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Abstract

We introduce Uncertain Natural Language In-
ference (UNLI), a refinement of Natural Lan-
guage Inference (NLI) that shifts away from
categorical labels, targeting instead the di-
rect prediction of subjective probability assess-
ments. We demonstrate the feasibility of col-
lecting annotations for UNLI by relabeling a
portion of the SNLI dataset under a probabilis-
tic scale, where items even with the same cate-
gorical label differ in how likely people judge
them to be true given a premise. We describe
a direct scalar regression modeling approach,
and find that existing categorically labeled
NLI data can be used in pre-training. Our best
models approach human performance, demon-
strating models may be capable of more subtle
inferences than the categorical bin assignment
employed in current NLI tasks.

1 Introduction

Variants of entailment tasks have been used for
decades in benchmarking systems for natural lan-
guage understanding. Recognizing Textual Entail-
ment (RTE) or Natural Language Inference (NLI)
is traditionally a categorical classification problem:
predict which of a set of discrete labels apply to
an inference pair, consisting of a premise (?) and
hypothesis (ℎ). The FraCaS consortium offered
the task as an evaluation mechanism, along with
a small challenge set (Cooper et al., 1996), which
was followed by the RTE challenges (Dagan et al.,
2005). Despite differences between these and re-
cent NLI datasets (Marelli et al., 2014; Lai et al.,
2017; Williams et al., 2018; Khot et al., 2018, i.a.),
NLI hsa remained a categorical prediction problem.

However, entailment inference is uncertain and
has a probabilistic nature (Glickman et al., 2005).
Maintaining NLI as a categorical classification
∗ Equal contribution.
† Work performed while at Johns Hopkins University.

Premise{ Hypothesis NLI UNLI

A man in a white shirt taking a picture
{ A man takes a picture

ENT 100%

A boy hits a ball, with a bat
{ The kid is playing in a baseball game

ENT 78%

A wrestler in red cries, one in blue celebrates
{ The wrestler in blue is undefeated

CON 50%

Man laying on a platform outside on rocks
{ Man takes a nap on his couch

CON 0%

Table 1: Probability assessments on NLI pairs. The
NLI and UNLI columns respectively indicate the cate-
gorical label (from SNLI) and the subjective probabil-
ity for the corresponding pair.

problem is not ideal since coarse categorical la-
bels mask the uncertain and probabilistic nature of
entailment inference. NLI pairs may share a coarse
label, but the probabilities that the hypotheses are
entailed by their corresponding premises may vary
greatly (see Table 1). Hence, not all contradictions
are equally contradictory and not all entailments
are equally entailed.

We propose Uncertain Natural Language Infer-
ence (UNLI), a refinement of NLI that captures
more subtle distinctions in meaning by shifting
away from categorical labels to the direct predic-
tion of human subjective probability assessments.
We illustrate that human-elicited probability as-
sessments contain subtle distinctions on the like-
lihood of a hypothesis conditioned on a premise,
and UNLI captures these distinctions far beyond
categorical labels in popular NLI datasets.

We demonstrate how to elicit UNLI annota-
tions. Using recent large-scale language model
pre-training, we provide experimental results illus-
trating that systems can often predict UNLI judg-
ments, but with clear gaps in understanding. We
conclude that scalar annotation protocols should be
adopted in future NLI-style dataset creation, which
should enable new work in modeling a richer space
of interesting inferences.
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Premise { Hypothesis SNLI u-SNLI

A man is singing into a microphone.

{ A man performs a song. NEU 95%
{ A man is performing on stage. NEU 84%
{ A male performer is singing a special and meaningful song. NEU 15%
{ A man performing in a bar. NEU 14%
{ A man is singing the national anthem at a crowded stadium. NEU 0.6%

Table 2: A premise in SNLI with its 5 hypotheses (labeled as neutral in SNLI) annotated in u-SNLI.

