we then put a period after it.

till the current word xt from last sentence bound-
ary. Rather than a binary classification that detects
whether xt is a sentence boundary, we propose a
multi-class method. The classes are as follows:

y =





φ, no sentence boundary detected

0, xt is the end of a sentence

−1, xt−1 is the end of a sentence

...

−M, xt−M is the end of a sentence

where M is the maximum offset size to the current
state. Thus, we have M + 2 classes.

See Figure 2 for illustration. We set M = 2,
indicating that the model predicts 4 classes for the
input stream. If the output class is φ, meaning that
the model does not detect any sentence boundary.
Thus the model will continue receiving new words.
If the output class is 0, indicating that the current
word xt is the end of a sentence and we put a period
after the word. Similarly, class −m denotes to add
a sentence boundary after xt−m. While a sentence
boundary is detected, the sentence will be extracted
from the stream and sent to the MT system as an
input for translation. The sentence detection then
continues from xt−m+1.

Each time our system receives a new word xt,
the classifier predicts probabilities for the lastM+1
words as sentence boundaries. If the output class
is φ, the classifier receives a new word xt+1, and
recompute the probabilities for xt+1, xt, xt−1, ...,

xt−M+1. Generally, more contextual information
will help the classifier improve the precision (Sec-
tion 4.5).

3.2 Training Objective
Our training data is extracted from paragraphs.
Question marks, exclamation marks, and semi-
colons are mapped to periods and all other punctu-
ation symbols are removed from the corpora. Then
for every two adjacent sentences in a paragraph,
we concatenate them to form a long sequence, x.
We record the position of the period as r and then
remove the period from the sequence.

For x = (x1, x2, ..., xN ) with N words, we gen-
erate r +M samples for t = 1, 2, ..., (r +M), in
the form of < (x1, ..., xt), yt >, where yt is the
label that:

yt =

{
φ, if t < r
−(t− r), if t ∈ [r, r +M ]

}
(1)

Note that if the length of the second sentence is
less than M, we concatenate subsequent sentences
until r+M samples are collected. Then we define
the loss function as follows:

J (θ) =
∑

(x,r)∈D
log(

r−1∑

t=1

p(yt = φ|x≤t; θ)

+
r+M∑

t=r

p(yt = −(t− r))|x≤t; θ))
(2)

where D is the dataset that contains pairs of con-
catenated sentences x and its corresponding posi-
tion of the removed periods r. M is a hyperparam-
eter denotes the number of waiting words.

Note that our method differs from previous work
in the manner of classification. Sridhar et al. (2013)
predicts whether a word xt labeled as the end of a
sentence or not by a binary classification:

p(yt = 0|xt+2
t−2) + p(yt = 1|xt+2

t−2) = 1 (3)

where yt = 0 means xt is not the end of a sentence
and yt = 1 means xt is the end. xt+2

t−2 denotes 5
words xt−2, xt−1, ..., xt+2.

Some other language-model based work (Wang
et al., 2016) calculates probabilities over all words
in the vocabulary including the period:

∑

w∈V ∪“.”
p(yt = w|x≤t) = 1 (4)

and decides whether xt is a sentence boundary by
comparing the probability of yt =“.” and yt =
xt+1.

3



𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑡𝑡−4 𝑥𝑥𝑡𝑡−3 𝑥𝑥𝑡𝑡−2

𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑡𝑡−4 𝑥𝑥𝑡𝑡−3 𝑥𝑥𝑡𝑡−2 𝑥𝑥𝑡𝑡−1

𝑥𝑥1 𝑥𝑥2 … 𝑥𝑥𝑡𝑡−4 𝑥𝑥𝑡𝑡−3 𝑥𝑥𝑡𝑡−2 𝑥𝑥𝑡𝑡−1 𝑥𝑥𝑡𝑡

𝑝𝑝 𝑦𝑦 = 0|𝑥𝑥1, … , 𝑥𝑥𝑡𝑡−2

𝑝𝑝 𝑦𝑦 = −1|𝑥𝑥1, … , 𝑥𝑥𝑡𝑡−1

𝑝𝑝 𝑦𝑦 = −2|𝑥𝑥1, … , 𝑥𝑥𝑡𝑡

Figure 3: Our voting algorithm for online prediction
with M equals to 2. Input the stream text till xt, the
overall probability of add a sentence boundary after
xt−2 is averaged by the M + 1 probabilities in red,
while for xt−1 (in green) and xt (in blue), the number
of deterministic probability is less than M + 1.

The performance of these methods is limited by
incomplete semantics, without considering global
boundary detection. In our methods, we leverage
more future words and restrict classes globally:

p(yt = φ|x≤t) +
M∑

m=0

p(yt = −m|x≤t) = 1 (5)

The restriction is motivated that in a lecture sce-
nario, where a sentence could not be very short that
contains only 1 or 2 words. Thus, the probability
distribution prohibits that adjacent words to be the
end of sentences at the same time.

3.3 Dynamic Inference

At inference time, we predict sentence boundaries
sequentially with a dynamic voting strategy. Each
time a new word xt is received, we predict the prob-
ability of M + 1 classes as shown in the bottom of
Figure 3, then calculate if the probability of previ-
ous M + 1 positions (xt−M , xt−M+1, xt) is larger
then a threshold θTh. If yes, we add a sentence
boundary at the corresponding position. Otherwise,
we continue to receive new words.

Note that the probability is adopted as the voted
probability. While the probability of adding a sen-
tence boundary after xt−M hasM+1 probabilities
to calculate the average, the number of probabili-
ties to determine whether it is a sentence boundary
at subsequent positions is less than M + 1. Here
we use the voted average of existing probabilities.
Specifically, to judge whether xt′ is a sentence

Dataset Sentences Tokens/s

Train
WMT 14 4.4M 23.22
IWSLT 14 0.19M 20.26

Test
IWSLT
2010-2014

7040 19.03

Table 1: Experimental Corpora without punctuation.
Token/s denotes the number of tokens per sentence in
English.

boundary, it needs t− t′ + 1 probabilities:

1

t− t′ + 1

t−t′∑

m=0

p(y = −m|x1, ..., xt+m) (6)

where t′ ∈ [t−M, t].
If more than one sentence boundary probabilities

for xt−M , ..., xt exceeds the threshold θTh at the
same time, we choose the front-most position as
a sentence boundary. This is consistent with our
training process, that is, if there is a sample of two
or more sentence boundaries, we ignore the fol-
lowing and label the class yt according to the first
boundary. This is because we generate samples
with each period in the original paragraph as de-
picted in Section 3.2. From another point of view,
the strategy can also compensate for some incor-
rect suppression of adjacent boundaries, thereby
improving online prediction accuracy.

4 Experiment

Experiments are conducted on English-German
(En-De) simultaneous translation. We evaluate 1)
the F-score2 of sentence boundary detection and 2)
case-sensitive tokenized 4-gram BLEU (Papineni
et al., 2002) as the final translation effect of the
segmented sentences. To reduce the impact of the
ASR system, we use the transcription without punc-
tuation in both training and evaluation.

The datasets used in our experiments are listed
in Table 1. We use two parallel corpus from ma-
chine translation task: WMT 143 and IWSLT 14
4. WMT 14 is a text translation corpus including
4.4M sentences, mainly on news and web sources.
And IWSLT 14 is a speech translation corpus of
TED lectures with transcribed text and correspond-
ing translation. Here we only use the text part in
it, containing 0.19M sentences in the training set.

2harmonic average of the precision and recall
3http://www.statmt.org/wmt14/translation-task.html
4https://wit3.fbk.eu/

4



Method Hyperparameter F-score BLEU avgCW maxCW
Oracle NA 1.0 22.76 NA NA
N-gram N=5, θTh = e0.0 0.46 17.83 6.64 56
N-gram N=5, θTh = e2.0 0.48 19.20 13.43 161
T-LSTM d=256 0.55 20.46 10.14 53

dynamic-force θl = 40, θTh = 0.5 0.74 22.01 14.43 40
dynamic-base θTh = 0.5 0.74 21.93 14.58 50

Table 2: Segmentation Performance trained on IWSLT2014. All methods are conducted with future words M
equals to 1.

We train the machine translation model on WMT
14 with the base version of the Transformer model
(Vaswani et al., 2017), achieving a BLEU score of
27.2 on newstest2014. And our sentence boundary
detection model is trained on the source transcrip-
tion of IWSLT 14 unless otherwise specified (Sec-
tion 4.3). To evaluate the system performance, we
merge the IWSLT test set of 4 years (2010-2014)
to construct a big test set of 7040 sentences. The
overall statistics of our dataset is shown in Table 1.

We evaluate our model and two existing methods
listed below:

• dynamic-base is our proposed method that
detect sentence boundaries dynamically using
a multi-class classification.

• dynamic-force adds a constraint on dynamic-
base. In order to keep in line with (Wang
et al., 2016), we add a constraint that sentence
should be force segmented if longer than θl.

• N-gram is the method using an N-gram lan-
guage model to compare the probability of
adding vs. not adding a boundary at xt af-
ter receiving xt−N+1, ..., xt. We implement
according to (Wang et al., 2016).

• T-LSTM uses a RNN-based classification
model with two classes. We implement a uni-
directional RNN and perform training accord-
ing to (Tilk and Alumäe, 2015)5.

Our classifier in dynamic-base and dynamic-
force is trained under ERNIE base framework.
We use the released 6 parameters obtained at pre-
training step as initialization. In the fine-tuning
stage, we use a learning rate of 2e−5.

5we only keep the two classes of period and φ in this work
6https://github.com/PaddlePaddle/ERNIE

4.1 Overall Results

Table 2 reports the results of source sentence seg-
mentation on En-De translation, where the latency
is measured by Consecutive Wait (CW) (Gu et al.,
2017), the number of words between two translate
actions. To eliminate the impact of the different
policies in simultaneous translation, we only exe-
cute translation at the end of each sentence. There-
fore, the CW here denotes the sentence length L
plus the number of future words M . We calculate
its average and maximum value as “avgCW” and
“maxCW”, respectively. Better performance expect
high F-score, BLEU, and low latency (CW). The
translation effect obtained by using the groundtruth
period as the sentence segmentation is shown in
the first line of Oracle.

The N-gram method calculate the probability
of add (padd) and not add (pnot) period at each
position, and decide whether to chunk by compar-
ing whether padd/pnot exceeds θTh. The N-gram
method without threshold tuning (with θTh = e0.0)
divides sentences into small pieces, achieving the
lowest average latency of 6.64. However, the F-
score of segmentation is very low because of the
incomplete essence of the n-gram feature. Notable,
the precision and recall differs much (precision =
0.33, recall = 0.78) in this setup. Therefore, we
need to choose a better threshold by grid search
(Wang et al., 2016). With θTh equals to e2.0, the
F-score of N-gram method increased a little bit
(0.46→ 0.48), with a more balanced precision and
recall (precision = 0.51, recall = 0.48). How-
ever, the max latency runs out of control, resulting
in a maximum of 161 words in a sentence. We also
tried to shorten the latency of the N-gram method
by force segmentation (Wang et al., 2016), but the
result was very poor (precision = 0.33, recall =
0.40).

The T-LSTM method with the hidden size of
256 performs better than N-gram, but the F-score
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Figure 4: Performance evaluated on IWSLT14 testset for different training sample building strategies.

and BLEU is still limited. On the contrary, our
dynamic-based approaches with M = 1 achieve
the best F-score at 0.74 and the final translation is
very close to the result of Oracle. In particular, the
precision and recall reached about 0.72 and 0.77 in
both dynamic-force and dynamic-base, respectively.
Accurate sentence segmentation brings better per-
formance in translation, bringing an improvement
of 1.55 over T-LSTM. Moreover, our approach is
not inferior in terms of latency. Both average la-
tency and max latency is controlled at a relatively
low level.

It is interesting to note that, dynamic-force per-
forms better than dynamic-base, in terms of la-
tency and BLEU. This suggests the effectiveness of
the force segmentation strategy, that is, select the
chunking location with a sentence length limitation
will not affect the accuracy of segmentation, and
would enhance the translation effect.

4.2 Magic in Data Processing

According to Section 3.2, the order between sen-
tences of original corpora would affect the gen-
eration of training samples. In this section, we
investigate the effect of various data reordering
strategies.

A basic method is to use the original sentence
order of speech corpora, denote as Basic. However,
the samples generated is limited, which makes the
model easy to over-fit. To overcome this problem,
we adopt two methods to expand data scale: 1) Du-
plicate the original data multiple times or 2) Add
Synthetic adjacent sentences, through randomly se-
lecting two sentences from the corpora. These two
methods greatly expand the total amount of data,
but the gain to the model is uncertain. As an alter-
native, we explore a Sort method, to sort sentences

according to alphabetic order.

The performance of the four training data orga-
nization methods is shown in Figure 4, all built
on IWSLT2014 and conducted under the setup of
M = 1 and θl = 40. It is clear that Basic, Dupli-
cate and Synthetic are all involved in the problem
of over-fitting. They quickly achieved their best
results and then gradually declined. Surprisingly,
the Sort approach is prominent in both segmenta-
tion accuracy and translation performance. This
may be due to the following reasons: 1) Sentence
classification is not a difficult task, especially when
M = 1 for 3-class classification (y ∈ [φ, 0,−1]),
making the task easy to over-fit. 2) Compared with
Basic, Duplicate is more abundant in the sample
combination in batch training, but there is no es-
sential difference between the two methods. 3)
Synthetic hardly profits our model, because the syn-
thesized data may be very simple due to random
selection. 4) Sort may simulate difficult cases in
real scenes and train them pertinently, bringing it
a poor performance at start but not prone to over-
fit. There are many samples with identical head
and tail words in the sorted data, such as: “and it
gives me a lot of hope ‖ and ...” and “that means
there’s literally thousands of new ideas ‖ that ... ”.
Even human beings find it difficult to determine
whether the words before ‖ is sentence boundaries
of these samples. In Basic, Duplicate and Synthetic
methods, such samples are usually submerged in
a large quantity of simple samples. However, the
data organization mode of Sort greatly strengthens
the model’s ability to learn these difficult samples.

