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Abstract

We propose a novel method for hierarchical
entity classification that embraces ontologi-
cal structure at both training and during pre-
diction. At training, our novel multi-level
learning-to-rank loss compares positive types
against negative siblings according to the type
tree. During prediction, we define a coarse-
to-fine decoder that restricts viable candidates
at each level of the ontology based on already
predicted parent type(s). We achieve state-
of-the-art across multiple datasets, particularly
with respect to strict accuracy.1

1 Introduction

Entity typing is the assignment of a semantic label
to a span of text, where that span is usually a men-
tion of some entity in the real world. Named en-
tity recognition (NER) is a canonical information
extraction task, commonly considered a form of
entity typing that assigns spans to one of a hand-
ful of types, such as PER, ORG, GPE, and so on.
Fine-grained entity typing (FET) seeks to classify
spans into types according to more diverse, seman-
tically richer ontologies (Ling and Weld, 2012;
Yosef et al., 2012; Gillick et al., 2014; Del Corro
et al., 2015; Choi et al., 2018), and has begun to
be used in downstream models for entity linking
(Gupta et al., 2017; Raiman and Raiman, 2018).

Consider the example in Figure 1 from the FET
dataset, FIGER (Ling and Weld, 2012). The men-
tion of interest, Hollywood Hills, will be typed
with the single label LOC in traditional NER, but
may be typed with a set of types {/location,
/geography, /geography/mountain} un-
der a fine-grained typing scheme. In these finer-
grained typing schemes, types usually form a hi-
erarchy: there are a set of coarse types that lies on

1 Code can be found at https://github.com/
ctongfei/hierarchical-typing.
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Figure 1: An example mention classified using the
FIGER ontology. Positive types are highlighted.

the top level—these are similar to traditional NER
types, e.g. /person; additionally, there are finer
types that are subtypes of these top-level types,
e.g. /person/artist or /person/doctor.

Most prior work concerning fine-grained entity
typing has approached the problem as a multi-
label classification problem: given an entity men-
tion together with its context, the classifier seeks
to output a set of types, where each type is a node
in the hierarchy. Approaches to FET include hand-
crafted sparse features to various neural architec-
tures (Ren et al., 2016a; Shimaoka et al., 2017; Lin
and Ji, 2019, inter alia, see section 2).

Perhaps owing to the historical transition from
“flat” NER types, there has been relatively little
work in FET that exploits ontological tree struc-
ture, where type labels satisfy the hierarchical
property: a subtype is valid only if its parent su-
pertype is also valid. We propose a novel method
that takes the explicit ontology structure into ac-
count, by a multi-level learning to rank approach
that ranks the candidate types conditioned on the
given entity mention. Intuitively, coarser types
are easier whereas finer types are harder to clas-
sify: we capture this intuition by allowing dis-
tinct margins at each level of the ranking model.

https://github.com/ctongfei/hierarchical-typing
https://github.com/ctongfei/hierarchical-typing
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Figure 2: Various type ontologies. Different levels of the types are shown in different shades, from L0 to L3. The
ENTITY and OTHER special nodes are discussed in section 3.

Coupled with a novel coarse-to-fine decoder that
searches on the type hierarchy, our approach guar-
antees that predictions do not violate the hierar-
chical property, and achieves state-of-the-art re-
sults according to multiple measures across vari-
ous commonly used datasets.

2 Related Work

FET is usually studied as allowing for sentence-
level context in making predictions, notably start-
ing with Ling and Weld (2012) and Gillick
et al. (2014), where they created the commonly
used FIGER and OntoNotes datasets for FET.
While researchers have considered the benefits of
document-level (Zhang et al., 2018), and corpus-
level (Yaghoobzadeh and Schütze, 2015) context,
here we focus on the sentence-level variant for best
contrast to prior work.

