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Université Paris-Saclay, CNRS, LIMSI
Bât. 508, rue John von Neumann, Campus Universitaire, F-91405 Orsay

Abstract
Word alignments identify translational correspondences between words in a parallel sentence
pair and are used, for instance, to learn bilingual dictionaries, to train statistical machine trans-
lation systems or to perform quality estimation. Variational autoencoders have been recently
used in various of natural language processing to learn in an unsupervised way latent represen-
tations that are useful for language generation tasks. In this paper, we study these models for
the task of word alignment and propose and assess several evolutions of a vanilla variational
autoencoders. We demonstrate that these techniques can yield competitive results as compared
to Giza++ and to a strong neural network alignment system for two language pairs.

1 Introduction

Word alignment is one of the basic tasks in multilingual Natural Language Processing (NLP)
and is used to learn bilingual dictionaries, to train statistical machine translation (SMT) sys-
tems (Koehn, 2010), to filter out noise from translation memories (Pham et al., 2018) or in
quality estimation applications (Specia et al., 2017). Word alignments can also be viewed as
a form of possible explanation of the often opaque behavior of a Neural Machine Translation
(Stahlberg et al., 2018). Word alignment aims to identify translational equivalences at the level
of individual lexical units (Och and Ney, 2003; Tiedemann, 2011) in parallel sentences.

Successful alignment models either rely on bilingual association measures parameterizing
a combinatorial problem (eg. an optimal matching in a bipartite graph); or on probabilistic
models, as represented by the IBM Models of Brown et al. (1993) and the HMM model of
Vogel et al. (1996). All these models use unsupervised learning to estimate the likelihood of
alignment links at the word level from large collections of parallel sentences.

Such approaches are typically challenged by low-frequency words, whose co-occurrences
are poorly estimated; they also fail to take into account context information in alignment; finally,
they make assumptions that are overly simplistic (eg. that all alignments are one-to-many or
many-to-one), especially when the languages under focus belong to different linguistic families.
Even though their overall performance seem fair for related languages (eg. French-English),
there is still much room for improving. Indeed, the error rate of automatic alignments tools such
as Giza++ (Och and Ney, 2003) or Fastalign (Dyer et al., 2013), even for high resource
languages, is still well above 15-20%; and the situation is much worse in low-resource settings
(Martin et al., 2005; Xiang et al., 2010; McCoy and Frank, 2018).

As for most NLP applications (Collobert et al., 2011), and notably for machine translation
(Cho et al., 2014; Bahdanau et al., 2015), neural-based approaches offer new opportunities to
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reconsider some of these issues. Following up on the work of eg. (Yang et al., 2013; Alkhouli
et al., 2016; Wang et al., 2018), we study ways to take advantage of the flexibility of neural
networks to design effective variants of generative word alignment models.

Our main source of inspiration is the model of Rios et al. (2018), who consider variational
autoencoders (Kingma and Welling, 2014; Rezende et al., 2014) to approach the unsupervised
estimation of neural alignment models. We revisit here this model, trying to analyze the reasons
for its unsatisfactory performance and we extend it in several ways, taking advantage of its fully
generative nature. We first generalize the approach, initially devised for IBM model 1, to the
HMM model; we then explore ways to effectively enforce symmetry constraints (Liang et al.,
2006); we finally study how these models could benefit from monolingual data. Our experi-
ments with the English-Romanian and English-French language pairs show that our best model
with symmetry constraints is on par with a conventional neural HMM model; they also highlight
the remaining deficiencies of these approaches and suggest directions for further developments.

2 Neural word alignment variational models

The standard approach to probabilistic alignment (Och and Ney, 2003) is to consider asymmet-
ric models associating each word in a source sentence fJ1 = f1 . . . fJ of J words with exactly
one word from the target sentence eI0 = e0 . . . eI of I + 1 words.1 This association is governed
by unobserved alignment variables aJ1 = a1...aJ , yielding the following model:

p(fJ1 , a
J
1 |eI0) =

J∏
j

p(aj |aj−1
1 , f j−1

1 , eI0)p(fj |a
j
1, f

j−1
1 , eI0) (1)

Two versions of this model are considered here: in the IBM model 1 (Brown et al., 1993), the
alignment model p(aj |aj−1

1 , f j−1
1 , eI0) is uniform; in the HMM model of Vogel et al. (1996),

Markovian dependencies between alignment variables are assumed and aj is independant from
all the preceding alignment variables given aj−1. In both models, fj is conditionally indepen-
dent to any other variable given aj and eI1. Under these assumptions, both parameter estimation
and optimal alignment can be performed efficiently with dynamic programming algorithms. In
this approach, eI1 is not modeled.