There is no need to worry that the Sort method
cannot cover simple samples. Because we sort by
rows in source file, and some of the rows contain
multiple sentences (an average of 1.01 sentences
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Method F-score BLEU avgCW maxCW
N-gram 0.48 19.58 15.60 156
T-LSTM 0.56 20.77 15.65 51
dyn-force 0.68 21.48 15.53 40
dyn-base 0.68 21.40 16.08 46

Table 3: Segmentation Performance trained on
WMT14. All methods are conducted with future words
M equals to 1. N-gram uses grid-search to get the best
hyperparamters. dyn is short for dynamic and dynamic-
force adopts θl = 40.

per row), which are in real speech order. We ar-
gue that these sentences are sufficient to model the
classification of simple samples, based on the rapid
overfit performance of the other three methods.

4.3 Out-of-Domain vs. In-Domain

Next, we turn to the question that how does the do-
main of training corpus affects results. With the test
set unchanged, we compare the sentence boundary
detections model trained on out-of-domain corpora
WMT 14 and in-domain corpora IWSLT 14, re-
spectively.

As mentioned before, WMT 14 is a larger text
translation corpus mainly on news and web sources.
But the test set comes from IWSLT, which contains
transcriptions of TED lectures of various directions.
Intuitively, larger dataset provides more diverse
samples, but due to domain changes, it does not
necessarily lead to improvements in accuracy.

The performance of various models trained on
WMT14 is shown in Table 3. Dynamic-force also
achieves the best translation performance with a
relatively small latency on average and limited the
max latency within 40 words. However, it under-
performs the same model trained on IWSLT2014
(as shown in Table 2), demonstrating its sensitivity
to the training domain.

On the contrary, N-gram and T-LSTM is hardly
affected. For N-gram, one possible reason is the be-
fore mentioned weakness of the N-gram: segmen-
tation depends on only N previous words, which
is more steady compared to the whole sentence,
thus eliminating the perturbation of whole sentence
brought by the domain variation. For T-LSTM, it
even improves a little compared with its in-domain
performance. This may be due to the lack of train-
ing samples. 0.19M sentences of IWSLT2014 is
insufficient to fit the parameters of T-LSTM. Thus
the model would benefit from increasing the cor-
pus size. However, our method needs less data in

θl F-score BLEU avgCW
10 0.40 16.27 5.85
20 0.58 20.34 9.74
40 0.74 22.01 14.43
80 0.73 21.60 15.15

Table 4: Segmentation Performance of dynamic-force
trained on IWSLT2014. All methods are conducted
with future words M equals to 1.

training because our model has been pre-trained.
Based on a powerful representation, we need only a
small amount of training data in fine-tuning, which
is best aligned with the test set in the domain.

4.4 Length of window θl

Next, we discuss the effect of changing θ. The
performance of dynamic-force with varying θl is
shown in Table 4. Smaller θl brings shorter latency,
as well as worse performance. The effect is ex-
tremely poor with θl = 10. There are two possible
reasons: 1) Constraint sentence length less than θl
is too harsh under small θl, 2) The discrepancy be-
tween the unrestricted training and length-restricted
testing causes the poor effect.

We first focus on the second possible reason.
While the difference between dynamic-base and
dynamic-force is only in prediction, we want to
know whether we can achieve better results by con-
trolling the length of training samples. Accordingly,
we only use the samples shorter than a fixed value:
θl in training phrase. At inference time, we use
both dynamic-force with the same sentence length
constraint θl and dynamic-base to predict sentence
boundaries. As elaborated in Figure 5, For each
pair of curves with a same θl, dynamic-force and
dynamic-base present similar performance. This
demonstrates the main reason for the poor perfor-
mance with small θl is not the training-testing dis-
crepancy but lies in the first reason that the force
constraint is too harsh.

Moreover, it is interesting to find that the per-
formance of θl = 80 is similar with θl = 40 at
the beginning but falls a little during training. This
probably because the setup with θl = 40 can filter
some inaccurate cases, as the average number of
words in IWSLT2014 training set is 20.26.

4.5 Number of Future Words M
We investigate whether can we achieve better per-
formance with more or less future words. We ex-
periment with M from 0 to 5. The result is shown
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M F-score BLEU avgCW
0 0.66 21.54 13.23
1 0.74 22.01 14.43
2 0.77 22.23 15.24
3 0.79 22.23 16.52
4 0.80 22.29 17.15

Table 5: Segmentation Performance of dynamic-force
trained on IWSLT2014. All methods are conducted
with θl = 40.

in Table 5. Reducing M to zero means that do not
refer to any future words in prediction. This de-
grades performance a lot, proving the effectiveness
of adding future words in prediction. Increase M
from 1 to 2 also promote the performance in both
sentence boundary detection f-score and the sys-
tem BLEU. However, as more future words added
(increase M to 3 and 4), the improvement becomes
less obvious.

5 Related Work

Sentence boundary detection has been explored for
years, but the majority of these work focuses on
offline punctuation restoration, instead of applied
in simultaneous translation. Existing work can be
divided into two classes according to the model
input.

5.1 N-gram based methods

Some work takes a fixed size of words as input.
Focus on utilizing a limited size of the stream-
ing input, they predict the probability of putting a
boundary at a specific position xt by a N-gram lan-

guage model (Wang et al., 2016) or a classification
model (Sridhar et al., 2013; Yarmohammadi et al.,
2013). The language-model based method make de-
cision depends onN words (xt−N+2, ..., xt+1) and
compares its probability with (xt−N+2, ..., xt,“.”).
The classification model takes features of N words
around xt and classifies to two classes denoting xt
is a sentence boundary or not. The main deficiency
of this method is that the dependencies outside the
input window are lost, resulting in low accuracy.

5.2 Whole sentence-based methods
Some other work focuses on restoring punctua-
tion and capitalization using the whole sentence.
To improve the sentence boundary classification
accuracy, some work upgrade the N-gram input
to variable-length input by using recurrent neural
network (RNN) (Tilk and Alumäe, 2015; Salloum
et al., 2017). Some other work takes punctua-
tion restoration as a sequence labeling problem
and investigates using Conditional Random Fields
(CRFs) (Lu and Ng, 2010; Wang et al., 2012; Ueff-
ing et al., 2013). Peitz et al. (2011) and Cho et al.
(2012) treats this problem as a machine translation
task, training to translate non-punctuated transcrip-
tion into punctuated text. However, all these meth-
ods utilize the whole sentence information, which
is not fit for the simultaneous translation scenario.
Moreover, the translation model based methods
require multiple steps of decoding, making it un-
suitable for online prediction.

6 Conclusion

In this paper, we propose an online sentence bound-
ary detection approach. With the input of streaming
words, our model predicts the probability of mul-
tiple positions rather than a certain position. By
adding this adjacent position constraint and using
dynamic prediction, our method achieves higher
accuracy with lower latency.

We also incorporate the pre-trained technique,
ERNIE to implement our classification model. The
empirical results on IWSLT2014 demonstrate that
our approach achieves significant improvements of
0.19 F-score on sentence segmentation and 1.55
BLEU points compared with the language-model
based methods.
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Abstract

End-to-end speech translation usually lever-
ages audio-to-text parallel data to train an
available speech translation model which has
shown impressive results on various speech
translation tasks. Due to the artificial cost
of collecting audio-to-text parallel data, the
speech translation is a natural low-resource
translation scenario, which greatly hinders its
improvement. In this paper, we proposed a
new adversarial training method to leverage
target monolingual data to relieve the low-
resource shortcoming of speech translation. In
our method, the existing speech translation
model is considered as a Generator to gain
a target language output, and another neural
Discriminator is used to guide the distinction
between outputs of speech translation model
and true target monolingual sentences. Ex-
perimental results on the CCMT 2019-BSTC
dataset speech translation task demonstrate
that the proposed methods can significantly
improve the performance of the end-to-end
speech translation.

1 Introduction

Typically, a traditional speech translation (ST)
system usually consists of two components: an
automatic speech recognition (ASR) model and
a machine translation (MT) model. Firstly,
the speech recognition module transcribes the
source language speech into the source language
utterances (Chan et al., 2016; Chiu et al.,
2018). Secondly, the machine translation module
translates the source language utterances into the
target language utterances (Bahdanau et al., 2014).
Due to the success of end-to-end approaches in
both automatic speech recognition and machine
translation, researchers are increasingly interested
in end-to-end speech translation. And, it has shown
impressive results on various speech translation

tasks (Duong et al., 2016; Bérard et al., 2016,
2018).

However, due to the artificial cost of collecting
audio-to-text parallel data, speech translation is a
natural low-resource translation scenario, which
greatly hinders its improvement. Actually, the
audio-to-text parallel data has only tens to hundreds
of hours which are equivalent to about hundreds of
thousands of bilingual sentence pairs. Thus, it is
far from enough for the training of a high-quality
speech translation system compare to bilingual
parallel data of millions or even tens of millions for
training a high-quality text-only NMT. Recently,
there have some recent works that explore to
address this issue. Bansal et al. (2018) pre-trained
an ASR model on high-resource data, and then fine-
tuned the ASR model for low-resource scenarios.
Weiss et al. (2017) and Anastasopoulos and Chiang
(2018) proposed multi-task learning methods to
train the ST model with ASR, ST, and NMT
tasks simultaneously. Liu et al. (2019) proposed a
Knowledge Distillation approach which utilizes a
text-only MT model to guide the ST model because
there is a huge performance gap between end-to-
end ST and MT model. Despite their success, these
approaches still need additional labeled data, such
as the source language speech, source language
transcript, and target language translation.

In this paper, we proposed a new adversarial
training method to leverage target monolingual
data to relieve the low-resource shortcoming of
end-to-end speech translation. The proposed
method consists of a generator model and a
discriminator model. Specifically, the existing
speech translation model is considered as a
Generator to gain a target language output, and
another neural Discriminator is used to guide the
distinction between outputs of speech translation
model and true target monolingual sentences. In
particular, the Generator and the Discriminator
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Figure 1: Proposed end-to-end speech translation with adversarial training

are trained iteratively to challenge and learn
from each other step by step to gain a better
speech translation model. Experimental results
on CCMT 2019-BSTC dataset speech translation
task demonstrate that the proposed methods can
significantly improve the performance of the end-
to-end speech translation system.

2 Proposed Method

The framework for the method of adversarial
training consists of a generator and a discriminator.
In this paper, Generator is the existing end-to-end
ST model, which is based on the encoder-decoder
model with an attention mechanism (Bérard et al.,
2016). The discriminator is a model based on a
convolutional neural network, and the output is
a quality score. The discriminator is aiming to
get higher quality scores for real text and lower
quality scores for the output of the ST model in
the discriminator training step. In other words, the
discriminator is expected to distinguish the input
text as much as possible. Meanwhile, our method
can not only leverage the ground truth to supervise
the training of ST model，but also make use of
the discriminator to enhance the output of the ST
model by using target monolingual data, as shown
in Figure 1.

2.1 Generator
For the end-to-end speech translate, we chose an
encoder-decoder model with attention. It takes as
an input sequence of audio features x = (x1, x2, · · · ,
xt) and a output sequence of words y = (y1, y2, · · · ,
ym). The speech encoder is a pyramid bidirectional
long short term memory (pBLSTM) (Chan et al.,
2016; Hochreiter and Schmidhuber, 1997). It
transforms the speech feature x = (x1, x2, · · · , xt)

into a high level representation H = (h1, h2, · · · ,
hn), where n ≤ t. In the pBLSTM, the outputs
of two adjacent time steps of the current layer are
concatenated and passed to the next layer.

hij = pBLSTM(hij−1, [h
i−1
2j , hi−1

2j+1]). (1)

Also, the pBLSTM can reduce the length of the
encoder input from t to n. In our experiment, we
stack 3 layers of the pBLSTM, so we were able
to reduce the time step 8 times. The decoder is
an attention-based LSTM, and it is a word-level
decoder.

ci = Attention(si, h),

si = LSTM(si−1, ci−1, yi−1),

yi = Generate(si, ci),

(2)

where the Attention function is a location-aware
attention mechanism (Chorowski et al., 2015), and
the Generate function is a feed-forward network
to compute a score for each symbol in target
vocabulary.

2.2 Discriminator
Discriminator takes either real text or ST
translations as input and outputs a scalar QS
as the quality score. For the discriminator,
we use a traditional convolution neural network
(CNN) (Kalchbrenner et al., 2016) which focuses
on capturing local repeating features and has
a better computational efficiency than recurrent
neural network (RNN) (LeCun et al., 2015). The
real text of the target language is encoded as
a sequence of one-hot vectors y = (y1, y2, · · · ,
ym), and the output generated by the ST model is
denoted as a sequence of vectors ỹ = (ỹ1, ỹ2, · · · ,
ỹn). The sequence of vectors y or ỹ are given as
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input to a single layer neural network. The output
of the neural network is fed into a stack of two one-
dimensional CNN layers and an average pooling
layer. Then we use a linear layer to get the quality
score. Training the discriminator is easy to overfit
because the probability distribution for ST model
output is different from the one-hot encoding of the
real text. To address this problem, we used earth-
mover distance in WGAN (Martin Arjovsky and
Bottou, 2017) to estimate the distance between the
ST model output and real text. The loss function
of the discriminator is the standard WGAN loss,
and adds a gradient penalty(Gulrajani et al., 2017).
Formally, the loss function of the discriminator as
below:

LossD = λ1{Eỹ∼Pst
[D(ỹ)]− Ey∼Preal

[D(y)]}
+ λ2Eŷ∼Pŷ

[(5ŷ||D(ŷ)|| − 1)2], (3)

where λ1 and λ2 are hyper-parameter, Pst is
the distribution of ST model ỹ and Preal is the
distribution of real text y, D(y) is the quality score
for y given by discriminator, ŷ are samples generate
by randomly interpolating between ỹ and y.