Progress in FET has focused primarily on:

• Better mention representations: Starting from
sparse hand-crafted binary features (Ling and
Weld, 2012; Gillick et al., 2014), the com-
munity has moved to distributed representa-
tions (Yogatama et al., 2015), to pre-trained
word embeddings with LSTMs (Ren et al.,
2016a,b; Shimaoka et al., 2016; Abhishek et al.,
2017; Shimaoka et al., 2017) or CNNs (Murty
et al., 2018), with mention-to-context atten-
tion (Zhang et al., 2018), then to employing
pre-trained language models like ELMo (Peters
et al., 2018) to generate ever better representa-
tions (Lin and Ji, 2019). Our approach builds
upon these developments and uses state-of-the-
art mention encoders.

• Incorporating the hierarchy: Most prior
works approach the hierarchical typing problem

as multi-label classification, without using in-
formation in the hierarchical structure, but there
are a few exceptions. Ren et al. (2016a) pro-
posed an adaptive margin for learning-to-rank
so that similar types have a smaller margin;
Xu and Barbosa (2018) proposed hierarchical
loss normalization that penalizes output that vi-
olates the hierarchical property; and Murty et al.
(2018) proposed to learn a subtyping relation to
constrain the type embeddings in the type space.
In contrast to these approaches, our coarse-to-
fine decoding approach strictly guarantees that
the output does not violate the hierarchical prop-
erty, leading to better performance. HYENA
(Yosef et al., 2012) applied ranking to sibling
types in a type hierarchy, but the number of pre-
dicted positive types are trained separately with
a meta-model, hence does not support neural
end-to-end training.

Researchers have proposed alternative FET for-
mulations whose types are not formed in a type hi-
erarchy, in particular Ultra-fine entity typing (Choi
et al., 2018; Xiong et al., 2019; Onoe and Dur-
rett, 2019), with a very large set of types derived
from phrases mined from a corpus. FET in KB (Jin
et al., 2019) labels mentions to types in a knowl-
edge base with multiple relations, forming a type
graph. Dai et al. (2019) augments the task with
entity linking to KBs.

3 Problem Formulation

We denote a mention as a tuple x = (w, l, r), where
w = (w1, · · · ,wn) is the sentential context and the
span [l : r]marks a mention of interest in sentence
w. That is, the mention of interest is (wl, · · · ,wr ).
Given x, a hierarchical entity typing model outputs
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a set of types Y in the type ontology Y , i.e. Y ⊆ Y .
Type hierarchies take the form of a forest, where

each tree is rooted by a top-level supertype (e.g.
/person, /location, etc.). We add a dummy
parent node ENTITY = “/”, the supertype of all
entity types, to all the top-level types, effectively
transforming a type forest to a type tree. In Fig-
ure 2, we show 3 type ontologies associated with
3 different datasets (see subsection 5.1), with the
dummy ENTITY node augmented.

We now introduce some notation for referring
to aspects of a type tree. The binary relation “type
z is a subtype of y” is denoted as z <: y.2 The
unique parent of a type y in the type tree is denoted
ȳ ∈ Y , where ȳ is undefined for y = ENTITY.
The immediate subtypes of y (children nodes) are
denoted Ch(y) ⊆ Y . Siblings of y, those sharing
the same immediate parent, are denoted Sb(y) ⊆
Y , where y < Sb(y).

In the AIDA FET ontology (see Figure 2), the
maximum depth of the tree is L = 3, and each
mention can only be typed with at most 1 type
from each level. We term this scenario single-
path typing, since there can be only 1 path starting
from the root (ENTITY) of the type tree. This is
in contrast multi-path typing, such as in the BBN
dataset, where mentions may be labeled with mul-
tiple types on the same level of the tree.

Additionally, in AIDA, there
are mentions labeled such as as
/per/police/<unspecified>. In FIGER,
we find instances with labeled type /person but
not any further subtype. What does it mean when
a mention x is labeled with a partial type path,
i.e., a type y but none of the subtypes z <: y? We
consider two interpretations:

• Exclusive: x is of type y, but x is not of any
type z <: y.

• Undefined: x is of type y, but whether it is an
instance of some z <: y is unknown.