2.1 A fully generative model

We now present the fully generative approach introduced by Rios et al. (2018). In this model,
the association between a source word fj and a target word ei is mediated by a shared latent
variable yi, assumed to represent the joint underlying semantics of mutual translations. In this
model, the target sequence eI1 is also modeled, yielding the following generative story:2

1. Generate a sequence yI0 of d-dimensional random embeddings by sampling independently
from some prior distribution e.g. Gaussian

2. Generate eI1 conditioned on the latent variable sequence yI1

3. Generate aJ1 = a1...aJ denoting the alignment from fJ1 to yI0

4. Generate fJ1 conditioned on yI0 and aJ1

1As is custom, target sentences are completed with a ”null” symbol, conventionally at index 0.
2We omit the initial step, consisting in sampling the lengths I and J and the dependencies wrt. these variables.
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This yields the following decomposition of the joint distribution of fJ1 and eI1, where we
marginalize over latent variables yI0 and aJ1 :

p(fJ1 , e
I
1) =

∫
yI0

p(yI0)pθ(e
I
1|yI1)

(∑
aJ1

pθ(a
J
1 )pθ(f

J
1 |yI0 , aJ1 )

)
dyI0 (2)

Directly maximizing the log-likelihood to estimate the parameters is in general intractable,
especially when neural networks are used to model the generation of fJ1 and eI1. The stan-
dard approach in neural generative models (Kingma and Welling, 2014) is to introduce a varia-
tional distribution qφ for the latent variables and to optimize the so-called evidence lower-bound
(ELBO). Following (Rios et al., 2018) we consider tractable alignment models and use the vari-
ational distribution only for modeling yI0 conditioned on eI1. This yields the following objective:

J(θ, φ) =− Eqφ(yI1)(log pθ(e
I
1|yI1))− Eqφ(yI0)([log

∑
aJ1

pθ(a
J
1 )pθ(f

J
1 |yI0 , aJ1 ))

+ KL[qφ(y
I
0 |eI1)||p(yI0)] (3)

where Ep(f) denotes the expectation of f with respect to p, and KL is the Kullback-Leibler
divergence. Objective (3) is a sum of three terms that are referred respectively as the recon-
struction cost, the alignment cost and KL divergence cost. The last term can be computed
analytically when the prior and the variational distributions are Gaussian and we thus assume
the following parameterization qφ(yI1 |eI1) =

∏
iN(yi|ui, si), where the mean ui and the diago-

nal covariance matrix diag(si) are deterministic functions of eI1. As is custom, the expectations
in equation (3) are approximated by sampling values of yi as yi = ui+si · εi, where εi is drawn
from a white Gaussian noise. The reparameterization trick removes the sampling step from the
generation path, and makes the whole objective differentiable (Kingma and Welling, 2014).

2.2 Introducing Markovian dependencies
The experiments in (Rios et al., 2018) only consider basic assumptions regarding the alignment
model pθ(aJ1 ), corresponding to IBM model 1. Our first variation of this model considers a
richer transition model assuming Markovian dependencies, for which the exact marginalization
of alignment variables implied by equation (3) remains tractable with the forward algorithm.
The alignment cost is the expectation of the source given the latent variables:

Eqφ(yJ0 )([log
∑
aJ1

J∏
j=1

pθ(fj |yaj )pθ(aj |aj−1)]) (4)

As is usual with HMM variants of alignment models, we parameterize the transition distribution
pθ(aj |aj−1) on the distance (jump) between the values of aj and aj−1 (Och and Ney, 2003).
This model is referred to below as HMM+VAE.