2.3 Adversarial Training

Both the ST model and the discriminator are
trained iteratively from scratch. For the ST model
training step, the parameters of discriminator are
fixed. We train the ST model by minimizing the
sequence loss LossST which is the cross-entropy
between the ground truth and output of the ST
model. And at the same time, the discriminator
generates a quality score QS for the output of the
ST model. Formally, the final loss function in the
training process is as follows,

LossG = λstLossST − (1− λst)QS, (4)

where λst ∈ [0,1] is hyper-parameter. For the
discriminator training step, the parameters of ST
model are fixed. The discriminator uses the
probability distribution of the ST model output and
the real text for training. The specific learning
process is shown in Algorithm 1. Note that the
discriminator is only used in the training of the
model while it is not used during the decoding.
Once the training ends, the ST model implicitly
utilizes the translation knowledge learned from
discriminator to decode the input audio.

Algorithm 1 Adversarial Training

Require: G, the Generator; D, the Discriminator;
dataset(X,Y), speech translation parallel
corpus.

Ensure: G′
, generator after adversarial training.

1: for iteration of adversarial training do
2: for iteration of training G do
3: Sample a subset(Xbatch,Ybatch) from

dataset(X,Y)
4: Y

′
batch=G(batch)

5: Use Eq.4 as loss function and compute
the loss

6: Update parameters of G with optimiza-
tion algorithm

7: end for
8: for iteration of training Discriminator D do
9: Sample a subset(Xbatch,Ybatch) from

dataset(X,Y)
10: Y

′
batch=G(batch)

11: Let Ybatch as y , Y
′
batch as ỹ, use Eq.3 as

loss function and compute the loss
12: Update parameters of D with optimiza-

tion algorithm
13: end for
14: end for

3 Experiment

3.1 Data Set
We conduct experiments on CCMT 2019-
BSTC (Yang et al., 2019) which is collected from
the Chinese mandarin talks and reports as shown
in Table 1. It contains 50 hours of real speeches,
including three parts, the audio files in Chinese,
the transcripts, and the English translations. We
keep the original data partitions of the data set
and segmented the long conversations used for
simultaneous interpretation into short utterances.

Dataset Utterances Hours
Train 28239 41.4
Valid 956 1.3
Test 569 1.5

Table 1: Size of the CCMT 2019-BSTC.

3.2 Experimental Settings
We process Speech files, to extract 40-dimensional
Filter bank features with a step size of 10ms and
window size of 25ms. To shorten the training
time, we ignored the utterances in the corpus
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that were longer than 30 seconds. We lowercase
and tokenize all English text, and normalize the
punctuation. a word-level vocabulary of size 17k
is used for target language in English. Then the
text data are represented by sequences of 1700-
dimensional one-hot vectors. Our ST model uses 3
layers of pBLSTM with 256 units per direction as
the encoder, and 512-dimensional location-aware
attention was used in the attention layer. The
decoder was a 2 layers LSTM with 512 units and 2
layers neural network with 512 units to predict
words in the vocabulary. For the discriminator
model, we use a linear layer with 128 units at the
bottom of the model. Then, using 2 layers one-
dimensional CNN, from bottom to top, the window
size is 2, the stride is 1, and the window size is
3, the stride is 1. Adam (Kingma and Ba, 2014)
was used as the optimization function to train our
model, which has a learning rate of 0.0001 and a
mini-batch size of 8. The hyper-parameters λst, λ1
and λ2 are 0.5, 0.0001 and 10 respectively. And
the train frequency of the ST model is 5 times then
the discriminator.

We used the BLEU (Papineni et al., 2002) metric
to evaluate our ST models. We try five settings on
Speech Translation. The Pipeline model cascades
an ASR and an MT model. For the ASR model,
we use an end-to-end speech recognition model
similar to LAS and trained on CCMT 2019-BSTC.
For the MT model, we use open source toolkit
OpenNMT (Klein et al., 2017) to train an NMT
model. The end-to-end model (described in section
2) does not make any use of source language
transcripts. The pre-trained model is the same as
the end-to-end model, but its encoder is initialized
with a pre-trained ASR model. And the pre-
trained ASR model is trained using Aishell (Bu
et al., 2017), a 178 hours Chinese Mandarin speech
corpus, which has the same language as our chosen
speech translation corpus. The multitask model is a
one-to-many method, where the ASR and ST tasks
share an encoder. The Adversarial Training is the
approach proposed in this paper.

3.3 Results

Table 2 shows the result of the different models
on the validation set of CCMT 2019-BSTC. From
this result, we can find that the end-to-end methods
including pre-trained, multitask and Adversarial
Training all get results comparable to the Pipeline
model. Among them, the pre-trained model gets

the best results. Our analysis is that this model uses
a larger scale of speech corpus for pre-training,
thus introducing more information into the model.
We can see that the Adversarial Training method
can obtain 19.1 BLEU, which is an improvement
of 1.4 BLEU over the end-to-end baseline model,
and even better than the multitask method. The
multitasking approach uses transcription of source
language speech, and our proposed approach is
superior to it without using other information.

Model ST
pipeline 19.4
end-to-end 17.7
pre-trained 20.4
multitask 18.9
Adversarial Training 19.1

Table 2: BLEU scores of the speech translation
experiments

4 Conclusion

In this paper, we present the Adversarial Training
approach to improve the end-to-end speech
translation model. We applied GAN to the speech
translation task and achieved good results in the
experimental results. Since GAN’s structure is
used, this method can be applied to any end-to-
end speech translation model. Unlike the multitask,
pre-trained, and knowledge distillation previously
proposed, this method requires the use of additional
parallel corpus, which is very expensive to collect.
In the future, we will experiment with unpaired text
in order to be able to use this method to utilize an
infinite amount of spoken text.
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Abstract

In many practical applications, neural machine
translation systems have to deal with the input
from automatic speech recognition (ASR) sys-
tems which may contain a certain number of
errors. This leads to two problems which de-
grade translation performance. One is the dis-
crepancy between the training and testing data
and the other is the translation error caused
by the input errors may ruin the whole trans-
lation. In this paper, we propose a method to
handle the two problems so as to generate ro-
bust translation to ASR errors. First, we sim-
ulate ASR errors in the training data so that
the data distribution in the training and test is
consistent. Second, we focus on ASR errors
on homophone words and words with similar
pronunciation and make use of their pronunci-
ation information to help the translation model
to recover from the input errors. Experiments
on two Chinese-English data sets show that
our method is more robust to input errors and
can outperform the strong Transformer base-
line significantly.

1 Introduction

In recent years, neural machine translation (NMT)
has achieved impressive progress and has shown su-
periority over statistical machine translation (SMT)
systems on multiple language pairs (Sennrich et al.,
2016). NMT models are usually built under the
encoder-decoder architecture where the encoder
produces a representation for the source sentence
and the decoder generates target translation from
this representation word by word (Cho et al.,
2014; Sutskever et al., 2014; Gehring et al., 2017;
Vaswani et al., 2017). Now NMT systems are
widely used in real world and in many cases they
receive as input the result of the automatic speech
recognition (ASR) system.

Despite the great success, NMT is subject to
orthographic and morphological errors which can

be comprehended by human (Belinkov and Bisk,
2017). Due to the auto-regression of decoding pro-
cess, translation errors will be accumulated along
with the generated sequence. Once a translation
error occurs at the beginning, it will lead to a totally
different translation. Although ASR technique is
mature enough for commercial applications, there
are still recognition errors in their output. These
errors from ASR systems will bring about transla-
tion errors even totally meaning drift. As the in-
creasing of ASR errors, the translation performance
will decline gradually (Le et al., 2017). Moreover,
the training data used for NMT training is mainly
human-edited sentence pairs in high quality and
thus ASR errors in the input are always unseen in
the training data. This discrepancy between train-
ing and test data will further degrade the translation
performance. In this paper, we propose a robust
method to address the above two problems intro-
duced by ASR input. Our method not only tries to
keep the consistency of the training and test data
but to correct the input errors introduced by ASR
systems.

We focus on the most widely existent substitu-
tion errors in ASR results which can be further dis-
tinguished into wrong substitution between words
with similar pronunciation and wrong substitution
between the words with the same pronunciation
(known as homophone words). Table 1 shows
Chinese-to-English translation examples of these
two kinds of errors. Although only one input word
changes in the given three source sentences, their
translations are quite different. To keep the con-
sistency between training and testing, we simulate
these two types of errors and inject them into the
training data randomly. To recover from ASR er-
rors, we integrate the pronunciation information
into the translation model to recover the two kinds
of errors. For words with similar pronunciation(we
name it as Sim-Pron-Words ), we first predict the
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Gold input 这 份 礼 物 饱 含 一 份 深深深 情情情.
zhè fèn lı̌ wù bǎo hán yı̄ fèn shēn qı́ng.

ASR-HM 这 份 礼 物 饱 含 一 份 申申申 请请请.
zhè fèn lı̌ wù bǎo hán yı̄ fèn shēn qı̌ng.

ASR-SP 这 份 礼 物 饱 含 一 份 心心心 情情情.
zhè fèn lı̌ wù bǎo hán yı̄ fèn xı̄n qı́ng.

Reference This gift is full of affection.
Trans-HM This gift contains an application.
Trans-SP This gift is full of mood.

Table 1: A Chinese-English translation example with ASR errors. “ASR-HM” gives an input sentence with ASR
errors on homophone words and “Trans-HM” shows its translation. “ASR-SP” gives an input sentence with ASR
errors on words with similar pronunciation and “Trans-SP” denotes its translation.

true pronunciation and then integrate the predicted
pronunciation into the translation model. For ho-
mophone words, although the input characters are
wrong, the pronunciation is correct and can be used
to assistant translation. In this way, we get a two-
stepped method for ASR inputted translation. The
first step is to get a training data close to the practi-
cal input, so that they can have similar distribution.
The second step is to smooth ASR errors according
to the pronunciation.

We conducted experiments on two Chinese-to-
English data sets and added noise to the test data
sets at different rates. The results show that our
method can achieve significant improvements over
the strong Transformer baseline and is more robust
to input errors.

2 Background

As our method is based on the self-attention
based neural machine translation model (Trans-
former) (Vaswani et al., 2017), we will first in-
troduce Transformer briefly before introducing our
method.

2.1 Encoder and Decoder
Encoder The encoder consists of 6 identical lay-
ers. Each layer consists of two sub-layers: self-
attention followed by a position-wise fully con-
nected feed-forward layer. It uses residual con-
nections around each of the sub-layers, followed
by layer normalization. The output of each sub-
layer is LayerNorm(x + Sublayer(x)), where
Sublayer(x) is the function carried out by the sub-
layer itself. The input sequence x is fed into these
two sub-layers, then we can get the hidden state
sequence of the encoder:

h = (h1,h2, . . . ,hj)

where j denotes the length of the input sentence.

Decoder The decoder shares a similar structure
with the encoder, which also consists of 6 lay-
ers. Each layer has three sub-layers: self-attention,
encoder-decoder attention and a position-wise feed-
forward layer. It also employs a residual connec-
tion and layer normalization at each sub-layer. The
decoder uses masking in its self-attention to pre-
vent a given output position from incorporating
information about future output positions during
training.

2.2 Attention
The attention mechanism in Transformer is the so-
called scaled dot product attention which uses the
dot-product of the query and keys to present the
relevance of the attention distribution:

a = softmax(
QKT

√
dk

) (1)

where the dk is the dimensions of the keys. Then
the weighted values are summed together to get the
final results:

t =
∑

(a�V) (2)

Instead of performing a single attention function
with a single version of queries, keys and values,
multi-head attention mechanism get h different ver-
sions of queries, keys and values with different
projection functions:

Qi,Ki,Vi = QWQ
i ,KWK

i ,VWV
i , i ∈ [1, h]

(3)
where Qi,Ki,Vi are the query , key and value
representations of the i-th head respectively.
WQ

i ,W
K
i ,W

V
i are the transformation matrices.

h is the number of attention heads. h attention
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Figure 1: The illustration of our method. “HM” stands for substitution errors between homophone words and “SP”
stands for substitution errors between the words with similar pronunciation. The elements in blue boxes are a case
of SP errors. Those in the red boxes represent the corrected version with the help of pronunciation information.

Error type Rate

Ground Truth -
语 音 翻 译.
yǔ yı̄n fān yı̀.

Substitution 6.4%
语 音 翻 一.
yǔ yı̄n fān yı̄.

Deletion 2.3%
音 翻 译.
yı̄n fān yı̀.

Insertion 0.7%
语 音 翻 了.
yǔ yı̄n fān le .

Table 2: Word error rate (WER) against all the words
for the three types of ASR errors.

functions are applied in parallel to produce the out-
put states ui. Finally, the outputs are concatenated
to produce the final attention:

t = Concat(t1, ..., th) (4)

3 The Proposed Method

Although ASR is mature for commercial applica-
tions, there are still recognition errors in the result
of ASR. The ASR recognition errors can be clas-
sified into three categories: substitution, deletion
and insertion, which are shown in Table 2. We
counted the word error rate (WER) for the three
types of errors respectively on our in-house data
set, which consists of 100 hours of Chinese speech
across multiple domains. The results in Table 2
gives the ratio of the wrong words against the to-
tal words. We can see that the substitution errors

are the main errors which is consistent with the
results in Mirzaei et al. 2016. Other researchers
have proven that over 50% of the machine transla-
tion errors are associated with substitution errors
which have a greater impact on translation quality
than deletion or insertion errors (Vilar et al., 2006;
Ruiz and Federico, 2014). Substitution errors can
be further divided into two categories: substitu-
tion between the words with similar pronunciation
(denoted as SP errors) and substitution between
homophone words (denoted as HM errors). Based
on these conclusions, we focus on these two kinds
of substitution errors in this paper. In what follows
we will take Chinese as an example to introduce
our method and our method can also be applied to
many other languages in a similar way.