2 Eliciting UNLI annotations

We elicit subjective probabilities from crowdsource
workers (MTurk) for premise-hypothesis pairs from
existing NLI data. Annotators are asked to estimate
how likely the situation described in the hypothesis
sentence would be true given the premise. Fol-
lowing the Efficient Annotation of Scalar Labels
framework (EASL; Sakaguchi and Durme, 2018),
we present annotators 5 sentence-pairs, each with
a slider bar enabling direct assessment for each
pair and ask annotators to calibrate their score for
a sentence-pair based on the scores they provided
to the other four pairs.1

In contrast to the uniform scale employed in the
original EASL protocol, we modify the interface to
allow finer-grained values near 0.0 and 1.0, follow-
ing psychological findings that humans are espe-
cially sensitive to values near the ends of the prob-
ability spectrum (Tversky and Kahneman, 1981).2

This interface decision is a key distinction of this
work contrasting prior efforts that averaged Likert-
scale (ordinal) annotations. This allows us to cap-
ture the difference between NLI pairs that are both
appropriately contradicted or entailed under NLI,
but that have a perceived difference of less than 1%
probability.

In order to capture the sensitivity near these ends,
we adopt a more fine-grained slider bar with 10,000
steps with a logistic transformation. Specifically,
for raw score G ∈ [0, 10000], we apply a scaled lo-
gistic function 5 (G) = f (V(G − 5000)) to re-scale
the final result range to [0, 1]. We ran pilots to tune
V, and determine that people tend to choose much
lower probability for some events even though they
are just slightly less likely (e.g., just below 50%).3

1 Example pairs were provided in the instructions along
with suggested probability values. See Appendix A for details
of the annotation interface and qualifications.

2 This is called the certainty effect: more sensitivity to the
difference between, e.g., 0% and 1% than 50% and 51%.

3 This phenomenon accords with the weighting function
in Prospect Theory (Kahneman and Tversky, 1979; Tversky
and Kahneman, 1992), where people tend to downweight
probabilities with around 0.4 or above.

ENT NEU CON

0 0.01 1�3 2�3 0.99 1

Figure 1: Dev set statistics, illustrating median and
quartile for each of the 3 categories under our scalar
probability scheme. Light / dark shade covers 96% /
50% of each category, and the bar denotes the median.
Note that G-axis is logistic to allow fine-grained distinc-
tions near 0.0 and 1.0.

Therefore, we use different V’s depending on the
range of [0, 0.5] or (0.5, 1]. Each sentence pair
is annotated with 2- or 3-way redundancy. The
individual responses are averaged to create a gold
standard label for a premise-hypothesis pair.

Data We annotate, i.e. elicit a probability H ∈
[0, 1], for a subset of SNLI (Bowman et al., 2015)
examples and refer to this data as u-SNLI.4 SNLI’s
training set contains 7,931 distinct premises paired
with at least 5 distinct neutral (NEU) hypotheses.
For each premise, we sample 5 neutral hypotheses,
resulting in 39,655 of these NEU pairs annotated.
An additional 15,862 contradicted (CON) and en-
tailed (ENT) pairs are annotated for our training set,
resulting in 55,517 training examples. For our dev
and test sets, we respectively annotated 3,040 ex-
amples sampled from SNLI’s dev and test splits. In
total, we annotated 61,597 examples, about 12% of
all examples in SNLI. Figure 1 plots the resultant
median and quartile for each categorical SNLI la-
bel in the u-SNLI dev set, showing the wide range
of probability judgments elicited for each label (see
Table 2 for examples).5

3 Prediction

Formally, given a premise ? ∈ P and a hypothe-
sis ℎ ∈ H, a UNLI model � : P × H → [0, 1]
should output an uncertainty score Ĥ ∈ [0, 1] of the

4We use SNLI due to its popularity and its feature that
each premise is paired with multiple hypotheses.

5 Data is available at http://nlp.jhu.edu/unli.

http://nlp.jhu.edu/unli
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Premise { Hypothesis SNLI u-SNLI Predicted

A man perched on a row of aquariums is using
a net to scoop a fish from another aquarium.

{ A man is standing by the aquariums. ENT 1.0 0.119

A man and woman are drinking at a bar. { A couple is out on a date. NEU 0.755 0.377
Couple walking on the beach. { The couple are holding hands. NEU 0.808 0.308

An elderly woman crafts a design on a loom. { The woman is a seamstress. NEU 0.923 0.197
Two girls riding an amusement park ride. { The two girls are screaming. NEU 0.909 0.075

A man and woman sit at a cluttered table. { The table is neat and clean. CON 4.91×10−4 0.262
A race car sits in the pits. { The car is going fast. CON 2.88×10−7 0.724

A guy is standing in front of a toilet with a coffee
cup in one hand and a toilet brush in the other.