2.3 Towards symmetric models: a parameter sharing approach
A first benefit of having a fully generative model (in both alignment directions), which jointly
models fJ1 and eI1, is that it becomes easy to encourage these models to share information
and to improve their joint performance. Our alignment models involves two decoders, one for
the source and one for the target (in each direction). These components are used to compute a
distribution over vocabulary words given a d-dimensional variable, and are conceptually similar.

Our first step is thus to simultaneously train the alignment models in both directions, mak-
ing sure that they use the same decoder respectively for fJ1 and eI1. This means that the same
network computes pθ(eI1|yI1) (when eI1 is in the target) and pθ(eI1|yJ0 , aJ1 ) when eI1 is the source.
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There is only one encoder computing the variational parameters in each direction, and these re-
main distinct in this approach. Our joint objective function now comprises six terms including
two reconstruction costs, two alignment costs and two KL divergence costs. From this, we see
that a first benefit of this method is computational as it greatly reduces the number of parame-
ters to train. We also expect that it will yield two additional benefits: (a) to help improve the
alignment model, which is more difficult to train for lack of observing the “right” alignment
variables; in comparison the reconstruction of the target sentence is almost obvious, as each ei
is generated from the right yi; (b) to make the alignments more symmetrical, thereby facilitating
their interpretation and their recombination. This model is denoted +VAE+SP below.

2.4 Enforcing agreement in alignment
The idea of training two asymmetrical models opens new ways to control the level of agreement
between alignments, an idea already considered eg. in (Liang et al., 2006; Graça et al., 2010).
Following the former approach, we implement this idea by adding an extra cost that rewards
agreement between asymmetric alignments. For non null alignment links, this cost is based on
the alignment posterior distributions and is defined as:∑

i>0,j>0

|p(aj = i|fJ1 , eI1)− p(bi = j|fJ1 , eI1)|, (5)

where bJ1 is the alignment variables introduced when eI1 is the source of the alignment, and fJ1
is the target. Both for the IBM-1 and for the HMM variants, these posterior distributions can be
computed effectively, in the latter case using the forward-backward algorithm.

In the case of the null links, the agreement term should reward configurations where one
source word is aligned with the null symbol in one direction, and is not aligned to any target
word in the other direction. This yields the following additional term (for the canonical source
to target direction, the reverse term is analogous):

J∑
j=1

|1− p(aj = 0|fJ1 , eI1)−
I∑
i=1

p(bi = j|fJ1 , eI1)| (6)

For this model (+VAE+SP+AC), the objective function comprises nine terms, each with its own
dynamics, which makes optimization more difficult due to the heterogeneity between costs.

2.5 Training with monolingual data
Leaving the alignment module aside, the model can be used as a simple autoencoder which

can be (pre)trained monolingually. We use supplementary monolingual sentences ėM1 that just
go through the encoding-decoding process, and add an extra monolingual reconstruction term
Jmono in the objective (3):

Jmono(θ, φ) = −Eqφ(ẏM1 )(log pθ(ė
M
1 |ẏM1 )) + KL[qφ(ẏ

M
1 |ėM1 )||p(ẏM1 )] (7)

where ẏM1 is the latent variable associated to ėM1 . Alternatively, we consider training the align-
ment model monolingually. We implement this idea by adding a random noise to the target
sentence, to make it more similar to a source sentence and amenable to alignment. In this case,
the extra reconstruction term is:

Jmono(θ, φ) = −Eqφ(ÿN0 )([log
∑
äM1

pθ(ä
M
1 )pθ(ė

M
1 |ÿN0 , äM1 )) + KL[qφ(ÿ

N
0 |ëN1 )||p(ÿN0 )] (8)

where ëN1 is a noisy version of ėM1 , ÿN1 is the latent variable for ëN1 , and äM1 denotes the
alignment variables betwen ėM1 and ÿN0 . In our experiments, we only use IBM Model 1 as our
alignment model.
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3 Experiments

3.1 Datasets
Our experiments use two standard benchmarks from the 2003 word alignment challenge (Mi-
halcea and Pedersen, 2003), respectively for aligning English with French and Romanian. We
consider two different settings: for French, we use a large training corpus of parallel sentences
from the Europarl corpus Koehn (2005). In the case of Romanian, we use the SETIMES corpus
used in WMT’16 evaluation,3 which correspond to a more challenging scenario where the train-
ing data is limited in size. Additional experiments with monolingual data use the Romanian
data from News Crawl 2019 (∼ 6M sentences)4. Basic statistics for these corpora are in Table 1.