Our method aims to improve the robustness of
NMT to ASR errors. To this end, our method first
constructs a training data set which has a similar
data distribution with the test data, then makes use
of pronunciation information to recover from the
SP errors and HM errors. Specifically, our method
works in a flow of three steps as

1. adding SP errors and HM errors in the training
data randomly to simulate ASR errors occur-
ring in test;

2. predicting the true pronunciation for SP er-
rors and amending the pronunciation to the
predicted results;

3. integrating pronunciation information into the
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word semantic to assistant the translation of
HM errors as homophone words always have
the pronunciation.

Figure 1 illustrate the architecture of our method.
Note that the above three steps must be cascaded

which means we always first try to correct the pro-
nunciation information for SP errors and then use
the corrected pronunciation information to play a
part in the translation for HM errors. We will in-
troduce the three steps in details in the following
sections.

3.1 Simulating ASR errors in Training
We process source words one by one by first decid-
ing whether to change it to ASR noise at a certain
probability p ∈ [0, 1], and if yes, then selecting
one word to substitute the source word according
to the word frequency of the training data. Given
a source word x, we first collect its SP word set
Vsp(x) and HM word set Vhm(x), then sample
from a Bernoulli distribution with a probability
p to substitute it with a noise:

rx ∼ Bernoulli(p) (5)

where rx ∈ {0, 1} is the output of the Bernoulli
distribution and p ∈ [0, 1] is the probability that
the Bernoulli distribution outputs 1. When rx is 1,
we go to the next step to substitute x. Next, we can
select a word to substitute x from a word set V(x)
at a probability as

p(x) =
Count(x)∑

x′∈V(x)\{x}
Count(x′)

(6)

where Count(x) stands for the count that the word
x occurs in the training data, and V(x) can be
Vsp(x), Vhm(x) or Vsp(x) ∪ Vhm(x) depending
on whether we want to simulate SP errors, HM
errors or mixture. To get the training data with the
data distribution consistent with the ASR input, we
sample words from Vsp(x) ∪ Vhm(x).

3.2 Amending Pronunciation for SP Errors
In Chinese, the Pinyin word is used to represent
the pronunciation of the word and a Pinyin word
usually consists of several Pinyin letters. For exam-
ple, in Table 2, the Pinyin word for the word “语”
is “yǔ” and it has two Pinyin letters as “y” and “ǔ”.
According to the pronunciation, one Pinyin word
can be divided into two parts: the initial, which
usually only contains the first Pinyin letter, and the

final, which usually contains the rest Pinyin letters.
We looked into our in-house ASR results and found
that most SP errors are caused by the wrong initial.
Besides, Chinese Pinyin has fixed combinations of
the initial and the final, and hence given a final,
we can get all possible initials that can occur to-
gether with the final in one Pinyin word. In this
sense, for an SP error, we can draw the distribution
over all the possible initials to predict the correct
Pinyin word. With the distribution, we can amend
the embedding of the Pinyin word to the correct
one.

Formally, given a source sentence x =
(x1, . . . , xJ), we use u = (u1, . . . , uJ) to denote
its Pinyin word sequence and use ujk to denote
the k-th Pinyin letter in the Pinyin word uj . For a
Pinyin word uj , we represent its initial as

uini
j = uj1 (7)

and represent its final as

ufin
j = [uj2, . . . , ujKj

] (8)

where Kj is the number of Pinyin letters of uj . We
also maintain an embedding matrix for the Pinyin
words and the Pinyin letters, respectively. Then we
can get the embedding for the final ufin

j by adding
all the embedding of its Pinyin letters as

E[ufin
j ] =

Kj∑

k=2

(E[ujk]) (9)

where E[·] means the corresponding embedding of
the input. As SP errors usually result from wrong
initials, we predict the probability of the true initial
according to the co-occurrence with the immedi-
ately previous Pinyin word uj−1 and the right after
Pinyin word uj+1. Then we can draw the distribu-
tion over all the possible initials for uj as

pini ∼ softmax(gini(E[uj−1] +E[ufin
j ] +E[uj+1]))

(10)
where gini(·) is a linear transformation function.
Then we use the weighted sum of the embedding
of all the possible initials as the true embedding of
uini
j as

E[uini
j ] =

∑

l∈V ini(uj)

pini(l) ∗E[l] (11)

where V ini(uj) denotes the letter set which can
be used as the initial of uj and pini(l) denotes the
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predicted probability for the Pinyin letter l in Equa-
tion 10. Then we can update the embedding of uj
based on the amended Pinyin letter embedding as

E[uj ] = g(E[uj ],E[uini
j ],E[ufin

j ]) (12)

where g(.) is a linear transformation function.

3.3 Amending Encoding for HM Errors
For HM errors, although the source word is not
correct, the Pinyin word is still correct. Therefore,
the Pinyin word can be used to provide additional
true information about the source word. Specifi-
cally, we integrate the embedding of Pinyin words
into the final output of the encoder, denoted as
h = (h1, . . . ,hJ), to get an advanced encoding
for each source word. This is implemented via a
gating mechanism and we calculate the gate λj for
the j-th source word as

λj = Wλ tanh (Whhj +WuE[uj ]) (13)

where Wλ, Wh and Wu are weight matrices.
With the gate, we update the hidden state hj to

hj = λj ∗ hj + (1− λj) ∗E[uj ] (14)

Then the updated hidden states of source words
are fed to the decoder for the calculation of atten-
tion and generation of target words.

4 Experiments

4.1 Data Preparation
We evaluated our method on two Chinese-English
data sets which are from the NIST translation task
and WMT17 translation task, respectively. For the
NIST translation task, the training data consists of
about 1.25M sentence pairs from LDC corpora with
27.9M Chinese words and 34.5M English words re-
spectively 1. We used NIST 02 data set as the devel-
opment set and NIST 03, 04, 05, 06, 08 sets as the
clean test sets which don’t have ASR errors in the
source side. For the WMT17 translation task, the
training data consists of 9.3M bilingual sentence
pairs obtained by combing the CWMT corpora and
News Commentary v12. We use the newsdev2017
and newstest2017 as our development set and clean
test set, respectively.

For both of these two corpus, we tokenized and
truecased the English sentences using the Moses

1The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

scripts2. Then 30K merging operations were per-
formed to learn byte-pair encoding(BPE) (Sennrich
et al., 2015). As for the Chinese data, we split the
sentence into Chinese chars. We use the Chinese-
Tone3 tool to convert Chinese characters into their
Pinyin counterpart without tones.

Then we apply the method mentioned in the sec-
tion 3.1 to add SP errors, HM errors or both to the
clean training set to get three kinds of noisy data.
We have also set the substituting probability p to
0.1, 0.2 and 0.3 to investigate the impacts of the
ASR errors in the training set. Considering that
there is no public test sets simulating the substitu-
tion errors of ASR, we also crafted another three
noisy test sets based on the clean sets with different
amount of HM errors and SP errors in each source
side sentence to test the robustness of the NMT
model. We try our best to make these noisy test
sets be close to the results of ASR, so that it can
check the ability of our proposed method in the
realistic speech translation scenario.

4.2 Training Details
We evaluate the proposed method on the Trans-
former model and implement on the top of an open-
source toolkit Fairseq-py (Edunov et al., 2017). We
follow (Vaswani et al., 2017) to set the configura-
tions and have reproduced their reported results on
the Base model. All the models were trained on a
single server with eight NVIDIA TITAN Xp GPUs
where each was allocated with a batch size of 4096
tokens. Sentences longer than 100 tokens were re-
moved from the training data. For the base model,
we trained it for a total of 100k steps and save a
checkpoint at every 1k step intervals. The single
model obtained by averaging the last 5 checkpoints
were used for measuring the results.

During decoding, we set beam size to 5, and
length penalty α=0.6 (Wu et al., 2016). Other train-
ing parameters are the same as the default configu-
ration of the Transformer model. We report case-
sensitive NIST BLEU (Papineni et al., 2002) scores
for all the systems. For evaluation, we first merge
output tokens back to their untokenized representa-
tion using detokenizer.pl and then use multi-bleu.pl
to compute the scores as per reference.

4.3 Main Results
The main results are shown in the Table 3 and Ta-
ble 5 (Row1 and Row4). It shows that our propoed

2http://www.statmt.org/moses/
3https://github.com/letiantian/ChineseTone
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System p Clean
Noise

1 Sub 2 Subs 3 Subs Ave.

Baseline - 45.21 43.63 42.24 41.33 42.40

Our Method
0.1 45.15 44.64 44.23 43.87 44.24
0.2 45.13 44.83 44.41 44.12 44.45
0.3 44.95 44.68 44.45 44.09 44.40

Table 3: Case-sensitive BLEU scores of our approaches on thec NIST clean test set (average bleu score on nist03,
nist04, nist05, nist06) and three artificial noisy test sets (1 Sub, 2 Subs and 3 Subs) which are crafted by randomly
substituting one, two and three original characters of each source sentence in the clean test set with HM errors or
SP errors, respectively. p is the substitution rate.

System p Clean
Noise
Ave.

Baseline - 45.21 42.40
+SP Amendment 0.2 45.20 43.55
+HM Amendment 0.2 45.30 43.77
+Both Amendment 0.2 45.13 44.45

Table 4: Results of the ablation study on the NIST
data. “+SP Amendment”, “+HM Amendmen” and
“+Both Amendment” represents the model only with
the amending pronunciation for SP errors, amending
errors for HM errors and with amending pronunciation
for both of these two kinds of errors, respectively.

System p Clean Noise

Baseline - 23.11 20.23
+SP Amendment 0.2 23.08 22.12
+HM Amendment 0.2 23.09 22.23
+Both Amendment 0.2 23.13 22.67

Table 5: Comparison of “+SP Amendment”, “+HM
Amendmen” and “+Both Amendment” on the WMT17
ZH→EN dataset.

model significantly outperforms the baseline model
on the noisy test sets on both of the NIST and
WMT17 translation tasks. Furthernmore, we got
the following conclusions:

First, the baseline model performs well on the
clean test set, but it suffers a great performance
drop on the noisy test sets, which indicates that the
conventional NMT is indeed fragile to permuted in-
puts, which is consistent with prior work (Belinkov
and Bisk, 2017; Cheng et al., 2018).

Second, the results of our proposed method show
that our model can not only get a competitive per-
formance compared to the baseline model on the
clean test set, but also outperform all the baseline
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Figure 2: Training cost of the baseline model (blue
dots) and our proposed method (red dots).

models on the noisy tests. Moreover, our proposed
method doesn’t drop so much on the noisy test sets
as the ASR errors increase, which proves that our
proposed method is more robust to the noisy inputs
after we make use of the pronunciation features to
amend the representation of the input tokens for
the SP errors and HM errors.

Last, we find that our method works best when
the hyper-parameter p was set to 0.2 in our experi-
ments. It indicates that the different noise sampling
methods have different impacts on the final results.
Too few or too much ASR errors simulated in the
training data both can’t make the model achieve
the best performance in practice. This finding can
guide us to better simulate the noisy data, thus
helping us train a more robust model in the future
work.

4.4 Ablation Study

In order to further understand the impact of the
components of the proposed method, we performed
some further studies by training multiple versions
of our model by removing the some components of
it. The first one is just with the amending pronunci-
ation for SP errors. The second one is just with the
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amending errors for HM error. The overall results
are shown in the Table 4 and Table 5.

The “+SP Amendment” method also improve
the robustness and fault tolerance of the model. It
is obvious that in all the cases, our proposed Sim-
Pron-Words model outperforms baseline system by
+1.15 and + 1.89 BLEU. which indicates that it
can also greatly enhance the anti-noise capability
of the NMT model.

The “+HM Amendmen” method provides further
robustness improvements compared to the base-
line system on all the noisy test sets. The results
show that the model with SP amendment achieves
a further improvement by an average of +1.37 and
+2.00 BLEU on the NIST and WMT17 noisy test
sets respectively. In addition, it has also achieved a
performance equivalent to baseline on the clean test
sets. It demonstrates that homophones feature is an
effective input feature for improving the robustness
of Chinese-sourced NMT.

Eventually, as expectecd, the best performance is
obtained with the simultaneous use of all the tested
elements, proving that these two features can coop-
erate with each other to improve the performance
further.

4.5 Training Cost
We also investigate the training cost of our pro-
posed method and the baseline system. The loss
curves are shown in the Figure 2. It shows that
the training cost of our model is higher than the
baseline system, which indicates that our proposed
model may take more words into consideration
when predicting the next word, because it aggregate
the pronunciation information of the source side
character. Thus we can get a higher BLEU score
on the test sets than the baseline system, which will
ignore some more appropriate word candidates just
without the pronunciation information. The train-
ing loss curves and the BLEU results on the test
sets show that our approach effectively improves
the generalization performance of the conventional
NMT model trained on the clean training data.

4.6 Effect of Source Sentence Length
We also evaluate the performance of our proposed
method and the baseline on the noisy test sets with
different source sentence lengths. As shown in
Figure 3, the translation quality of both systems is
improved as the length increases and then degrades
as the length exceeds 50. Our observation is also
consistent with prior work (Bahdanau et al., 2014).
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Figure 3: Effect of source sentence lengths of noisy
input.

These curves imply that more context is helpful
to noise disambiguation. It also can be seen that
our robust system outperforms the baseline model
on all the noisy test sets in each length interval.
Besides, the increasing number of the error in the
source sentence doesn’t degrade the performance
of our proposed model too much, indicating the
effectiveness of our method.

4.7 A Case Study

In Table 6, we provide a realistic example to illus-
trate the advantage of our robust NMT system on
erroneous ASR output. For this case, the syntactic
structure and meaning of the original sentence are
destroyed since the original character “数” which
means digit is misrecognized as the character “书”
which means book. “数” and “书” share the same
pronunciation without tones. Human beings gener-
ally have no obstacle to understanding this flawed
sentence with the aid of its correct pronunciation.
The baseline NMT system can hardly avoid the
translation of “书” which is a high-frequency char-
acter with explicit word sense. In contrast, our
robust NMT system can translate this sentence cor-
rectly. We also observe that our system works well
even if the original character “数” is substituted
with other homophones, such as “舒” which means
comfortable. It shows that our system has a pow-
erful ability to recover the minor ASR error. We
consider that the robustness improvement is mainly
attributed to our proposed ASR-specific noise train-
ing and Chinese Pinyin feature.