{ A man is attempting to brew coffee. CON 8.32×10−6 0.504

Table 3: Selected u-SNLI dev examples where BERT predictions greatly deviate from gold assessments.

premise-hypothesis pair that correlates well with a
human-provided subjective probability assessment.
We train a regression UNLI model to predict the
probability that a premise entails a hypothesis. We
modify the sentence pair classifier6 in BERT to ex-
ploit recent advancements in large-scale language
model pre-training. Following Devlin et al. (2019),
we concatenate the premise and the hypothesis,
with a special sentinel token (CLS) inserted at the
beginning and a separator (SEP) inserted after each
sentence, tokenized using WordPiece. After encod-
ing the concatenated token sequence with BERT,
we take the encoding of the first sentinel token.

f (?, ℎ) = BERT(CLS ; ? ; SEP ; ℎ ; SEP) [0] .

We pass the resulting feature vector f (?, ℎ)
through a sigmoid-activated linear layer to obtain a
probability, instead of a softmax used in categori-
cal NLI. We directly model UNLI as a regression
problem, trained using a binary cross-entropy loss7

between the human annotation H and the model
output Ĥ. Owing to the concerns raised with anno-
tation artifacts in SNLI (Gururangan et al., 2018;
Tsuchiya, 2018; Poliak et al., 2018), we include a
hypothesis-only baseline.8

Metrics We compute Pearson correlation (A),
the Spearman rank correlation (d), and the mean
square error (MSE) between y and Ĥ as the met-
rics to measure the to performance of UNLI mod-
els. Pearson A measures the linear correlation be-
tween the gold probability assessments and model’s
output; Spearman d measures the ability of the
model ranking the premise-hypothesis pairs with

6 The neural architecture for MultiNLI (Williams et al.,
2018) in Devlin et al. (2019).

7 No significant difference is observed with an !2 loss.
8 See Appendix D for additional training details.

respect to their subjective probability; MSE mea-
sures whether the model can recover the subjective
probability value from premise-hypothesis pairs. A
high A and d, but a low MSE is desired.

4 Results & Analysis

Table 4 reports results on u-SNLI dev and test sets.
Just training on 55, 517 u-SNLI examples yields
a 62.71% Pearson A on test. The hypothesis-only
baseline achieved a correlation around 40%. This
result corroborates the findings that a hidden bias
exists in the SNLI dataset’s hypotheses, and shows
this bias may also exist in u-SNLI.9

Hyp-only Full-model

Dev Test Dev Test

r 0.3759 0.4120 0.6383 0.6271
1 0.3853 0.4165 0.6408 0.6346

MSE 0.1086 0.1055 0.0751 0.0777

Table 4: Metrics for training on u-SNLI.

Human Performance We elicit additional anno-
tations on u-SNLI dev set to establish a randomly
sampled human performance. We use the same
annotators as before but ensure each annotator has
not previously seen the pair they are annotating.
We average the scores from three-way redundant
elicitation,10 yielding A = 0.6978, d = 0.7273, and
MSE = 0.0759: our regression model trained on u-
SNLI is therefore approaching human performance.
While encouraging, the model fails drastically for
some examples.

9 This is unsurprising because u-SNLI examples are sam-
pled from SNLI.

10 This setting approximates the performance of a randomly
sampled human on u-SNLI, and is therefore a reasonable lower
bound on the performance one could achieve with a dedicated,
trained single human annotator.



8775

Qualitative Error Analysis Table 3 illustrates
examples with large gaps between the gold proba-
bility assessment and the BERT-based model out-
put. The model seems to have learned lexicon-
level inference (e.g., race cars { going fast, but
ignored crucial information (sits in the pits), and
fails to learn certain commonsense patterns (e.g.
riding amusement park ride { screaming; man
and woman drinking at a bar { on a date). These
examples illustrate the model’s insufficient com-
monsense reasoning and plausibility estimation.

Pre-training with SNLI Can we leverage the re-
maining roughly 500,000 SNLI training pairs that
only have categorical labels? One method would
be to train a categorical NLI model on SNLI and
when fine-tuning on u-SNLI, replace the last layer
of the network from a categorical prediction with
a sigmoid function.11 However, a typical cate-
gorical loss function would not take into account
the ordering between the different categorical la-
bels.12 Instead, we derive a surrogate function
B : T → [0, 1] that maps SNLI categorical la-
bels C ∈ {ENT, NEU, CON} to the average score of
all u-SNLI training annotations labeled with C in
SNLI.13

SNLI SNLI + u-SNLI

Dev Test Dev Test

r 0.5198 0.4958 0.6762 0.6589
1 0.5238 0.5231 0.6806 0.6708

MSE 0.1086 0.0928 0.0694 0.0733

Table 5: Metrics for training only on mapped SNLI or
fine-tuning on u-SNLI.