Corpus # sent. in train # sent. in test # tokens in test # non-null links
Eng. For.

En-Fr ∼1.9M 447 7 020 7 761 17 438
En-Ro ∼260K 246 5 455 5 315 5 988

Table 1: Basic statistics for the data

These corpora are preprocessed, lowercased and tokenized with standard tools from the
Moses toolkit.5 Following notably (Garg et al., 2019), we perform the alignment between
subword units generated by Byte-Pair-Encoding (Sennrich et al., 2015), implemented with the
SentencePiece model (Kudo and Richardson, 2018) and computed independently6 in each lan-
guage with 32K merge operations. This makes the training less computationally demanding and
greatly mitigates the rare-word problem, which is a major weakness of historical count-based
model. Our results and analyses are however based on word-level alignments. Subword-level
alignments are converted into word-level alignments as follows: a link between a source and a
target word exists if there is at least one link alignment between their subwords.

3.2 Implementation
Our models are close in structure to the model proposed by Rios et al. (2018), and are made
of three main components: an encoder to generate the latent variables yI0 from eI1, and two
decoders to respectively reconstruct eI1 and fJ1 , with the help of the alignment model.

The encoder is composed of a token embedding layer (128 units), two LSTM layers (each
comprising 64 units), and dense output layers to independently generate the mean vectors
(u1 . . . uI ) vectors and the diagonal of the covariance matrices (s1 . . . sI ). The latent variable
yI1 has 64 units.7 Our encoder is formally defined as:

−→
hi = RNN(

−−→
hi−1, E(ei))

hi =Wh concat(
−→
hi ,
←−
hi)

si = softplus(Wshi + bs)

ui =Wuhi + bu

yi = ui + si · εi

where E(ei) ∈ R128 is the embedding of word ei, ε is a noise variable ε ∼ N(0, 1) and
softplus = log(1 + exp(x)) is an activation function returning a value positive. The vector y0

is independently generated from a pseudo-sentence made of one dummy token; it is identical
3http://statmt.org/wmt16
4See http://statmt.org/wmt19
5https://github.com/moses-smt/mosesdecoder
6We differ there from Garg et al. (2019) who use a joint BPE vocabulary.
7In our BPE baseline experiments with En:Ro, we found that 64 hidden units were sufficient to obtain the best AER

score after 10 iterations. As for the other meta-parameters, we decided to stick with these baseline values.
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for all target sentences. Note that the decoder model does not try to reconstruct this token. The
reconstruction decoder is given by:

pθ(ei|yi) = [softmax(Wvyi + bv)]ei ,

and the alignment model with emission and transition components is:

pθ(fj |eaj ) = [softmax(Wvyaj )]fj
pθ(aj − aj−1) = [softmax(W∆yaj−1

)]aj−aj−1

where Wv ∈ R64×V , bv ∈ RV , with V the target vocabulary size. W∆ ∈ R64×301 with jump
values in the interval [−150,+150].

For experiments with monolingual data, our noise model follows the technique in (Lample
et al., 2017). We randomly delete input words with probability pwd = 0.1. We then slightly
shuffle the sentence, where the difference between the position before and after shuffling each
word is smaller than 4.

In all cases, our optimizer is Adam (Kingma and Ba, 2014) with an initial learning rate of
0.001; the batch size is set to 100 sentences. We use all training sentences of length lower than
50. All parameters of the Giza++ and Fastalign baselines are set to their default values.
IBM-1+NN and HMM+NN correspond to basic neuralizations of the IBM models as in (Rios
et al., 2018; Ngo-Ho and Yvon, 2019) for both word-level and BPE-level. These models are
trained by maximizing the likelihood with the expectation-maximization algorithm. We train
all models for 10 iterations. Results with symmetric alignments use the grow-diag-final (GDF)
heuristic proposed in (Koehn et al., 2005).