5 Related Work

It is necessary to enhance the robustness of machine
translation since the ASR system carries misrec-
ognized transcriptions over into the downstream
MT system in the SLT scenario. Prior work at-
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Speech 该 数数数 字 已 经 大 幅 下 降 近 一 半。
gāi shù zı̀ yı̌ jı̄ng dà fú xià jiàng jı̀n yı̄ bàn。

ASR 该 书书书 字 已 经 大 幅 下 降 近 一 半。
gāi shū zı̀ yı̌ jı̄ng dà fú xià jiàng jı̀n yı̄ bàn。

Ref The figure has fallen sharply by almost half.
Baseline The book has fallen by nearly half.
Our Approach The figure has fallen by nearly half.

Table 6: For the same erroneous ASR output, translations of the baseline NMT system and our robust NMT
system.

tempted to induce noise by considering the realistic
ASR outputs as the source corpora used for train-
ing MT systems (Peitz et al., 2012; Tsvetkov et al.,
2014). Although the problem of error propagation
could be alleviated by the promising end-to-end
speech translation models (Serdyuk et al., 2018;
Bérard et al., 2018). Unfortunately, there are few
training data in the form of speech paired with text
translations. In contrast, our approach utilizes the
large-scale written parallel corpora. Recently, Sper-
ber et al. (2017) adapted the NMT model to noise
outputs from ASR, where they introduced artifi-
cially corrupted inputs during the training process
and only achieved minor improvements on noisy
input but harmed the translation quality on clean
text. However, our approach not only significantly
enhances the robustness of NMT on noisy test sets,
but also improves the generalization performance.

In the context of NMT, a similar approach was
very recently proposed by Cheng et al. (2018),
where they proposed two methods of construct-
ing adversarial samples with minor perturbations
to train NMT models more robust by supervising
both the encoder and decoder to represent simi-
larly for both the perturbed input sentence and its
original counterpart. In contrast, our approach has
several advantages: 1) our method of construct-
ing noise examples is efficient yet straightforward
without expensive computation of words similar-
ity at training time; 2) our method has only one
hyper-parameter without putting too much effort
into performance tuning; 3) the training of our ap-
proach performs efficiently without pre-training of
NMT models and complicated discriminator; 4) our
approach achieves a stable performance on noise
input with different amount of errors.

Our approach is motivated by the work of NMT
incorporated with linguistic input features (Sen-
nrich and Haddow, 2016). Chinese linguis-
tic features, such as radicals and Pinyin, have

been demonstrated effective to Chinese-sourced
NMT (Liu et al., 2019; Zhang and Matsumoto,
2017; Du and Way, 2017) and Chinese ASR (Chan
and Lane, 2016). We also incorporate Pinyin as an
additional input feature in the robust NMT model,
aiming at improving the robustness of NMT fur-
ther.

6 Conclusion

Voice input has become popular recently and as
a result, machine translation systems have to deal
with the input from the results of ASR systems
which contains recognition errors. In this paper we
aim to improve the robustness of NMT when its
input contains ASR errors from two aspects. One
is from the perspective of data by adding simulated
ASR errors to the training data so that the training
data and the test data have a consistent distribution.
The other is from the perspective of the model itself.
Our method takes measures to handle two types of
the most widely existent ASR errors: substitution
errors between the words with similar pronunci-
ation (SP errors) and substitution errors between
homophone words (HM errors). For SP errors, we
make use of the context pronunciation information
to correct the embedding of Pinyin words. For HM
errors, we use pronunciation information directly
to amend the encoding of source words. Experi-
ment results prove the effectiveness of our method
and the ablation study indicates that our method
can handle both the types of errors well. Experi-
ments also show that our method is stable during
training and more robust to the errors.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

22



Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion. In Proc. ICLR.

Alexandre Bérard, Laurent Besacier, Ali Can Ko-
cabiyikoglu, and Olivier Pietquin. 2018. End-to-end
automatic speech translation of audiobooks. In Proc.
ICASSP.

William Chan and Ian Lane. 2016. On online
attention-based speech recognition and joint man-
darin character-pinyin training. In Proc. Inter-
speech.

Yong Cheng, Zhaopeng Tu, Fandong Meng, Junjie
Zhai, and Yang Liu. 2018. Towards robust neural
machine translation. In Proc. ACL, pages 1756–
1766.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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Abstract

Autoregressive neural machine translation
(NMT) models are often used to teach non-
autoregressive models via knowledge distilla-
tion. However, there are few studies on im-
proving the quality of autoregressive trans-
lation (AT) using non-autoregressive trans-
lation (NAT). In this work, we propose a
novel Encoder-NAD-AD framework for NMT,
aiming at boosting AT with global informa-
tion produced by NAT model. Specifically,
under the semantic guidance of source-side
context captured by the encoder, the non-
autoregressive decoder (NAD) first learns to
generate target-side hidden state sequence in
parallel. Then the autoregressive decoder
(AD) performs translation from left to right,
conditioned on source-side and target-side hid-
den states. Since AD has global informa-
tion generated by low-latency NAD, it is more
likely to produce a better translation with
less time delay. Experiments on WMT14
En⇒De, WMT16 En⇒Ro, and IWSLT14
De⇒En translation tasks demonstrate that our
framework achieves significant improvements
with only 8% speed degeneration over the au-
toregressive NMT.

1 Introduction

Neural machine translation (NMT) based on
encoder-decoder framework has gained rapid
progress over recent years (Sutskever et al., 2014;
Bahdanau et al., 2015; Wu et al., 2016; Gehring
et al., 2017; Vaswani et al., 2017; Zhang and Zong,
2020). All these high-performance NMT models
generate target languages from left to right in an
autoregressive manner. An obvious limitation of
autoregressive translation (AT) is that the inference
process can hardly be parallelized, and the infer-
ence time is linear with respect to the length of the
target sequence.

To speed up the inference of machine translation,

Encoder NAD AD AD AD AD
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...

1y'

' ' ' '
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y y y y
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2y 3y ny

1y 2y 1ny

Figure 1: Decoding illustration of our proposed
Encoder-NAD-AD framework including an encoder,
non-autoregressive decoder (NAD) and autoregressive
decoder (AD).

non-autoregressive translation (NAT) models have
been proposed, which generate all target tokens
independently and simultaneously (Gu et al., 2017;
Lee et al., 2018; Kaiser et al., 2018; Libovický and
Helcl, 2018). Although NAT is successfully trained
with the help from an AT model as its teacher via
knowledge distillation (Kim and Rush, 2016), there
is no work focusing on improving the quality of
AT using NAT. Therefore, a natural question arises,
can we boost AT with NAT?

In this paper, we propose a novel and effec-
tive Encoder-NAD-AD framework for NMT, in
which the newly added non-autoregressive decoder
(NAD) can provide target-side global information
when autoregressive decoder (AD) translates, as
illustrated in Figure 1. Briefly speaking, the en-
coder is first used to encode the source sequence
into a sequence of vector representations. NAD
then reads the encoder representations and gener-
ates a coarse target sequence in parallel. Given
the source-side and target-side contexts separately
captured by the encoder and NAD, AD learns to
generate final translation token by token.

Our proposed model can fully combine
two major advantages compared to previous
work (Vaswani et al., 2017; Xia et al., 2017). On
the one hand, due to the lower latency during in-
ference of NAT, the decoding efficiency of our
proposed framework is only slightly lower than
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Figure 2: The extended Transformer translation model
that exploits global information produced by NAT. We
omit the residual connection and layer normalization in
each sub-layer for simplicity.

the standard NMT models, as shown in Figure 1.
On the other hand, since AD can asses the global
target-side context provided by NAD, it has the
potential to generate a better translation by fully
exploiting source-side and target-side contexts. We
conduct massive experiments on WMT14 En⇒De,
WMT16 En⇒Ro and IWSLT14 De⇒En transla-
tions tasks. Experimental results demonstrate that
our proposed model achieves substantial improve-
ments with only 8% degradation in decoding effi-
ciency compared to the standard NMT.

2 The Framework

Our goal in this work is to improve autoregres-
sive NMT using the non-autoregressive model with
lower latency during inference. Figure 2 shows
the model architecture of the proposed framework.
Next, we will detail individual components and
introduce an algorithm for training and inference.

2.1 The Neural Encoder

The neural encoder of our model is identical to that
of the dominant Transformer model, which is mod-
eled using the self-attention network. The encoder
is composed of a stack of N identical layers, each
of which has two sub-layers:

h̃l = LN(hl−1 +MHAtt(hl−1, hl−1, hl−1))

hl = LN(h̃l + FFN(h̃l))
(1)

where the superscript l indicates layer depth, hl

denotes the source hidden state of l-th layer, LN is
layer normalization, FFN means feed-forward net-
works, and MHAtt denotes the multi-head attention

mechanism (Vaswani et al., 2017).

2.2 Non-Autoregressive Decoder

We initialize the non-autoregressive decoder inputs
using copied source inputs from the encoder side by
the fertility mechanism (Gu et al., 2017). For each
layer in non-autoregressive decoder, the lowest sub-
layer is the unmasked multi-head self-attention net-
work, and it also uses residual connections around
each of the sublayers, followed by layer normaliza-
tion.

zl1 = LN(zl−1 +MHAtt(zl−1, zl−1, zl−1)) (2)

The second sub-layer is a positional attention. We
follow (Gu et al., 2017) and use the positional en-
coding p as both query and key and the decoder
states as the value:

zl2 = LN(zl1 +MHAtt(zl1, p
l, pl)) (3)

The third sub-layer is Enc-NAD cross-attention
that integrates the representation of corresponding
source sentence, and the fourth sub-layer is a FFN:

zl3 = LN(zl2 +MHAtt(zl2, h
N , hN ))

zl = LN(zl3 + FFN(zl3))
(4)

where hN is the source hidden state of top layer.

2.3 Autoregressive Decoder

For each layer in autoregressive decoder, the lowest
sub-layer is the masked multi-head self-attention
network:

sl1 = LN(sl−1 +MHAtt(sl−1, sl−1, sl−1)) (5)

The second sub-layer is NAD-AD cross-attention
that integrates non-autoregressive sequence context
into autoregressive decoder:

sl2 = LN(sl1 +MHAtt(sl1, z
N , zN )) (6)

In addition, the decoder both stacks Enc-AD cross-
attention and FFN sub-layers to seek task-relevant
input semantics to bridge the gap between the input
and output languages:

sl3 = LN(sl2 +MHAtt(sl2, h
N , hN ))

sl = LN(sl3 + FFN(sl3))
(7)

2.4 Training and Inference

Given a set of training examples {x(z), y(z)}Zz=1,
the training algorithm aims to find the model param-
eters that maximize the likelihood of the training
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# System Architecture En⇒De En⇒Ro De⇒En
Existing NAT Systems

1 (Gu et al., 2017) NAT 17.35 26.22 -
2 (Lee et al., 2018) NAT-IR (adaptive) 18.91 - -
3 (Wang et al., 2019) NAT-AR 20.61 - 23.89

Existing AT Systems
4 (Wu et al., 2016) Google-NMT 24.60 - -
5 (Gehring et al., 2017) ConvS2S 26.36 - -
6 (Vaswani et al., 2017) Transformer 27.30 - -
7 (Xia et al., 2017) Deliberate Network 27.56 33.18 33.95

Our NMT Systems
8

this work
Transformer 27.06 32.28 32.87

9 NAT 21.25 26.60 27.06
10 Our Model 27.65↑ 33.17⇑ 34.01⇑

Table 1: Comparing with existing NMT systems on WMT14 En⇒De, WMT16 En⇒Ro, and IWSLT14 De⇒En
test sets. “↑/⇑” indicates statistically significant (p<0.05/0.01) from the Transformer baseline.

data:

J(θ) =
1

Z

Z∑

z=1

{log P (y
(z)
ad |x(z), θenc, θnad, θad)

+λ ∗ log P (ỹ
(z)
nad|x(z), θenc, θnad)}

(8)

where ỹnad is the reference of NAT, which can be
obtained from standard NMT model via sequence-
level knowledge distillation (Gu et al., 2017; Lee
et al., 2018; Wang et al., 2019), and λ is a hyperpa-
rameter used to balance the preference between the
two terms. Once our model is trained, we use the
decoding algorithm shown in Figure 1 to translate
source language with little time wasted over the
autoregressive NMT.

3 Experiments

We use 4-gram NIST BLEU (Papineni et al., 2002)
as the evaluation metric, and sign-test (Collins
et al., 2005) to test for statistical significance.

3.1 Datasets
We conduct experiments on three widely used
public machine translation corpora: WMT14
English-German2 (En⇒De), WMT16 English-
Romanian3 (En⇒Ro), and IWSLT14 German-
English4 (De⇒En), whose training sets consist
of 4.5M, 600K, 153K sentence pairs, respec-
tively. We employ 37K, 40K, and 10K shared
BPE (Sennrich et al., 2016) tokens for En⇒De,
En⇒Ro, and De⇒en respectively. For En⇒De,

2http://www.statmt.org/wmt14/translation-task.html
3http://www.statmt.org/wmt16/translation-task.html.
4https://wit3.fbk.eu/

we use newstest2013 as the validation set and
newstest2014 as the test set. For En⇒Ro, we
use newsdev-2016 and newstest-2016 as
development and test sets. For De⇒En, we use
7K data split from the training set as the valida-
tion set and use the concatenation of dev2010,
tst2010, tst2011, and tst2012 as the test
set, which is widely used in prior works (Bahdanau
et al., 2017; Wang et al., 2019).