We devise different strategies to deal with these
two conditions. Under the exclusive case, we
add a dummy OTHER node to every intermedi-
ate branch node in the type tree. For any men-
tion x labeled with type y but none of the subtypes
z <: y, we add this additional label “y/OTHER”
to the labels of x (see Figure 2: AIDA). For exam-
ple, if we interpret a partial type path /person

2 Per programming language literature, e.g. the type sys-
tem F<: that supports subtyping.

in FIGER as exclusive, we add another type
/person/OTHER to that instance. Under the
undefined case, we do not modify the labels in the
dataset. We will see this can make a significant
difference depending on the way a specific dataset
is annotated.

4 Model

4.1 Mention Representation
Hidden representations for entity mentions in sen-
tence w are generated by leveraging recent ad-
vances in language model pre-training, e.g. ELMo
(Peters et al., 2018).3 The ELMo representa-
tion for each token wi is denoted as wi ∈ Rdw .
Dropout is applied with probability pD to the
ELMo vectors.

Our mention encoder largely follows Lin and Ji
(2019). First a mention representation is derived
using the representations of the words in the men-
tion. We apply a max pooling layer atop the men-
tion after a linear transformation:4

m = MaxPool(Twl, · · · ,Twr ) ∈ Rdw . (1)

Then we employ mention-to-context attention
first described in Zhang et al. (2018) and later em-
ployed by Lin and Ji (2019): a context vector c is
generated by attending the sentence with a query
vector derived from the mention vector m. We use
the multiplicative attention of Luong et al. (2015):

ai ∝ exp(mTQwi) (2)

c =
N∑
i=1

aiwi ∈ Rdw (3)

The final representation for an entity mention
is generated via concatenation of the mention and
context vector: [m ; c] ∈ R2dw .

4.2 Type Scorer
We learn a type embedding y ∈ Rdt for each type
y ∈ Y . To score an instance with representation
[m ; c], we pass it through a 2-layer feed-forward
network that maps into the same space as the type
space Rdt , with tanh as the nonlinearity. The final

3 Lin and Ji (2019) found that ELMo performs better than
BERT (Devlin et al., 2019) for FET. Our internal experiments
also confirm this finding. We hypothesize that this is due
to the richer character-level information contained in lower-
level ELMo representations that are useful for FET.

4 Lin and Ji (2019) proposed an attentive pooler with a
learned global query vector. We found out that a simple max
pooling layer achieves similar performance.
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score is an inner product between the transformed
feature vector and the type embedding:

F(x, y) = FFNN([m ; c]) · y . (4)

4.3 Hierarchical Learning-to-Rank

We introduce our novel hierarchical learning-to-
rank loss that (1) allows for natural multi-label
classification and (2) takes the hierarchical ontol-
ogy into account.

We start with a multi-class hinge loss that ranks
positive types above negative types (Weston and
Watkins, 1999):

Jflat(x,Y ) =
∑
y∈Y

∑
y′<Y
[ξ − F(x, y) + F(x, y′)]+ (5)

where [x]+ = max{0, x}. This is actually learning-
to-rank with a ranking SVM (Joachims, 2002): the
model learns to rank the positive types y ∈ Y
higher than those negative types y′ < Y , by impos-
ing a margin ξ between y and y′: type y should
rank higher than y′ by ξ. Note that in Equation 5,
since it is a linear SVM, the margin hyperparam-
eter ξ could be just set as 1 (the type embeddings
are linearly scalable), and we rely on L2 regular-
ization to constrain the type embeddings.

Multi-level Margins However, this method
considers all candidate types to be flat instead of
hierarchical — all types are given the same treat-
ment without any prior on their relative position
in the type hierarchy. Intuitively, coarser types
(higher in the hierarchy) should be easier to deter-
mine (e.g. /person vs /location should be
fairly easy for the model), but fine-grained types
(e.g. /person/artist/singer) are harder.