3.3 Evaluation protocol
We use the alignment error rate (AER) (Och, 2003), accuracy, F-score, precision and recall as
measures of performance. AER is based on a comparison of predicted alignment links (A) with
a human reference including sure (S) and possible (P) links, and is defined as an average of the
recall and precision taking into account the sets P and S. AER is defined as:

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

whereA is the set of predicted alignments. Note that the Romanian-English reference data only
contains sure links; in this case AER and F-measure are deterministically related.

3.4 Results
The top part of Table 2 reports the AER score of the IBM-1 baselines: the count-based
model (IBM-1 Giza++) and the two neural variants, operating at the word (IBM1+NN)
and subword (IBM-1+BPE) levels. We also report the performance of three VAE variants
(IBM1+VAE+BPE, IBM1+VAE+BPE+SP, IBM-1+VAE+BPE+SP+AC). A first observation is
neural baselines are better than Giza++, and that using BPE units brings an additional gain.

The basic model (IBM-1+VAE) falls short to match these results and proves way worse
than the two neural version of the IBM-1 model. These results are in line with the findings
of Rios et al. (2018), who report similar difference in performance. Sharing the parameters
between directions greatly improves this baseline with a reduction in AER of about 8 points
(En-Fr) and 6 points (En-Ro) for both directions, as well as for symmetrization. The recon-
struction model, which is well trained in one direction, helps to improve the emission model in
the reverse direction. We observe that the gain is more significant when the morphologically
rich language is on the target side: this is were the emission model is the weakest and benefits
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most from parameter sharing. Adding an extra agreement cost fails to produce markedly better
alignments for Fr-En; we however observe a gain of about 2 AER points for the symmetricized
alignments in En-Ro. Overall, our best VAE model outperform the neural baseline in the large
training condition (English-French); we do not see this for the other language pair, where the
performance remains much below the neural baseline.

Model English-French English-Romanian
IBM-1 En-Fr Fr-En GDF En-Ro Ro-En GDF
Giza++ 40.0 33.9 25.1 56.0 53.5 51.1
IBM1+NN 27.9 27.2 17.8 46.3 44.9 38.3
IBM1+NN+BPE 25.7 24.0 14.6 43.4 40.4 34.4
IBM1+VAE+BPE 33.4 34.3 24.9 56.3 55.6 51.3
+SP 22.1 23.8 16.8 49.3 51.4 45.2
+AC 22.8 23.6 17.8 49.1 49.2 43.3

Table 2: AER scores for IBM-1 models. The best result in each column is in boldface.

The effect of adding a transition component in these models is less clear, as shown in Ta-
ble 3, where we report the performance of HMM-based variants. Both symmetrization strategies
prove again very effective to improve the basic VAE model, and our best system (+AC) achieves
AER scores that are close, yet slightly inferior, to the HMM+NN+BPE baseline. One possible is-
sue that we do not fully solve via symmetrization is related to the null word, which, as explained
above, is not part of the reconstruction model, and which does not improve with joint learning.

Model English-French English-Romanian
HMM En-Fr Fr-En GDF En-Ro Ro-En GDF
Fastalign 15.1 16.2 14.2 33.3 32.9 30.4
HMM Giza++ 11.9 11.9 8.5 33.3 36.3 32.4
HMM+NN 11.8 11.1 9.7 30.6 40.1 34.3
HMM+NN+BPE 9.8 10.4 9.1 34.4 29.3 29.4
HMM+VAE+BPE 18.9 12.9 13.9 50.2 38.6 42.7
+SP 12.9 12.2 11.7 37.5 38.0 37.0
+AC 11.4 10.8 9.6 35.5 38.8 35.1

Table 3: AER scores for variants of the HMM model and for Fastalign.

4 Error Analysis

4.1 Balancing the terms in the VAE objective
One well-known issue of VAEs for text applications is posterior collapse (Bowman et al., 2016;
Higgins et al., 2017), where the variational distribution collapses towards the prior distribution.