3.2 Model Settings

We build the described models modified from the
open-sourced tensor2tensor5 toolkit. For our pro-
posed model, we employ the Adam optimizer with
β1=0.9, β2=0.998, and ε=10−9. For En⇒De and
En⇒Ro, we use the hyperparameter settings of
base Transformer model as Vaswani et al. (2017),
whose encoder and decoder both have 6 layers,
8 attention-heads, and 512 hidden sizes. We fol-
low Gu et al. (2017) to use the same small
Transformer setting for IWSLT14 because of its
smaller dataset. For evaluation, we use argmax de-
coding for NAD, and beam search with a beam
size of k=4 and length penalty α=0.6 for AD.
We also re-implement and compare with delib-
erate network (Xia et al., 2017) based on strong
Transformer, which adopts the two-pass decoding
method and uses the autoregressive decoding man-
ner for the first decoder.

5https://github.com/tensorflow/tensor2tensor
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Models Latency Degeneration
Transformer 251ms 0%
Deliberate Network 422ms 68%
NAT 16ms (16× speedup)
Our Model 271ms 8%

Table 2: Decoding efficiency of different models. La-
tency is computed as average of per sentence decoding
time on the test set of De⇒En.

3.3 Results and Analysis

In this section, we evaluate and analyze the pro-
posed approach on En⇒De, En⇒Ro, and De⇒En
translation tasks.

Model Complexity We first compare the model
parameters and training speed in De⇒En for Trans-
former baseline, deliberate network, and our pro-
posed model, which have 10.3M, 16.3M, and
18.0M parameters, respectively. Although our
model uses more parameter than deliberate net-
work due to additional position attention network,
its training speed is significantly faster than delib-
erate network (1.8 steps/s vs. 0.7 steps/s)

Translation Quality We report the translation
performance in Table 1, from which we can make
the following conclusions: (1) Our proposed model
(row 10) significantly outperforms Transformer
baseline (row 8) by 0.59, 0.89, and 1.14 BLEU
points in three translation tasks, respectively. (2)
Compared to the existing deliberate network which
uses greedy search for the one-pass decoding, our
model can obtain a comparable performance. (3)
Our NAT model (row 9) can achieve a competitive
or even better model accuracy than previous NAT
models (rows 1-3).

Decoding Speed Table 2 shows the decoding
efficiency of different models. The deliberate net-
work achieves the translation improvement at the
cost of the substantial drop in decoding speed
(68% degeneration). However, due to the high
efficiency during inference of non-autoregressive
models (16× speedup than Transformer), the de-
coding efficiency of our proposed framework is
only slightly lower (8% degeneration) than the stan-
dard autoregressive Transformer models.

Case Study To better understand how our model
works, we present a translation example sam-
pled form De⇒En task in Table 3. The stan-
dard AT model incorrectly translates the phrase
“geschrieben sein könnte” into “may be”, and omits
word “geschrieben”. This problem is well ad-

Source ich sage dann mit meinen eigenen
worten, was zwischen diesem gerüst

::::::::::
geschrieben

:::::
sein

::::::
könnte .

Reference then i will say , in my own words
, what

:::::
could

:::
be

:::::::
written within this

framework .
AT i then say to my own words , which

::::::
may be between that framework .

NAT i i say with my own words , which

:::::
could

:::
be

:::::::
written between this scaf-

fold .
Our
Model

i then say , in my own words , what

:::::
could

::
be

:::::::
written between this frame-

work ?

Table 3: Translation examples from De⇒En task. The
italic fonts indicate the incomplete translation problem.

dressed by the Encoder-NAD-AD framework, since
AD can access the global information contained in
the draft sequence generated by NAD, and there-
fore outputs a better sentence.

4 Related Work

There are many design choices in the encoder-
decoder framework based on different types of
layers, such as RNN-based (Sutskever et al.,
2014), CNN-based (Gehring et al., 2017), and self-
attention based (Vaswani et al., 2017) approaches.
Particularly, relying entirely on the attention mech-
anism, the Transformer introduced by Vaswani et al.
(2017) can improve the training speed as well as
model performance.

In term of speeding up the decoding of the
neural Transformer, Gu et al. (2017) modified
the autoregressive architecture to directly gener-
ate target words in parallel. In past two years,
non-autoregressive and semi-autoregressive mod-
els have been extensively studied (Oord et al., 2017;
Kaiser et al., 2018; Lee et al., 2018; Libovický and
Helcl, 2018; Wang et al., 2019; Guo et al., 2018;
Zhou et al., 2019a). Previous work shows that NAT
can be improved via knowledge distillation from
AT models. In contrast, the idea of improving AT
with NAT is not well explored.

The most relevant to our proposed framework is
deliberation network (Xia et al., 2017), which lever-
ages the global information by observing both back
and forward information in sequence decoding
through a deliberation process. Recently, Zhang
et al. (2018) proposed asynchronous bidirectional
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decoding for NMT (ABD-NMT), which extended
the conventional encoder-decoder framework by
introducing a backward decoder. Different from
ABD-NMT, synchronous bidirectional sequence
generation model perform left-to-right decoding
and right-to-left decoding simultaneously and in-
teractively (Zhou et al., 2019b; Zhang et al., 2020).
Besides, Geng et al. (2018) introduced a adaptive
multi-pass decoder to standard NMT models. How-
ever, the above models improve translation quality
while greatly reducing inference efficiency.

5 Conclusion

In this work, we propose a novel Encoder-NAD-
AD framework for NMT, aiming at improving
the quality of autoregressive decoder with global
information produced by the newly added non-
autoregressive decoder. We extensively evaluate
the proposed model on three machine translation
tasks (En⇒De, En⇒Ro, and De⇒En). Compared
to existing deliberation network (Xia et al., 2017)
which suffers from serious decoding speed degra-
dation, our proposed model achieves a significant
improvement in translation quality with little degra-
dation of decoding efficiency compared to the state-
of-the-art autoregressive NMT.
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Abstract

Recently, document-level neural machine
translation (NMT) has become a hot topic in
the community of machine translation. De-
spite its success, most of existing studies ig-
nored the discourse structure information of
the input document to be translated, which
has shown effective in other tasks. In this
paper, we propose to improve document-level
NMT with the aid of discourse structure in-
formation. Our encoder is based on a hier-
archical attention network (HAN) (Miculicich
et al., 2018). Specifically, we first parse the
input document to obtain its discourse struc-
ture. Then, we introduce a Transformer-based
path encoder to embed the discourse structure
information of each word. Finally, we com-
bine the discourse structure information with
the word embedding before it is fed into the
encoder. Experimental results on the English-
to-German dataset show that our model can
significantly outperform both Transformer and
Transformer+HAN.

1 Introduction

Neural machine translation (NMT) has made great
progress in the past decade. In practical applica-
tions, the need for NMT systems has expanded
from individual sentences to complete documents.
Therefore, document-level NMT has gradually
drawn much more attention. Contextual informa-
tion is particularly important for obtaining high-
quality document translation. To get better contex-
tual information, researchers have proposed many
methods (e.g., memory network and hierarchical
attention network) for document-level translation
(Sim Smith, 2017; Tiedemann and Scherrer, 2017;
Wang et al., 2017a; Tu et al., 2017; Wang et al.,

∗This work is done when Junxuan Chen was interning at
Xiaomi AI Lab, Xiaomi Inc., Beijing, China.

†Corresponding author.

2017a; Voita et al., 2018; Zhang et al., 2018; Miculi-
cich et al., 2018; Maruf and Haffari, 2018; Maruf
et al., 2019; Yang et al., 2019). Discourse structure,
as well as raw contextual sentences, is a major com-
ponent of the document. And it has been proved
to be effective in many other tasks, such as au-
tomatic document summarization (Yoshida et al.,
2014; Isonuma et al., 2019) and sentiment classifi-
cation (Schouten and Frasincar, 2016; Nejat et al.,
2017). However, to the best of our knowledge,
discourse structure has not been explicitly used in
document-level NMT.

To address the above problem, we propose to
improve document-level NMT with the aid of dis-
course structure information. First, we represent
each input document with a Rhetorical Structure
Theory-based discourse tree (Mann and Thompson,
1988). Then, we use a Transformer-based path en-
coder to embed the discourse structure path of each
word and combine it with the corresponding word
embedding before feeding it into the sentence en-
coder. In this way, discourse structure information
can be fully exploited to enrich word representa-
tions and guide the context encoder to capture the
relevant context of the current sentence. Finally,
we adopt HAN (Miculicich et al., 2018) as our
context encoder to model context information in a
hierarchical manner.

Our contributions are as follows: (i) We pro-
pose a novel and efficient approach to explicitly ex-
ploit discourse structure information for document-
level NMT. Particularly, our approach is applicable
for any other context encoder of document-level
NMT; (ii) We carry out experiments on English-to-
German translation task and experimental results
show that our model outperforms competitive base-
lines.
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Figure 1: The architecture of our proposed encoder

2 Related Work

In the era of statistical machine translation,
document-level machine translation has become
one of the research focuses in the community of
machine translation. (Xiao et al., 2011; Su et al.,
2012; Xiao et al., 2012; Su et al., 2015). Recently,
with the rapid development of NMT, document-
level NMT has also gradually attracted people’s
attention (Voita et al., 2018; Maruf and Haffari,
2018; Miculicich et al., 2018; Maruf et al., 2019;
Yang et al., 2019). Typically, existing studies aim
to improve document-level translation quality with
the help of document context, which is usually ex-
tracted from neighboring sentences of the current
sentence. For example,some researchers applied
cache-based models to selectively remember the
most relevant context information of the document
(Voita et al., 2018; Maruf and Haffari, 2018; Kuang
et al., 2018), while some researchers employed
hierarchical context networks to catch document
context information for Transformer (Miculicich
et al., 2018; Maruf et al., 2019; Yang et al., 2019).
Specifically, Miculicich et al. (2018) proposed a
hierarchical attention network to model contextual
information, Maruf et al. (2019) applied a selective
attention method to select contextual information
that is more relevant to the current sentence, and
Yang et al. (2019) employed capsule network to
model multi-angle context information.

Although these methods have made some
progress in document-level NMT, they all ignored

the discourse structure information, which can be
used to not only enrich word embedding but also
guide the selection of relevant context for the cur-
rent sentence.

3 Our Encoder

We propose a novel document-level NMT model
based on HAN (Miculicich et al., 2018). The differ-
ence between ours and HAN lies in that we intro-
duce the RST-based discourse structure to represent
the document-level context, which is incorporated
into HAN to refine translation.

Figure 1 gives the architecture of our proposed
encoder. In addition to the standard encoder for
the current sentence, it contains HAN (Miculicich
et al., 2018) as context encoder, and a novel path
encoder for the discourse structure. We first use
the Transformer-based path encoder to model dis-
course structure information. Then, we combine
the embedding of each input word with its cor-
responding path embedding vector and feed the
combined vector into the sentence encoder. Finally,
we use the hierarchical attention network to cap-
ture the global contextual embedding and update
the hidden states of current sentence as the final
output of the whole encoder.

In our model, the translation of a document is
made by translating each of its sentences sequen-
tially. We introduce discourse structure for both the
current sentence and contextual sentences. Given a
source document X , the translation probability of
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Figure 2: An example discourse tree of with six EDUs. N and S denote the relative importance label NUCLEUS
and SATELLITE, respectively. Sentence 3 is the current sentence to be translated, with two previous context
sentences 1 and 2. On the tree, the path marked with dotted lines from the root node to the leaf node e5 is used to
represent the discourse structure of e5.

the target document Y can be defined as:

P (Y | X; θ) =
J∏

j=1

P (Y j | Xj , Dj , S; θ), (1)

where Xj and Y j denote the j-th source sentence
and its target translation respectively, Dj denotes
the contextual sentences, S represents the discourse
structure of the document to be translated, and θ is
the parameter set of the model.

3.1 RST-based Discourse Structure
For each document to be translated, we parse it
to obtain its discourse structure based on Rhetori-
cal Structure Theory (RST) (Mann and Thompson,
1988). RST is one of the most influential theo-
ries of document coherence. According to RST,
we represent each document with a hierarchical
tree. As shown in Figure 2, the discourse tree con-
tains some leaf nodes, each of which indicates an
Elementary Discourse Unit (EDU). The adjacent
leaf nodes are recursively connected into units by
certain coherence relations (e.g., ELABORATION,
BACKGROUND) until the entire tree is built. Be-
sides, NUCLEUS or SATELLITE is used to mark
the relative importance of child node units in the
relationship.

In this work, we represent the discourse struc-
ture information of each word using its discourse
path from root node to its corresponding leaf node.
Each path is a mixed label sequence composed
of the discourse relationship and the importance
label (e.g., NUCLEUS ELABORATION, SATEL-
LITE BACKGROUND). Please note that all to-
kens in the same EDU share the same discourse

structure. For example, the discourse structure of
EDU e5 is ”SATELLITE ELABORATION SATEL-
LITE ELABORATION SATELLITE CONTRAST”.

3.2 Discourse Structure Path Embedding

To integrate the structural information of words into
the our HAN-based document-level NMT model,
we first additionaly introduce a Transformer-based
path encoder to encode discourse structure paths
of words. Specifically, for each word wi, we di-
rectly consider its discourse structure path pi as
a sequence and then employ the path encoder to
learn its contextual hidden states, which can be
finally averaged to produce the overall discourse
embedding vector di. Then, we enrich each input
word embedding with its corresponding discourse
embedding vector before it is fed into the context
encoder or the translation encoder. Concretely, for
the word wi, we define its enriched vector as the
sum of its word embedding and discourse embed-
ding: x̃i = xi + di.