We encode this intuition by (i) learning to rank
types only on the same level in the type tree; (ii)
setting different margin parameters for the ranking
model with respect to different levels:∑

y∈Y

∑
y′∈Sb(y)\Y

[ξlev(y) − F(x, y) + F(x, y′)]+ (6)

Here lev(y) is the level of the type y:
for example, lev(/location) = 1, and
lev(/person/artist/singer) = 3. In
Equation 6, each positive type y is only compared
against its negative siblings Sb(y)\Y , and the mar-
gin hyperparameter is set to be ξlev(y), i.e., a mar-
gin dependent on which level y is in the tree. In-
tuitively, we should set ξ1 > ξ2 > ξ3 since our
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Figure 3: Hierarchical learning-to-rank. Positive type
paths are colored black, negative type paths are col-
ored gray. Each blue line corresponds to a threshold
derived from a parent node. Positive types (on the left)
are ranked above negative types (on the right).

model should be able to learn a larger margin be-
tween easier pairs: we show that this is superior
than using a single margin in our experiments.

Analogous to the reasoning that in Equation 5
the margin ξ can just be 1, only the relative ratios
between ξ’s are important. For simplicity,5 if the
ontology has L levels, we assign

ξl = L − l + 1 . (7)

For example, given an ontology with 3 levels, the
margins per level are (ξ1, ξ2, ξ3) = (3, 2, 1).
Flexible Threshold Equation 6 only ranks pos-
itive types higher than negative types so that all
children types given a parent type are ranked based
on their relevance to the entity mention. What
should be the threshold between positive and neg-
ative types? We could set the threshold to be 0 (ap-
proaching the multi-label classification problem
as a set of binary classification problem, see Lin
and Ji (2019)), or tune an adaptive, type-specific
threshold for each parent type (Zhang et al., 2018).
Here, we propose a simpler method.

We propose to directly use the parent node as
the threshold. If a positive type is y, we learn the
following ranking relation:

y � ȳ � y′, ∀y′ ∈ Sb(t) (8)

where � means “ranks higher than”.
For example, a mention has gold type
/person/artist/singer. Since the

5 We did hyperparameter search on these margin hyper-
parameters and found that Equation 7 generalized well.



8469

parent type /person/artist can be consid-
ered as a kind of prior for all types of artists, the
model should learn that the positive type “singer”
should have a higher confidence than “artist”,
and in turn, higher than other types of artists like
“author” or “actor”. Hence the ranker should learn
that “a positive subtype should rank higher than
its parent, and its parent should rank higher than
its negative children.” Under this formulation,
at decoding time, given parent type y, a child
subtype z <: y that scores higher than y should be
output as a positive label.

We translate the ranking relation in Equation 8
into a ranking loss that extends Equation 6. In
Equation 6, there is an expected margin ξ between
positive types and negative types. Since we in-
serted the parent in the middle, we divide the mar-
gin ξ into αξ and (1 − α)ξ: αξ being the margin
between positive types and the parent; and (1−α)ξ
is the margin between the parent and the negative
types. For a visualization see Figure 3.

The hyperparameter α ∈ [0, 1] can be used to
tune the precision-recall tradeoff when outputting
types: the smaller α, the smaller the expected mar-
gin there is between positive types and the parent.
This intuitively increases precision but decreases
recall (only very confident types can be output).
Vice versa, increasing α decreases precision but
increase recall.

Therefore we learn 3 sets of ranking relations
from Equation 8: (i) positive types should be
scored above parent by αξ; (ii) parent should be
scored above any negative sibling types by (1 −
α)ξ; (iii) positive types should be scored above
negative sibling types by ξ. Our final hierarchical
ranking loss is formulated as follows.

Jy�ȳ = [ αξlev(y)−F(x, y)+ F(x, ȳ)]+
Jȳ�y′ =

∑
y′∈Sb(y)\Y

[(1 − α)ξlev(y)−F(x, ȳ)+F(x, y′)]+

Jy�y′ =
∑

y′∈Sb(y)\Y
[ ξlev(y)−F(x, y)+F(x, y′)]+

Jhier(x,Y ) =
∑
y∈Y

(
Jy�ȳ + Jȳ�y′ + Jy�y′

)
(9)

4.4 Decoding
Predicting the types for each entity mention can be
performed via iterative searching on the type tree,
from the root ENTITY node to coarser types, then
to finer-grained types. This ensures that our output
does not violate the hierarchical property, i.e., if a
subtype is output, its parent must be output.