This is because the KL term can get arbitrarily small, with a moderate effect on the recon-
struction cost, assuming a strong reconstruction model (a recurrent network in typical applica-
tions). We also encountered this problem in our setting, but the interpretation is a bit different:
when the KL term goes to zero, all words in the dictionary become indistinguishable and the
reconstruction costs reaches its maximum, corresponding to the entropy of the uniform distri-
bution of the target vocabulary. The difference in dynamics between these scores is observed in
Figure 1 (left), where we apply weights equal to α, β and γ respectively to the reconstruction
cost, the alignment cost and the KL divergence term. This effect is mitigated if we proportion-
ally decrease the weight of the KL term (middle). This second graph reveals the need to also
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better balance the importance of the other two terms. Using larger weights for the reconstruc-
tion term (α = 10) and even more for the alignment term (β = 50), we keep the KL divergence
high and make sure that the optimization focuses on decreasing the two other terms 8.
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Figure 1: Visualizing the three terms of the ELBO for Romanian-English. The weights of the
reconstruction cost, alignment cost and KL divergence are set to α, β, γ respectively.

4.2 Unaligned words
In asymmetrical models, the number of links that are generated is constant and equal to the
total number of “source” words. A source word is deemed unaligned when it is linked to the
special NULL token on the target side; a target word is unaligned when it emits no source word.
We perform an in-depth analysis of these special links. Results for the alignment from French
into English are in Table 4; we observe similar trends for the other direction and for the other
language pair. We compute the alignment accuracy as the proportion of words (on both sides)
for which the binary decision (aligned or non-aligned) is correct; we also report the precision
and recall for unaligned words. Results in Table 4 show that the number of unaligned words
varies in great proportion, with a minimum of about 3000 words (HMM+NN) and a maximum
of nearly 6600 (IBM1+VAE+BPE and HMM+VAE+BPE). For this language pair, the reference
contains 821 unaligned words. They also demonstrate the inability of all models to correctly
predict null links, the best model achieving a precision of only 13.1%.

Model # Unaligned Accuracy Precision Recall
IBM1+NN 3836 74.0 8.7 49.7
IBM1+NN+BPE 3633 75.8 10.1 54.4
IBM1+VAE+BPE 6596 57.4 7.5 73.2
+SP 5621 64.2 9.0 75.1
+AC 5622 64.3 9.1 76.0
HMM+NN 2994 80.4 13.1 58.1
HMM+NN+BPE 4835 70.7 12.2 87.5
HMM+NN+BPE+Joint 4843 70.3 11.6 83.5
HMM+VAE+BPE 6591 58.6 8.7 84.9
+SP 6581 59.0 9.1 89.3
+AC 5579 65.5 10.4 86.0

Table 4: Evaluation of null-alignment links when aligning French with English.

Predicting so many unaligned words is extremely detrimental to the performance of the two
basic VAE models for which we observe a very poor recall for non-null links, which is hardly
compensated by the good precision scores. We see here clearly the effect of the symmetriza-
tion constraints (especially for the HMM model) where the reward associated with symmetric

8In our baseline experiment with English-Romanian (From http://www.statmt.org/wpt05/), using these weights re-
sulted in an acceptable AER scores and seemed appropriate for our further experiment; a small exploration of the
hyper-parameter space showed that these results were stable.
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predictions reduces the tendency to align French words with the NULL English, and to leave
too many English words unaligned. Even there (HMM+VAE+BPE+SP+AC), the number of pre-
dicted non-null links is about half as what we see for HMM+NN: as it predicts much more links
than the others, this model also as an clear edge when it comes to post-hoc symmetrization,
since the “grow-diag-final” heuristics heavily depends on the size of the intersection. Note that
this problem has a much stronger overall effect in English-Romanian than in English-French.
This is because the English-Romanian test set only contains sure links, which means that a low
recall for aligned words directly impacts the AER. We do not see this for the French-English
data, which contain many possible links that have no impact on recall (Fraser and Marcu, 2007).

Incidentally, we also observe a null-word problem for HMM+NN+BPE; presumably splitting
words in small units that are unrelated across languages can also make the model prefer the null
alignment over links between actual words. These results clearly point out one deficiency of the
current approach: for lack of having a proper model for the latent representation of the NULL
token, the VAE-based approach tends to leave too many words unaligned.