3.3 HAN-based Context Modeling

Following (2018), we apply hierarchical attention
network (HAN) as our context encoder. Due to the
advantage of accurately capturing different levels
of contexts, HAN has been widely used in many
tasks, such as document classification (Yang et al.,
2016), stance detection (Sun et al., 2018), sentence-
level NMT (Su et al., 2018b). Using this encoder,
we mainly focus on two levels of context modeling:

Sentence-level Context Modeling For the i-th
word of the current sentence, we employ muti-head
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attention (Vaswani et al., 2017) to summarize the
context from the k-th context sentence:

csi,k = MultiHead(fs(hi),Hk), (2)

where fs is a linear transformation function, hi
denotes the hidden state representation of the i-th
token of current sentence. By doing so, our con-
text encoder can exploit different types of relation
between words to better capture sentence-level con-
text. And Hk is the hidden state representation of
the k-th context sentence and is used as value and
key for attention.

Document-level Context Modeling Unlike the
above modeling, here we mainly on capturing the
context information from previous K sentences for
the i-th word of the current sentence.

cdi = FFN(MultiHead(fd(hi),CSi)), (3)

where fd is a linear transformation, and CSi =
[csi,1, csi,2, · · ·, csi,K ] is the sentence-level context
of K contextual sentences.

Integrating Document-level Context into the
Translation Encoder Finally, we integrate the
above-mentioned document-level context into the
translation encoder via a gating operation:

λi = σ(Whhi +Wcdcdi) (4)

h̃i = λihi + (1− λi)cdi (5)

where Wh and Wcd denote parameter matrices
for hi and cdi, and h̃i is the final output of the
encoder.

4 Experiments

4.1 Settings

Datasets We conduct our experiments on
English-to-German translation task. The sentence-
aligned document-delimited News Comment v11
corpus 1, the WMT16 newstest2015 and the new-
stest2016 are used as the training set, development
and test set, respectively.

We download all the above corpus from (Maruf
et al., 2019), of which statistics are provided in
Table 1.

1http://www.casmacat.eu/corpus/news-commentary.html

#Sentences Document length
Training 236,287 38.93
Development 2,169 26.78
Test 2,999 19.35

Table 1: The statistical of our datasets. #Sentence in-
dicates the number of sentences, and Document length
means the average number of sentences in document.

Settings We use Transformer (Vaswani et al.,
2017) as our context-agnostic baseline system and
Transformer+HAN (Miculicich et al., 2018) as our
context-aware baseline system. We conduct ex-
periments using the same configuration as HAN.
Specifically, both sentence encoder and decoder
are composed of 6 hidden layers, while path en-
coder is composed of 2 hidden layers. We use
three previous sentences as contextual sentences
for current sentence. The hidden size and point-
wise FFN size are 512 and 2048 respectively. The
dropout rates for all hidden states are set to 0.1.
The source and target vocabulary sizes are both
30K. At the training phase, we use the Adam opti-
mizer (Kingma and Ba, 2015) and the batch sizes of
context-agnostic model and context-aware model
are 4096 and 1024, respectively. Finally, we use
case-sensitive BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) to measure the transla-
tion quality.

Data Preprocessing All datasets are tokenized
and truecased using the scripts of Moses Toolkit
(Koehn et al., 2007). We split them into subword
units using a joint bye pair encoding model with
30K merge operations. To get discourse structure
of the input documents, we first apply the open-
source tool NeuralEDUSeg (Wang et al., 2018)
obtaining non-overlapping EDUs. Then, we em-
ploy StageDP (Wang et al., 2017b) to obtain dis-
course structure trees of segmented documents. Af-
terwards, we extract the path from root node to
leaf node as the discourse structure information for
the corresponding EDU, where all words share the
same discourse structure path.

4.2 Results and Analysis

Table 2 shows the experimental results for different
models. The sentence-level Transformer, context-
agnostic baseline, obtains a result of 22.78 BLEU
and 59.3 TER, while the context-aware baseline
Transformer+HAN (Miculicich et al., 2018) ob-
tains 24.45 BLEU and 56.9 TER. The sentence-

33



Model BLEU TER
Transformer 22.78 59.3
Transformer+DS 23.61 (+0.83) 58.5 (-0.8)
Transformer+HAN 24.45 (+1.67) 56.9 (-2.4)
Transformer+HAN+DS 24.84 (+2.06) 56.4 (-2.9)

Table 2: BLEU and TER scores for different models. The best scores are marked in bold. HAN denotes Hierarchi-
cal Attention Network which is used to get context information while DS denotes Discourse Structure information.

level Transformer integrated with discourse struc-
ture achieves an improvement of 0.83 on BLEU
and a decline of 0.8 on TER. By contrast, our
model integrated with contextual information and
discourse structure information further gains a bet-
ter performance, 2.06 higher than Transformer and
0.39 higher than Transformer+HAN on BLEU, 2.9
lower than Transformer and 0.5 lower than Trans-
former+HAN on TER.

Our experimental results show that discourse
structure features indeed provide helpful informa-
tion to enhance the translation quality of both
context-agnostic and context-aware document-
level NMT models. Please note that our approach
is also applicable to other document-level NMT
models.

5 Conclusion

This paper has presented a novel discourse
structure-based encoder for document-level NMT.
The main idea of our encoder lies in enriching the
input word embeddings with their path embeddings
based on discourse structure. Experimental results
on English-to-German translation verify the effec-
tiveness of our proposed encoder.

In the future, we plan to extend our encoder to
other NLP tasks, such as simultaneous translation.
Simultaneous translation, as well as document-
level NMT, has difficulty in modeling the long
context so that it may be effective to improve the re-
translation with the structure information modeled
by our encoder. Finally, we will focus on refin-
ing document-level NMT with variational neural
networks, which has shown effecitive in previous
studies of sentence-level NMT (Zhang et al., 2016;
Su et al., 2018a).
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Abstract
This paper describes our machine transla-
tion systems for the streaming Chinese-to-
English translation task of AutoSimTrans
2020. We present a sentence length based
method and a sentence boundary detec-
tion model based method for the stream-
ing input segmentation. Experimental re-
sults of the transcription and the ASR out-
put translation on the development data
sets show that the translation system with
the detection model based method out-
performs the one with the length based
method in BLEU score by 1.19 and 0.99 re-
spectively under similar or better latency.

1 Introduction
Automatic simultaneous machine translation
is a useful technique in many speech transla-
tion scenarios. Compared with traditional ma-
chine translations, simultaneous translation fo-
cuses on processing streaming inputs of spo-
ken language and achieving low latency trans-
lations. Two challenges have to be faced in
this task. On one hand, few parallel corpora
in spoken language domain are open available,
which leads to the fact that the translation per-
formance is not as good as in general domain.
On the other hand, traditional machine trans-
lation takes a full sentence as input so that the
latency of the translation is relatively long.

To deal with the shortage of the spoken lan-
guage corpora, we pre-train a machine transla-
tion model on general domain corpus and then
fine-tune this model with limited spoken lan-
guage corpora. We also augment the spoken
language corpora with different strategies to
increase the in-domain corpora.

In order to reduce the translation latency,
we use three sentence segmentation methods:

∗Corresponding author.

a punctuation based method, a length based
method and a sentence boundary detection
model based method. All of the methods
can split the input source sentence into short
pieces, which makes the translation model ob-
tain low latency translations.

In the streaming automatic speech recog-
nition(ASR) output track for the Chinese-
to-English translation task of AutoSimTrans
2020, most of our proposed systems outper-
form the baseline systems in BLEU score and
the sentence boundary detection model based
sentence segmentation method abstains higher
BLEU score than the length based method un-
der similar latency.

2 Task Description
We participated in the streaming Chinese-
to-English translation task of AutoSimTrans
2020 1: the streaming ASR output translation
track and the streaming transcription transla-
tion track. The two tracks are similar except
that the ASR output may contain error results
and includes no internal punctuation but end
punctuation. Table 1 shows an example of the
streaming ASR output translation.

3 Approaches
Our all systems can be divided into 3 parts:
data preprocessing, sentence segmentation
and translation. Data preprocessing includes
data cleaning, data augmentation. We imple-
ment 3 sentence segmentation methods, which
are based on punctuation, sentence length
and a sentence boundary detection model.
The training of translation model includes pre-
training out of domain and fine-tuning in do-
main.

1https://autosimtrans.github.io/shared
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Streaming ASR output Translation
大
大家
大家好
大家好欢迎 Hello everyone.
大家好欢迎大 Welcome
大家好欢迎大家
大家好欢迎大家来到 everyone
大家好欢迎大家来到这里 to come
大家好欢迎大家来到这里, here.

Table 1: An example of streaming ASR output
translations.

3.1 Data Cleaning
Noises in large-scale parallel corpus are almost
inevitable. We clean the parallel corpus for the
training. Here we mainly focus on the miss-
aligned errors in the training corpus. We find
that in the CWMT19 zh-en data set, some of
the target sentences are not in English, but in
Chinese, Japanese, French or some other noisy
form. We suspect these small noises may affect
the training of the model. Inspired by Bérard
et al. (2019), we apply a language detection
script, langid.py2, to the source and the tar-
get sentence of the CWMT19 data set sepa-
rately. Sentence pairs which are not matched
with their expected languages are deleted. The
corpus are then cleaned by the tensor2tensor3

module by default. Eventually the CWMT19
corpus are then filtered from 9,023,708 pairs
into 7,227,510 pairs after data cleaning.

3.2 Data Augmentation
Insufficiency of training data is common in spo-
ken language translation, and many data aug-
mentation methods are used to alleviate this
problem (Li et al., 2018). In the streaming
ASR output translation system, we use the ho-
mophone substitution method to augment the
training data according to the characteristics
of ASR output translation. The results of ASR
usually contain errors of homophonic substitu-
tion. We randomly replace each character in
the source language part of the training cor-
pus with probability p with its homophones to
improve the generalization ability of the sys-
tem. As shown in Table 2, we find characters

2https://github.com/saffsd/langid.py
3https://github.com/tensorflow/tensor2tensor

that are homophonic with the selected charac-
ters, sample them according to the probabil-
ity that these characters appear in the corpus,
and substitute them to the corresponding po-
sitions. The data augmentation is only used
in our MT model’s training because of the in-
sufficiency of training data in spoken language
domain.

Similarly, we randomly substitute words in
the source language sentences with the homo-
phone substitution. The result of this substi-
tution is closer to the real speech recognition
result. As shown in Table 3. We first split the
sentence in the source language into a word
sequence, determine whether to replace each
word with its homophones by probability p,
and then sample them according to the distri-
bution of homophones in a corpus. Finally we
replace to the corresponding position.

In this system, we adopt the character and
the word frequency distribution in an ASR cor-
pus, the AISHELL-2 corpus (Du et al., 2018),
and set the substitution probability p = 0.3.

3.3 Sentence Segmentation
Low latency is important to simultaneous ma-
chine translation. Our systems are closed to
low latency translation by splitting long input
word sequences into short ones. We use three
sentence segmentation methods in this work,
namely, punctuation based sentence segmen-
tation (PSS), length based sentence segmenta-
tion (LSS), and sentence boundary detection
model based sentence segmentation (MSS).

PSS In the punctuation based sentence seg-
mentation method we put the streaming input
tokens into a buffer one by one. When the in-
put token is a punctuation, the word sequence
in the buffer is translated. Then the buffer
is cleared and we put the next tokens into it.
The above procedure repeats until the end of
the streaming inputs.

LSS In our length based sentence segmenta-
tion method we put the steaming input tokens
into a buffer one by one. When the input to-
ken is a punctuation or the sequence length
in the buffer reaches a threshold L, the word
sequence in the buffer except the last word is
translated in case of the last word is an in com-
plete one. The translated part in the buffer is
then cleared and then we put the next tokens
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Original Chinese 这个 社 (she) 会 没有 信任 没法 运转
English This society society hasn’t trust it doesn’t work
Substitution 这个 设 (she) 会 没有 新人 没法 运转
English This suppose society hasn’t newcomers it doesn’t work

Table 2: A randomly selected single character (in red bold font) is substituted by its homophonic char-
acter. The corresponding pinyin is included in the bracket.

Original Chinese 这个 社会 没有 信任 (xinren) 没法 运转
English This society hasn’t trust it doesn’t work
Substitution 这个 社会 没有 新人 (xinren) 没法 运转
English This society hasn’t newcomers it doesn’t work

Table 3: A randomly selected word (in red bold font) is substituted by its homophonic word. The
corresponding pinyin is included in the bracket.

into the buffer. The above procedure repeats
until the end of the streaming inputs.

Text Label
所以我们认为免费 0So we think that free
所以我们认为免费只是暂时的 1So we think that free is only tem-
porary

Table 4: Examples of the train data set of the
model. 1: Complete sentences. 0: Incomplete sen-
tence.

MSS Apparently many translation inputs
with the LSS are incomplete sentences frag-
ments because of the“hard”sentence segmen-
tation. Here we propose a sentence bound-
ary detection model for the sentence segmenta-
tion. We build this model on the top of a pre-
training model, BERT(Devlin et al., 2018).
Our model is built by adding two layers of
full connected network to the Chinese BERT
pre-training model. The training data set is
constructed using all transcription pairs pro-
vided by the organizer. For the sentences in
transcriptions, we use a punctuation set, {, .
! ? }, as the sentence boundary indicators to
obtain complete sentences, which are used as
positive samples. And then we sample incom-
plete fragments from the above sentences uni-
formly to obtain negative samples. The ratio
of the positive sample to the negative sample
is 1 : 4. Table 4 illustrates a positive example
and a negative example. The training set is of
370k examples, the test set is of 7k examples,

and the validation set is of 7k examples. After
running 3 epochs, the model converges with
an accuracy of 92.5% in the test set.

We apply the sentence boundary detection
model to streaming ASR output translation.
The model returns the prediction to each
streaming sequence as a judgment condition
for whether it is to be translated. However,
we should not set the segmentation point at
the first position of the detection. Suppose a
detected sentence boundary position is i and
the next detected boundary position is i + 1.
This means both of the prefix word sequences
w1:i and w1:i+1 can be seen as a complete sen-
tence. Usually the boundary position i + 1 is
better than i. Generally we set a rule that po-
sition i is a sentence boundary if the sentence
boundary detection model returns true for po-
sition i and false for i + 1. In this way, the
word sequence (i.e. w1:i) is feed to the trans-
lation system when it is detected and the un-
translated part (i.e. wi+1) will be translated in
the next sentence. For example, the position
i of streaming inputs in Table 5 are detected
to boundary’s position finally only when the
position i is detected to boundary by model
while the next position i + 1 isn’t detected to
boundary by model.