Algorithm 1 Decoding for Hierarchical Typing

1: function HIERTYPEDEC(F(x, ·))
2: Q← {ENTITY} . queue for searching
3: Ŷ ← � . set of output types
4: repeat
5: y ← DEQUEUE(Q)
6: θ ← F(x, y) + δlev(y) . threshold value
7: Z ← {z ∈ Ch(y) | F(x, z) > θ}

. all decoded children types
8: Z ′← TOPK(Z, klev(y)+1, F(x, ·))

. pruned by the max branching factors
9: Ŷ ← Ŷ ∪ Z ′

10: for z ∈ Z ′ do
11: ENQUEUE(Q, z)
12: end for
13: until Q = � . queue is empty
14: return Ŷ . return all decoded types
15: end function

Given instance x we compute the score F(x, y)
for each type y ∈ Y , the searching process starts
with the root node ENTITY of the type tree in the
queue. For each type y in the node, a child node
z <: y (subtypes) is added to the predicted type set
if F(x, z) > F(x, y), corresponding to the ranking
relation in Equation 8 that the model has learned.6

Here we only take the top-k element to add to
the queue to prevent from over-generating types.
This can also be used to enforce the single-path
property (setting k = 1) if the dataset is single-
path. For each level i in the type hierarchy, we
limit the branching factor (allowed children) to be
ki. The algorithm is listed in Algorithm 1, where
the function TOPK(S, k, f ) selects the top-k ele-
ments from S with respect to the function f .

4.5 Subtyping Relation Constraint

Each type y ∈ Y in the ontology is assigned
a type embedding y ∈ Rdt . We notice the bi-
nary subtyping relation “ <: ” ⊆ Y × Y on the
types. Trouillon et al. (2016) proposed the rela-
tion embedding method ComplEx that works well
with anti-symmetric and transitive relations such
as subtyping. It has been employed in FET before

6 For the OntoNotes dataset, we introduce another set
of per-level hyperparameters δlev(y), and the threshold value
F(x, y) is modified to F(x, y) + δlev(y), akin to the adaptive
threshold in Zhang et al. (2018). This is due to a large type
distribution mismatch between the training and dev/test sets
in OntoNotes (in dev/test there are a lot of instances with the
single type /other but not in the training set). For other
datasets they are unused, i.e. just 0.
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— in Murty et al. (2018), ComplEx is added to the
loss to regulate the type embeddings. ComplEx
operates in the complex space — we use the natu-
ral isomorphism between real and complex spaces
to map the type embedding into complex space
(first half of the embedding vector as the real part,
and the second half as the imaginary part):

φ : Rdt → Cdt /2 (10)

t = [ Re φ(t) ; Im φ(t) ] (11)

We learn a single relation embedding r ∈ Cdt /2

for the subtyping relation. Given type y and z, the
subtyping statement y <: z is modeled using the
following scoring function:

r(y, z) = Re
(
r ·

(
φ(y) � φ(z)

))
(12)

where � is element-wise product and x is the com-
plex conjugate of x. If y <: z then r(y, z) > 0; and
vice versa, r(y, z) < 0 if y ≮: z.