4.3 Symmetrization and agreement
We now study the effects of sharing parameters across alignment directions. We consider the
English-Romanian test, for which the relationship between precision, recall and AER is straight-
forward. Detailed scores for all IBM-1 models are in Table 5. We see the clear benefits of shar-
ing parameters, which contributes a jump of both precision, recall and F-measure compared
with the baseline VAE. Models SP and SP+AC generate more alignment links (about +500
links) than the baseline model. This enhancement helps to outperform Giza++ but is insuffi-
cient to surpass the conventional neural network models, especially when using BPE. Numbers
in Table 5 show that the gain in recall is largest in the direction En-Ro: this is because the better
reconstruction of English words boosts the translation model.

Model Precision Recall F-measure
IBM-1 En-Ro Ro-En GDF En-Ro Ro-En GDF En-Ro Ro-En GDF
Giza++ 58.8 49.9 73.8 35.1 43.5 36.5 43.9 46.4 48.8
+NN 57.7 60.0 75.7 50.0 50.9 51.9 53.6 55.1 61.6
+NN+BPE 63.9 64.1 80.4 50.6 55.6 55.3 56.5 59.5 65.5
+VAE+BPE 56.6 53.9 79.5 35.4 37.6 35.0 43.6 44.3 48.6
+SP 60.6 57.8 76.2 43.5 41.8 42.7 50.7 48.5 54.8
+AC 61.3 58.9 76.9 43.5 44.6 44.8 50.8 50.8 56.6

Table 5: Precision, recall and F-measure of IBM-1 models for English-Romanian

We now measure more directly the level of agreement between the two alignment di-
rections for English-French (Table 6). We note that the model integrating agreement costs
(+SP+AC) leads to a higher number of agreements in comparison to the other VAE-based mod-
els, and also yields the best scores in terms of intersection AER.

4.4 Training with monolingual data
A last extension concerns the use of monolingual data in the low-resource condition. To com-
pute the performance of the reconstruction model (R-ACC), we compute the proportion of
words for which the model’s prediction actually corresponds to the correct word. Experiments
are performed with English-Romanian.9 Results in Table 7 show that +Mono helps improve the
reconstruction model, which attains almost perfect reconstruction accuracy in both directions,

9The Romanian corpus is from News Crawl 2019, the English corpus is from Europarl, and corresponds to the
English side of the English-French data.
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Model HMM # Agree Ratio En-Fr Ratio Fr-En AER (inter)
Giza++ 4683 72.6 75.5 7.5
+NN 4771 73.2 76.7 7.4
+NN+BPE 4040 75.0 80.2 10.4
+VAE+BPE 3160 69.1 76.0 18.7
+SP 3586 86.2 86.5 13.0
+AC 3989 83.6 84.8 10.1

Table 6: Agreement between alignments in two directions for English-French, in terms of the
number of alignment links, its ratio to the total number of alignment links predicted by the
model and the AER of the “intersection” heuristic.

suggesting that the autoencoder is overfitting. The gain brought by monolingual data is found
only for IBM-1, for the direction Ro-En (-3.6 AER). The extra-task of denoising the input
(+Mono+Noise) further improves the AER compared to the parameter sharing approach.

Model English-Romanian Romanian-English
+VAE+BPE+SP R-ACC AER R-ACC AER
IBM-1 84.6 49.3 93.0 51.4
+Mono 98.1 49.1 98.1 47.8
+Noise 98.4 48.8 97.9 47.6
HMM 95.5 37.5 97.5 38.0
+Mono 98.5 37.9 98.1 38.0
+Noise 98.8 36.3 97.5 36.5

Table 7: Training with a monolingual corpus (+Mono) and the noise model (+Noise) on
English-Romanian data. R-Acc is the accuracy of the reconstruction model.

5 Related work

The majority of recent approaches to neural word alignment fall into two categories: heuristic
and probabilistic. A representative heuristic approach is (Legrand et al., 2016), which learns
association scores between source and target word embeddings without any underlying proba-
bilistic model. This simple approach is used to clean up translation memories in (Pham et al.,
2018). More recently (Sabet et al., 2020) directly takes pre-trained non-contextual and con-
textual multilingual representations (Devlin et al., 2019) as their association scores, deriving
individual word alignments by solving an optimal matching problem.