We use this mapping to pre-train a regression
model on the SNLI training examples not included
in u-SNLI. We also fine-tune the model on u-
SNLI’s training set. Table 5 reports the results
evaluated on u-SNLI’s dev and test sets. The model
trained on the roughly 500 mapped SNLI exam-
ples, performs much worse than when trained on
just about 55 u-SNLI examples. When we pre-
train the model on the mapped SNLI and fine-tune
on u-SNLI, results noticeably improve. This im-
provement is akin to the Phang et al. (2018)’s find-
ing that many NLI datasets cover informative signal

11 This is similar to how Pavlick and Callison-Burch (2016)
pre-train on SNLI, then fine-tune the model using their Add-
One pairs.

12 That the score of ENT > score of NEU > score of CON.
13 B : {ENT ↦→ 0.9272; NEU ↦→ 0.4250; CON ↦→ 0.0209}.

for different tasks, explaining why pre-training on
NLI can be advantageous. Here, an impoverished
version of UNLI is helpful.

Model behavior Figure 2 depicts the model be-
havior when training just on SNLI or fine-tuning
with u-SNLI. When using the original SNLI data,
under the surrogate regression setting, the model’s
prediction concentrates on the 3 surrogate scalar
values of the 3 SNLI classes. After fine-tuning on
u-SNLI, the model learns smoother predictions for
premise-hypothesis pairs, supported by the supe-
rior Pearson correlation score. The darker boxes
in bottom-right corner of the heatmaps (Figure 2)
indicate high accuracy on samples with ≈ 1.0 gold
u-SNLI labels and ≈ 1.0 model predictions, sig-
nifying that our UNLI models are very good at
recognizing entailments.

0.1 0.3 0.5 0.7 0.9
Prediction (pre-trained)

0.
1

0.
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0.
5
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ld

0.1 0.3 0.5 0.7 0.9
Prediction (fine-tuned)

0.00
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0.24

0.32
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Figure 2: Heatmap on u-SNLI dev predictions when
trained only on SNLI (left) or fine-tuned on u-SNLI
(right). Prediction frequencies are normalized along
each gold label row.

5 Related Work

The probabilistic nature and the uncertainty of NLI
has been considered from a variety of perspectives.
Glickman et al. (2005) modified the task to ex-
plicitly include the probabilistic aspect of NLI,
stating that “? probabilistically entails ℎ ... if ?
increases the likelihood of ℎ being true,” while
Lai and Hockenmaier (2017) noted how predicting
the conditional probability of one phrase given an-
other would be helpful in predicting textual entail-
ment. Other prior work has elicited ordinal annota-
tions (e.g. Likert scale) reflecting likelihood judg-
ments (Pavlick and Callison-Burch, 2016; Zhang
et al., 2017), but then collapsed the annotations into
coarse categorical labels for modeling. Vulić et al.
(2017) proposed graded lexical entailment, which
is similar to our idea but applied to lexical-level
inference, asking “to what degree G is a type of
H.” Additionally, Lalor et al. (2016, 2018) tried
capturing the uncertainty of each inference pair by
item response theory (IRT), showing fine-grained
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differences in discriminative power in each label.
Pavlick and Kwiatkowski (2019) recently argued

that models should “explicitly capture the full distri-
bution of plausible human judgments” as plausible
human judgments cause inherent disagreements.
Our concern is different as we are interested in the
uncertain and probabilistic nature of NLI. We are
the first to propose a method for direct elicitation
of subjective probability judgments on NLI pairs
and direct prediction of these scalars, as opposed
to reducing to categorical classification.

Recent work have also modeled the uncertainty
of other semantic phenomena as direct scalar re-
gression (and collected scalar versions of data for
them) instead of categorical classification, e.g. fac-
tuality (Lee et al., 2015; Stanovsky et al., 2017;
Rudinger et al., 2018), and semantic proto-roles
(Teichert et al., 2017).