3.4 Pre-training and Fine-tuning
Pre-training and fine-tuning are the most pop-
ular training methods in the field of deep learn-
ing. It has been proved that this training
mode is very effective in improving the per-
formance of the model and is very simple to
implement. Therefore, we use the CWMT19

39



Position Sentence Return of model Boundary
i − 2 她喜欢那个公司的设 False 0
i − 1 她喜欢那个公司的设计 True 0
i 她喜欢那个公司的设计师 True 1
i + 1 她喜欢那个公司的设计师因 False 0

Table 5: The examples of using model to detect boundaries. 0: Not boundary of sentence, 1: Boundary
of sentence

data set to pre-train a base-model, and then
use the speech translation data provided by
the organizer to fine-tune the model.

We first train a basic Transformer transla-
tion model with CWMT19 data set. In order
to adapt to the spoken language domain, we
directly fine-tune the pre-trained model on the
transcriptions or ASR outputs provided by the
organizer and our augmented data.

4 Experiments

4.1 Data Sets

Data Set # Sentence Pairs
CWMT19 9,023,708
Transcriptions 37,901
ASR Outputs 202,237
Development Set 956

Table 6: The size of different data sets.

We train our model with the CWMT19 zh-
en data set, the streaming transcription and
the streaming ASR output data sets provided
by the evaluation organizer. Because of the
evaluation track limit, we did not use the UN
parallel corpus and the News Commentary
corpus although they were used in the base-
line. The CWMT19 zh-en data set includes
six sub data sets: the casia2015 corpus, the
casict2011 corpus, the casict2015 corpus, the
datum2015 corpus, the datum2017 corpus and
the neu2017 corpus. The CWMT19 data set
contains totally 9,023,708 parallel sentences.
They are used in the pre-training of our model.
Streaming transcription and streaming ASR
output data sets are provided by the evalua-
tion organizer. The transcription data set con-
tains 37,901 pairs and the ASR output data
set contains 202,237 pairs. We use them as
the fine-tuning data to adapt to the spoken
language. Finally we evaluate our system on

the development set which contains 956 pairs.
The size of the data set is listed in Table 6.

4.2 System Settings
Our model is based on the transformer
in tensor2tensor. We set the param-
eters of the model as transformer_big.
And we set the parameter problem as
translate_enzh_wmt32k_rev. We train the
model on 6 RTX-Titan GPUs for 9 days. Then
we use the transcription data and the ASR out-
put data to fine-tune the model respectively
on 2 GPUs. We fine-tune the model until it
overfits.

4.3 Baseline Model
The baseline model4 (Ma et al., 2018) provided
by the evaluation organizer is trained on the
WMT18 zh-en data set, including CWMT19,
the UN parallel corpus, and the News Com-
mentary corpus. The baseline model uses
the transformer which is essentially the same
as the base model from the original paper
(Vaswani et al., 2017). It applied a Prefix-to-
Prefix architecture and Wait-K strategy to the
transformer. We test the Wait-1, Wait-3 and
the FULL model with fine-tuning on domain
data as the comparison to our system. For the
Wait-1, Wait-3 setting, the baseline fine-tunes
30,000 steps. For the FULL setting, the base-
line fine-tunes 40,000 steps.

4.4 Latency Metric: Average Lagging
Ma et al. (2018) uses Average Lagging (AL) as
the latency metric. They defined:

ALg(x, y) =
1

τg(|x|)

τg(|x|)∑

t=1

g(t) − t − 1

r
(1)

Where τg(|x|) denotes the cut-off step which
is the decoding step when source sentence fin-
ishes, g(t) denotes the number of source words

4https://github.com/autosimtrans/SimulTransBaseline
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processed by the encoder when deciding the
target word yt, and r = |x|/|y| is the target-to-
source length ratio. The lower the AL value,
the lower the delay, the better the real-time
system.

5 Results

5.1 Streaming Transcription
Translation

The results of our streaming transcription sys-
tem on the development data set are shown
in Table 7. FT-Trans indicates the fine-tuning
data set including the original transcriptions
and the transcriptions without punctuation
(i.e. the depunctuation version). LSS-L in-
dicates the system with the length based sen-
tence segmentation method and the threshold
for the length is L. PSS indicates the system
with our punctuation based sentence segmen-
tation method. MSS indicates the system with
our sentence boundary detection model based
sentence segmentation method. Wait-1, Wait-
3 and FULL indicate the different settings of
the baseline systems. Among these settings,
the best AL score is from the Wait-1 baseline
and the best BLEU score is from our PSS sys-
tem. Under similar BLEU score, LSS-17 ob-
tains better AL score than the FULL baseline.
Both of the AL and the BLEU score of the
LSS-L system grow up with L increases. The
MSS system performs better BLEU score by
1.19 than the LSS-L system under similar AL
score (i.e. MSS vs. LSS-12).

Finally we submitted the PSS setting sys-
tem because of its high BLEU score and rel-
atively low AL latency compared with the
FULL baseline.

5.2 Streaming ASR Output
Translation

The translation performances on the stream-
ing ASR output are shown in Table 8. FT-
ASR represents the systems are fine-tuned
on the combination of the ASR output and
the ASR output without punctuation. FT-
ASR+Aug represents the fine-tuning set in-
cludes the FT-ASR, the homophone substi-
tution augmented transcriptions, and their
depunctuation version. FT-ASR+Aug+Trans
represents the fine-tuning set contains the FT-
ASR+Aug and the transcriptions and their

Models Settings AL BLEU

FT-Trans

LSS-10 5.9273 17.31
LSS-11 6.3180 18.12
LSS-12 6.6932 18.36
LSS-15 7.7651 20.71
LSS-17 8.2813 21.84
PSS 10.0667 24.23
MSS 6.7249 19.55

Baseline
Wait-1 2.1014 15.07
Wait-3 5.1424 17.95
FULL 24.9331 21.65

Table 7: The translation results on the develop-
ment data set of streaming transcriptions.

depunctuation version.
As shown in Table 8, all of our systems

outperform the Wait-1, Wait-3 settings of the
baseline in BLEU score and our MSS model
outperforms the FULL baseline. As more data
is added to the fine-tuning set, the perfor-
mances of the systems will increase accord-
ingly. Both LSS-15 and PSS in FT-ASR+Aug
outperform the corresponding systems in FT-
ASR, which indicates the effectiveness of the
data augmentation. The BLEU score of LSS-
15(FT-ASR+Aug+Trans) is 2.22 higher than
LSS-15(FT-ASR) while the AL latency of for-
mer is better than the latter.

In the FT-ASR+Aug+Trans, the sentence
boundary detection model based sentence seg-
mentation, MSS, obtains higher (i.e. +0.99)
BLEU score and lower (i.e. -1.06) AL latency
than the LSS-15. The BLEU score of MSS
is lower than PSS by 1.46 but the latency is
improved by 15.88.

Compared with the results of transcription
translation of FT-Trans in Table 7, the BLEU
scores of the ASR outputs translations rela-
tively decreased. This indicates the effects of
the cascade error of the ASR systems.

The latency of the LSS in Table 7 and Ta-
ble 8 are close. The latency of PSS increased
from 10 to around 22. This indicates the lack
of punctuation in the ASR outputs.

The MSS system performs close AL latency
and less BLEU score drops in transcription
and ASR outputs translation. At last we
submitted the MSS system to the evaluation
track.

Several examples of the translation in differ-
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Models Settings AL BLEU

FT-ASR LSS-15 7.5636 13.62
PSS 22.0051 18.23

FT-ASR
+Aug

LSS-15 7.2222 14.99
PSS 21.9600 18.29

FT-ASR
+Aug
+Trans

LSS-15 7.1298 15.84
PSS 21.9557 18.29

MSS 6.0709 16.83

Baseline
Wait-1 1.0766 10.72
Wait-3 3.9692 12.75
FULL 24.0415 15.13

Table 8: The translation results on the develop-
ment data set of streaming ASR outputs.

ent systems can be seen in Appendix A.

6 Related Work

End-to-end machine translation models, such
as transformer (Vaswani et al., 2017), greatly
promote the progress of machine transla-
tion research and have been applied to
speech translation researches (Schneider and
Waibel, 2019; Srinivasan et al., 2019; Wetesko
et al., 2019). Furthermore, several end-to-end
based approaches have recently been proposed
for simultaneous translations (Zheng et al.,
2019b,a).

In order to solve the problem of insufficient
parallel corpus data for simultaneous transla-
tion tasks, Schneider and Waibel (2019) aug-
mented the available training data using back-
translation. Vial et al. (2019) used BERT pre-
training model to train a large number of ex-
ternal monolingual data to achieve data aug-
mentation. Li et al. (2018) simulated the in-
put noise of ASR model and used placehold-
ers, homophones and high-frequency words to
replace the original parallel corpus at the char-
acter level. Inspired by Li et al. (2018), we aug-
ment the training data by randomly replacing
the words in the source sentences with homo-
phones.

In order to reduce the translation latency,
Ma et al. (2018) used the Prefix-to-Prefix
architecture, which predicts the target word
with the prefix rather than the whole sequence.
Their Wait-K models are used as the baseline
and are provided by the shared task organiz-
ers. The Wait-K models start to predict the
target after the first K source words appear.

Zheng et al. (2020) applied ensemble of mod-
els trained with a set of Wait-K polices to
achieve an adaptive policy. Xiong et al. (2019)
have proposed a pre-training based segmenta-
tion method which is similar to MSS. However,
in the decoding stage, the time complex of this
method is O(n2) whereas the time complex of
MSS is O(n).

7 Conclusions

In this paper, we describe our submission sys-
tems to the the streaming Chinese-to-English
translation task of AutoSimTrans 2020. In
this system the translation model is trained on
the CWMT19 data set with the transformer
modedalvi2018incrementall. We leverage ho-
mophonic character and word substitutions to
augment the fine-tuning speech transcription
data set. We implement a punctuation based,
a length based and a sentence boundary detec-
tion model based sentence segmentation meth-
ods to improve the latency of the translation
system. Experimental results on the devel-
opment data sets show that the punctuation
based sentence segmentation obtains the best
BLEU score with a reasonable latency on the
transcription translation track. The results on
the ASR outputs translation show the effec-
tiveness of our data augmentation approaches.
And the sentence boundary detection model
based sentence segmentation gives the low la-
tency and a stable BLEU score in our all sys-
tems. However, because we have no enough
time to retrain the MT model, some settings
of our system are not consistent with the base-
line, so it is difficult to judge whether our
method is better than baseline’s method. In
the future, we will finish this comparative ex-
periment.
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A Appendices
We list several translation results to compare
our systems with the baselines on the tran-
scription translation track and the ASR out-
put translation track. As shown in Table 9
and 10, missing translation can be observed in
the Wait-K baselines and our system.

Source Reference
在他每一次比赛
都是输，甚至是倒
数第一第二名的
时候，是什么，是
什么样的力量支
撑着他一直去比
赛，一直去训练。

He has always been
ranked among the last,
so to speak, the last
in those games. What
kind of spirit supported
him to take part in
the competition all the
time?

Table 9: An example of source sentence and ref-
erence translation in the transcription translation
track.

For streaming ASR output, as shown in Ta-
ble 12, missing translation can also be ob-
served in the Wait-K baselines. From Ta-
ble 13, we can see that in the segmentation
of the LSS-15 most of the sentence fragments
are incomplete. As shown in Table 14, the seg-
mentation of the MSS is reasonable and the
translation is much better than the LSS-15.
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System Translation
Wait-1 In his every after shock, he won the game, even in the No.1

games.
Wait-3 Every time when he does a match, he will lose, even in the

No.1 draw, what is that?
FULL In every game, which is not only about the win, but also

about the power that comes to the 1st place, those who
support him to go on training all the time.

FT-Trans(PSS) In every game he lost, in the second countdown, what is it?
What was the strength that kept him going? I keep training.

Table 10: The translations of the sentence in Table 9.

Source Reference
对吗每个人都是不想输的都是想赢
的在它每一次比赛都是输甚至是倒
数第第二名的时候什么是什么样的
力量支撑着他一直去比赛

Right? Everyone does not want to lose; rather,
they all want to win.When he lost every match
or even came in the second last or last place,
what was it or what kind of strength supported
him to compete and train all the time?

Table 11: An example of the source sentence and the reference translation in the ASR output translation
track.

System Translation
Wait-1 So, is everyone wants to fail?
Wait-3 Right, everyone never want to fail, and they all want to win every game,

even when they are in the second best.
FULL That is, to say, every one would never want to win, in every game, or

even in the second place, what was the power that supports him to go
there and that number?

Table 12: The translations of the sentence in Table 11.

Segmentation Translation
对吗每个人都是不想输的都是想 Yes, everyone wants to lose.
赢的在它每一次比赛都是输甚至 The winner lost every game.
是倒数第第二名的时候什么是 What is second to last?
什么样的力量支撑着他一直去 What kind of strength supports him to go on?
比赛 The game.

Table 13: The sentence segmentation and the corresponding translations in Table 11 with the setting of
LSS-15 on FT-ASR+Aug+Trans.

Segmentation Translation
对吗每个人都是不想输的 Right? Everyone doesn’t want to lose.
都是想赢的 They all want to win.
在它每一次比赛都是输甚至是倒数 In each game, it is losing or even losing.
第第二名的时候 In the second place.
什么是什么样的力量 What is power?
支撑着他一直去比赛 It supports him to go all the way to the game.

Table 14: The sentence segmentation and the corresponding translations in Table 11 with the setting of
MSS on FT-ASR+Aug+Trans.
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