Loss Given instance (x,Y ), for each positive
type y ∈ Y , we learn the following relations:

y <: ȳ
y ≮: y′, ∀y′ ∈ Sb(y)
y ≮: y′, ∀y′ ∈ Sb(ȳ) (13)

Translating these relation constraints as a binary
classification problem (”is or is not a subtype”) un-
der a primal SVM, we get a hinge loss:

Jrel(x,Y ) =
∑
y∈Y

(
[1 − r(y, ȳ)]+

+
∑

y′∈Sb(y)∪Sb(ȳ)
[1 + r(y, y′)]+

)
. (14)

This is different from Murty et al. (2018), where
a binary cross-entropy loss on randomly sampled
(y, y′) pairs is used. Our experiments showed that
the loss in Equation 14 performs better than the
cross-entropy version, due to the structure of the
training pairs: we use siblings and siblings of par-
ents as negative samples (these are types closer to
the positive parent type), hence are training with
more competitive negative samples.

4.6 Training and Validation
Our final loss is a combination of the hierarchical
ranking loss and the subtyping relation constraint
loss, with L2 regularization:

Jhier(x,Y ) + βJrel(x,Y ) + λ2 ‖Θ‖
2
2 . (15)

The AdamW optimizer (Loshchilov and Hutter,
2019) is used to train the model, as it is shown
to be superior than the original Adam under L2
regularization. Hyperparameters α (ratio of mar-
gin above/below threshold), β (weight of subtyp-
ing relation constraint), and λ (L2 regularization
coefficient) are tuned.

At validation time, we tune the maximum
branching factors for each level k1, · · · , kL .7

These parameters tune the trade-off between the
precision and recall for each layer and prevents
over-generation (as we observed in some cases).
All hyperparameters are tuned so that models
achieve maximum micro F1 scores (see subsec-
tion 5.4).

5 Experiments

5.1 Datasets

AIDA The AIDA Phase 1 practice dataset for
hierarchical entity typing comprises of 297 docu-
ments from LDC2019E04 / LDC2019E07, and
the evaluation dataset is from LDC2019E42 /
LDC2019E77. We take only the English part of
the data, and use the practice dataset as train/dev,
and the evaluation dataset as test. The practice
dataset comprises of 3 domains, labeled as R103,
R105, and R107. Since the evaluation dataset is
out-of-domain, we use the smallest domain R105
as dev, and the remaining R103 and R107 as
train.

The AIDA entity dataset has a 3-level ontology,
termed type, subtype, and subsubtype. A mention
can only have one label for each level, hence the
dataset is single-path, thus the branching factors
(k1, k2, k3) for the three layers are set to (1, 1, 1).

BBN Weischedel and Brunstein (2005) labeled
a portion of the one million word Penn Treebank
corpus of Wall Street Journal texts (LDC95T7) us-
ing a two-level hierarchy, resulting in the BBN
Pronoun Coreference and Entity Type Corpus. We
follow the train/test split by Ren et al. (2016b), and
follow the train/dev split by Zhang et al. (2018).

OntoNotes Gillick et al. (2014) sampled sen-
tences from the OntoNotes corpus and anno-
tated the entities using 89 types. We follow the
train/dev/test data split by Shimaoka et al. (2017).

7 For the OntoNotes dataset, this also includes the per-
level threshold δlev(k).
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Dataset Train Dev Test # Levels # Types Multi-path? α β λ pD k1, · · · ,L

AIDA 2,492 558 1,383 3 187 single-path 0.1 0.3 0.1 0.5 (1,1,1)
BBN 84,078 2,000 13,766 2 56 multi-path 0.2 0.1 0.003 0.5 (2,1)
OntoNotes 251,039 2,202 8,963 3 89 multi-path 0.15 0.1 0.001 0.5 (2,1,1)
FIGER 2,000,000 10,000 563 2 113 multi-path 0.2 0.1 0.0001 0.5 (2,1)

Table 1: Statistics of various datasets and their corresponding hyperparameter settings.

FIGER Ling and Weld (2012) sampled a dataset
from Wikipdia articles and news reports. Entity
mentions in these texts are mapped to a 113-type
ontology derived from Freebase (Bollacker et al.,
2008). Again, we follow the data split by Shi-
maoka et al. (2017).