Plausiblity tasks such as COPA (Roemmele et al.,
2011) and ROCStories (Mostafazadeh et al., 2016)
ask models to choose the most probable examples
given a context, capturing relative uncertainty be-
tween examples, but do not force a model to predict
the probability of ℎ given ?. Li et al. (2019) viewed
the plausibility task of COPA as a learning to rank
problem, where the model is trained to assign the
highest scalar score to the most plausible alterna-
tive given context. Our work can be viewed as
a variant to this, with the score being an explicit
human probability judgment instead.

Linguists such as van Eijck and Lappin (2014),
Goodman and Lassiter (2015), Cooper et al. (2015)
and Bernardy et al. (2018) have described models
for natural language semantics that introduce prob-
abilities into the compositional, model-theoretic
tradition begun by those such as Davidson (1967)
and Montague (1973). Where they propose prob-
abilistic models for interpreting language, we are
concerned with illustrating the feasibility of elicit-
ing probabilistic judgments on examples through
crowdsourcing, and contrasting with prior efforts
restricted to limited categorical label sets.

6 Conclusion

We proposed Uncertain Natural Language In-
ference (UNLI), a new task of directly predict-
ing human likelihood judgments on NLI premise-
hypothesis pairs. In short, we have shown that not
all NLI contradictions are created equal, nor neu-
trals, nor entailments. We demonstrated that (1)
eliciting supporting data is feasible, and (2) annota-

tions in the data can be used for improving a scalar
regression model beyond the information contained
in existing categorical labels, using recent contex-
tualized word embeddings, e.g. BERT.

Humans are able to make finer distinctions be-
tween meanings than is being captured by current
annotation approaches; we advocate the commu-
nity strives for systems that can do the same, and
therefore shift away from categorical NLI labels
and move to something more fine-grained such as
our UNLI protocol.
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A Annotation

Here we include information about the qualifica-
tions used to vet annotators. We also include screen-
shots of the interface used to collect annotations.

A.1 Qualification Test
Annotators were given a qualification test to ensure
non-expert workers were able to give reasonable
subjective probability estimates. We first extracted
seven statements from Book of Odds (Shapiro et al.,
2014), and manually split the statement into a
bleached premise and hypothesis. We then wrote
three easy premise-hypothesis pairs with definite
probabilities like (? = “A girl tossed a coin.”, ℎ =
“The coin comes up a head.”, probability: 0.5). We
qualify users that meet both criteria: (1) For the
three easy pairs, their annotations had to fall within
a small error range around the correct label H, com-
puted as X = 1

4 min{H, 1 − H}. (2) Their overall
annotations have a Pearson A > 0.7 and Spearman
d > 0.4. This qualification test led to a pool of 40
trusted annotators, which were employed for the
entirety of our dataset creation.

A.2 Annotation Interface
We include screenshots of the instructions and ex-
amples shown to crowdsource workers ( Figure 4)
as the interface we provided (Figure 3)

B Redundant Annotations

By default, we use two crowdsource workers to
annotate each UNLI sentence-pair. If the two anno-
tations on the raw slider bar {0, · · · , 10000} differ
by more than 2000, we then elicit a third annotator.

C Dataset Statistics

Table 6 summarizes the statistics of u-SNLI.

D Additional Training Details

We use the BERT-BASE-UNCASED model, with the
Adam optimizer (Kingma and Ba, 2015), an initial
learning rate of 10−5, and maximum gradient norm
1.0. Our model is trained for 3 epochs, where the
epoch resulting in the highest Pearson A on the dev
set is selected.

Figure 3: An example of our annotation interface.

Figure 4: Three examples from the instructions.
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Figure 5: Our logistic transformation function.

Partition Breakdown SNLI U-SNLI

train

Distinct premises 151k 7,931
ENT hypotheses 183k 7,931
NEU hypotheses 183k 39,655
CON hypotheses 183k 7,931
Total P-H pairs 550k 55,517

dev

Distinct premises 3,319 2,647
ENT hypotheses 3,329 162
NEU hypotheses 3,235 2,764
CON hypotheses 3,278 114
Total P-H pairs 10k 3,040

test

Distinct premises 3,323 2,635
ENT hypotheses 3,368 156
NEU hypotheses 3,219 2,770
CON hypotheses 3,237 114
Total P-H pairs 10k 3,040

Table 6: Statistics of SNLI data re-annotated under
UNLI.