Early work on probabilistic neural alignment is (Yang et al., 2013), where a feed-forward
neural network is used to replace the count-based translation model of a HMM-based aligner.
This approach is further developed in (Tamura et al., 2014) where a recurrent network helps
to capture contextual dependencies between alignment links. This early work aims to improve
the alignment quality for phrase-based MT. As discussed above, the work of (Rios et al., 2018)
also considers neural versions of IBM models, with the goal to improve word representations
through cross-lingual transfer in low-resource contexts. Alignment is also the main focus of
(Ngo-Ho and Yvon, 2019) which reviews a whole set of alternative parameterizations for neu-
ral IBM-1 and HMM models, varying the word embeddings (word and character based), the
context-size in the translation model and the parameterization of the distortion model.

A much more active line of research tries to improve neural MT by exploiting the con-
ceptual similarity between alignments and attention (Koehn and Knowles, 2017). Cohn et al.
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(2016) modify the attention component to integrate some biases that are useful in alignements:
a preference for monotonic alignements, for reduced fertility values, etc. They also propose,
following (Liang et al., 2006), to enforce symmetrization constraints, an idea also explored in
(Cheng et al., 2016); The same methodology is studied in (Luong et al., 2015; Yang et al., 2017),
with the objective to introduce dependencies between successive attention vectors. The work
of Peters et al. (2019) also aims to enhance the attention component of a sequence-to-sequence,
by enforcing sparsity via the sparse-max operator.

The work reported in (Alkhouli et al., 2016; Wang et al., 2017) explores ways to explicitely
introduce alignments in NMT. They study various neuralizations of the standard generative
alignment models, and also consider ways to exploit weak supervision from count-based mod-
els. This line of research is pursued by (Kim et al., 2017; Deng et al., 2018), where attention
vectors are handled as structured latent variables in NMT; in this study, variational autoencoders
are used represent the alignment structure. Finally, Garg et al. (2019) propose to jointly learn
alignment and translation in a multi-task setting, thereby improving a Transformer-based model.

When compared to heuristic approaches, an obvious defect of IBM models is their di-
rectionality, which means that they deliver asymmetric alignments. Attempts to remedy this
problem, while preserving the sound probabilistic underlying models have been many. Liang
et al. (2006) propose to jointly train EM in both directions, enforcing directional link posteriors
to agree as much as possible through an additional agreement term; this work is generalized
in (Liu et al., 2015). Graça et al. (2010) use a different technique and enforce symmetry via
additional constraints on the posterior link distribution.

Since their introduction in (Bowman et al., 2016), VAE models of text generation have
been developed in multiple ways, and applied to many NLP tasks, in particular to Machine
Translation (Zhang et al., 2016). This approach generalizes the basic VAE approach by making
the latent variable and the target sentence conditionally dependent from the observed source.
One major difference with our work in that the model includes one latent variable per sentence,
where we consider one for each target word.

6 Conclusion and outlook

In this paper, we have revisited the proposal of Rios et al. (2018) and explored variants of the
variational autoencoder models for the unsupervised estimation of neural word alignment mod-
els. Our study has confirmed the previous findings and highlighted two promising aspects of
this model. First, it is a full model of the joint distribution, which makes it easy and natural
to introduce symmetrization constraints, as we have shown by proposing two such extensions.
With these constraints, we were experimentally able to close the gap with strong baselines im-
plementing neural variants of the conditional HMM models in the large data condition. Second,
it opens new alleys to also incorporate monolingual data during training, which might especially
prove useful in low-resource scenarios.

One remaining problem in this approach is the prediction of the null links, which is quite
problematic in an encoder-decoder approach. We have shown in particular that the VAE model
is strongly inclined to under-generate alignment links, which is detrimental to the overall AER
performance. Symmetrization is a first answer to this problem, which however only partly fixes
the issue. Another difficult problem with this model is controlling the optimization problem,
a difficult task when the objective functions combines multiple terms with varying dynamics.
More work is needed there to design better optimization strategies, with a better balance be-
tween the various sub-objectives.
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