The statistics of these datasets and their accom-
panying ontologies are listed in Table 1, together
with their respective hyperparameters.8

5.2 Setup

To best compare to recent prior work, we follow
Lin and Ji (2019) where the ELMo encodings of
words are fixed and not updated. We use all 3 lay-
ers of ELMo output, so the initial embedding has
dimension dw = 3072. We set the type embed-
ding dimensionality to be dt = 1024. The initial
learning rate is 10−5 and the batch size is 256.

Hyperparameter choices are tuned on dev sets,
and are listed in Table 1. We employ early stop-
ping: choosing the model that yields the best mi-
cro F1 score on dev sets.

Our models are implemented using AllenNLP
(Gardner et al., 2018), with implementation for
subtyping relation constraints from OpenKE (Han
et al., 2018).

5.3 Baselines

We compare our approach to major prior work in
FET that are capable of multi-path entity typing.9

For AIDA, since there are no prior work on this
dataset to our knowledge, we also implemented
multi-label classification as set of binary classifier
models (similar to Lin and Ji (2019)) as a baseline,
with our mention feature extractor. The results are
shown in Table 2 as “Multi-label”.

8 The OntoNotes dataset has an additional set of hyperpa-
rameters, i.e. the per-level threshold δ1,2,3 = (2.5, 3.0, 0.0).

9 Zhang et al. (2018) included document-level informa-
tion in their best results—for fair comparison, we used their
results without document context, as are reported in their ab-
lation tests.

5.4 Metrics

We follow prior work and use strict accuracy
(Acc), macro F1 (MaF), and micro F1 (MiF)
scores. Given instance xi, we denote the gold type
set as Yi and the predicted type set Ŷi. The strict
accuracy is the ratio of instances where Yi = Ŷi.
Macro F1 is the average of all F1 scores between
Yi and Ŷi for all instances, whereas micro F1 counts
total true positives, false negatives and false posi-
tives globally.

We also investigate per-level accuracies on
AIDA. The accuracy on level l is the ratio of in-
stances whose predicted type set and gold type set
are identical at level l. If there is no type output at
level l, we append with OTHER to create a dummy
type at level l: e.g. /person/OTHER/OTHER.
Hence accuracy of the last level (in AIDA, level 3)
is equal to the strict accuracy.

5.5 Results and Discussions

All our results are run under the two conditions re-
garding partial type paths: exclusive or undefined.
The result of the AIDA dataset is shown in Table 2.
Our model under the exclusive case outperforms a
multi-label classification baseline over all metrics.

Of the 187 types specified in the AIDA ontol-
ogy, the train/dev set only covers 93 types. The
test set covers 85 types, of which 63 are seen types.
We could perform zero-shot entity typing by ini-
tializing a type’s embedding using the type name
(e.g. /fac/structure/plaza) together with
its description (e.g. “An open urban public space,
such as a city square”) as is designated in the data
annotation manual. We leave this as future work.

Approach L1 L2 L3 MaF MiF

Ours (exclusive) 81.6 43.1 32.0 60.6 60.0
Ours (undefined) 80.0 43.3 30.2 59.3 58.0

− Subtyping constraints 80.3 40.9 29.9 59.1 58.3
−Multi-level margins 76.9 40.2 29.8 57.4 56.9

Multi-label 80.5 42.1 30.7 59.7 57.9

Table 2: Results on the AIDA dataset.
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Approach BBN OntoNotes FIGER

Acc MaF MiF Acc MaF MiF Acc MaF MiF

Ling and Weld (2012) 46.7 67.2 61.2 − † 52.3 69.9 69.3
Ren et al. (2016b) 49.4 68.8 64.5 51.6 67.4 62.4 49.4 68.8 64.5
Ren et al. (2016a) 67.0 72.7 73.5 55.1 71.1 64.7 53.3 69.3 66.4
Abhishek et al. (2017) 60.4 74.1 75.7 52.2 68.5 63.3 59.0 78.0 74.9
Shimaoka et al. (2017) − † 51.7 71.0 64.9 59.7 79.0 75.4
Murty et al. (2018) − † − † 59.7 78.3 75.4
Zhang et al. (2018) 58.1 75.7 75.1 53.2 72.1 66.5 60.2‡ 78.7‡ 75.5‡

Lin and Ji (2019) 55.9 79.3 78.1 63.8* 82.9* 77.3* 62.9 83.0 79.8

Ours (exclusive) 48.2 63.2 61.0 58.3 72.4 67.2 69.1 82.6 80.8
Ours (undefined) 75.2 79.7 80.5 58.7 73.0 68.1 65.5 80.5 78.1

− Subtyping constraint 73.2 77.8 78.4 58.3 72.2 67.1 65.4 81.4 79.2
−Multi-level margins 68.9 73.2 74.2 58.5 71.7 66.0 68.1 80.4 78.0

†: Not run on the specific dataset; *: Not strictly comparable due to non-standard, much larger training set;
‡: Result has document-level context information, hence not comparable.

Table 3: Results of common FET datasets: BBN, OntoNotes, and FIGER. Numbers in italic are results obtained
with various augmentation techniques, either larger data or larger context, hence not directly comparable.

Results for the BBN, OntoNotes, and FIGER
can be found in Table 3. Across 3 datasets, our
method produces the state-of-the-art performance
on strict accuracy and micro F1 scores, and state-
of-the-art or comparable (±0.5%) performance on
macro F1 score, as compared to prior models, e.g.
(Lin and Ji, 2019). Especially, our method im-
proves upon the strict accuracy substantially (4%–
8%) across these datasets, showing our decoder
are better at outputting exact correct type sets.

Partial type paths: exclusive or undefined?
Interestingly, we found that for AIDA and FIGER,
partial type paths should be better considered as
exclusive, whereas for BBN and OntoNotes, con-
sidering them as undefined leads to better per-
formance. We hypothesize that this comes from
how the data is annotatated—the annotation man-
ual may contain directives as whether to interpret
partial type paths as exclusive or undefined, or the
data may be non-exhaustively annotated, leading
to undefined partial types. We advocate for care-
ful investigation into partial type paths for future
experiments and data curation.

Ablation Studies We compare our best model
with various components of our model removed,
to study the gain from each component. From
the best of these two settings (exclusive and unde-
fined), we report the performance of (i) removing

the subtyping constraint as is described in subsec-
tion 4.5; (ii) substituting the multi-level margins
in Equation 7 with a “flat” margin, i.e., margins
on all levels are set to be 1. These results are
shown in Table 2 and Table 3 under our best re-
sults, and they show that both multi-level margins
and subtyping relation constraints offer orthogonal
improvements to our models.

Error Analysis We identify common patterns of
errors, coupled with typical examples:

• Confusing types: In BBN, our model out-
puts /gpe/city when the gold type is
/location/region for “... in shipments
from the Valley of either hardware or software
goods.” These types are semantically similar,
and our model failed to discriminate between
these types.

• Incomplete types: In FIGER, given instance
“... multi-agency investigation headed by the
U.S. Immigration and Customs Enforcement ’s
homeland security investigations unit”, the
gold types are /government agency and
/organization, but our model failed to out-
put /organization.

• Focusing on only parts of the mention: In
AIDA, given instance “... suggested they were
the work of Russian special forces assassins
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out to blacken the image of Kievs pro-
Western authorities”, our model outputs
/org/government whereas the gold type is
/per/militarypersonnel. Our model
focused on the “Russian special forces” part,
but ignored the “assassins” part. Better men-
tion representation is required to correct this,
possibly by introducing type-aware mention
representation—we leave this as future work.

6 Conclusions

We proposed (i) a novel multi-level learning to
rank loss function that operates on a type tree,
and (ii) an accompanying coarse-to-fine decoder
to fully embrace the ontological structure of the
types for hierarchical entity typing. Our approach
achieved state-of-the-art performance across var-
ious datasets, and made substantial improvement
(4–8%) upon strict accuracy.

Additionally, we advocate for careful investiga-
tion into partial type paths: their interpretation re-
lies on how the data is annotated, and in turn, in-
fluences typing performance.
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