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Abstract

Recent neural network-driven semantic role la-
beling (SRL) systems have shown impressive
improvements in F1 scores. These improve-
ments are due to expressive input representa-
tions, which, at least at the surface, are or-
thogonal to knowledge-rich constrained decod-
ing mechanisms that helped linear SRL mod-
els. Introducing the benefits of structure to
inform neural models presents a methodolog-
ical challenge. In this paper, we present a
structured tuning framework to improve mod-
els using softened constraints only at training
time. Our framework leverages the expressive-
ness of neural networks and provides supervi-
sion with structured loss components. We start
with a strong baseline (RoBERTa) to validate
the impact of our approach, and show that our
framework outperforms the baseline by learn-
ing to comply with declarative constraints. Ad-
ditionally, our experiments with smaller train-
ing sizes show that we can achieve consistent
improvements under low-resource scenarios.

1 Introduction

Semantic Role Labeling (SRL, Palmer et al., 2010)
is the task of labeling semantic arguments of pred-
icates in sentences to identify who does what to
whom. Such representations can come in handy in
tasks involving text understanding, such as coref-
erence resolution (Ponzetto and Strube, 2006) and
reading comprehension (e.g., Berant et al., 2014;
Zhang et al., 2020). This paper focuses on the
question of how knowledge can influence modern
semantic role labeling models.

Linguistic knowledge can help SRL models in
several ways. For example, syntax can drive feature
design (e.g., Punyakanok et al., 2005; Toutanova
et al., 2005; Kshirsagar et al., 2015; Johansson and
Nugues, 2008, and others), and can also be em-
bedded into neural network architectures (Strubell
et al., 2018).

In addition to such influences on input represen-
tations, knowledge about the nature of semantic
roles can inform structured decoding algorithms
used to construct the outputs. The SRL literature is
witness to a rich array of techniques for structured
inference, including integer linear programs (e.g.,
Punyakanok et al., 2005, 2008), bespoke inference
algorithms (e.g., Täckström et al., 2015), A* decod-
ing (e.g., He et al., 2017), greedy heuristics (e.g.,
Ouchi et al., 2018), or simple Viterbi decoding to
ensure that token tags are BIO-consistent.

By virtue of being constrained by the definition
of the task, global inference promises semantically
meaningful outputs, and could provide valuable
signal when models are being trained. However,
beyond Viterbi decoding, it may impose prohibitive
computational costs, thus ruling out using infer-
ence during training. Indeed, optimal inference
may be intractable, and inference-driven training
may require ignoring certain constraints that render
inference difficult.

While global inference was a mainstay of SRL
models until recently, today’s end-to-end trained
neural architectures have shown remarkable suc-
cesses without needing decoding. These successes
can be attributed to the expressive input and in-
ternal representations learned by neural networks.
The only structured component used with such
models, if at all, involves sequential dependencies
between labels that admit efficient decoding.

In this paper, we ask: Can we train neural net-
work models for semantic roles in the presence of
general output constraints, without paying the high
computational cost of inference? We propose a
structured tuning approach that exposes a neural
SRL model to differentiable constraints during the
finetuning step. To do so, we first write the output
space constraints as logic rules. Next, we relax
such statements into differentiable forms that serve
as regularizers to inform the model at training time.
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Finally, during inference, our structure-tuned mod-
els are free to make their own judgments about
labels without any inference algorithms beyond a
simple linear sequence decoder.

We evaluate our structured tuning on the CoNLL-
05 (Carreras and Màrquez, 2005) and CoNLL-12
English SRL (Pradhan et al., 2013) shared task
datasets, and show that by learning to comply with
declarative constraints, trained models can make
more consistent and more accurate predictions. We
instantiate our framework on top of a strong base-
line system based on the RoBERTa (Liu et al.,
2019) encoder, which by itself performs on par
with previous best SRL models that are not en-
sembled. We evaluate the impact of three differ-
ent types of constraints. Our experiments on the
CoNLL-05 data show that our constrained mod-
els outperform the baseline system by 0.2 F1 on
the WSJ section and 1.2 F1 on the Brown test set.
Even with the larger and cleaner CoNLL-12 data,
our constrained models show improvements with-
out introducing any additional trainable parameters.
Finally, we also evaluate the effectiveness of our
approach on low training data scenarios, and show
that constraints can be more impactful when we do
not have large training sets.

In summary, our contributions are:
1. We present a structured tuning framework for

SRL which uses soft constraints to improve
models without introducing additional train-
able parameters.1

2. Our framework outperforms strong baseline
systems, and shows especially large improve-
ments in low data regimes.

2 Model & Constraints

In this section, we will introduce our structured
tuning framework for semantic role labeling. In
§2.1, we will briefly cover the baseline system.
To that, we will add three constraints, all treated
as combinatorial constraints requiring inference
algorithms in past work: Unique Core Roles in
§2.3, Exclusively Overlapping Roles in §2.4, and
Frame Core Roles in §2.5. For each constraint,
we will discuss how to use its softened version
during training.

We should point out that the specific constraints
chosen serve as a proof-of-concept for the general
methodology of tuning with declarative knowledge.

1Our code to replay our experiments is archived at https:
//github.com/utahnlp/structured tuning srl.

For simplicity, for all our experiments, we use the
ground truth predicates and their senses.

2.1 Baseline

We use RoBERTa (Liu et al., 2019) base version to
develop our baseline SRL system. The large num-
ber of parameters not only allows it to make fast
and accurate predictions, but also offers the capac-
ity to learn from the rich output structure, including
the constraints from the subsequent sections.

Our base system is a standard BIO tagger, briefly
outlined below. Given a sentence s, the goal is
to assign a label of the form B-X, I-X or O for
each word i being an argument with label X for
a predicate at word u. These unary decisions are
scored as follows:

e = map(RoBERTa(s)) (1)

vu, ai = fv(eu), fa(ei) (2)

φu,i = fva([vu, ai]) (3)

yu,i = g(φu,i) (4)

Here, map converts the wordpiece embeddings e
to whole word embeddings by summation, fv and
fa are linear transformations of the predicate and
argument embeddings respectively, fva is a two-
layer ReLU with concatenated inputs, and finally
g is a linear layer followed by softmax activation
that predicts a probability distribution over labels
for each word i when u is a predicate. In addition,
we also have a standard first-order sequence model
over label sequences for each predicate in the form
of a CRF layer that is Viterbi decoded. We use the
standard cross-entropy loss to train the model.

2.2 Designing Constraints

Before looking at the specifics of individual con-
straints, let us first look at a broad overview of our
methodology. We will see concrete examples in the
subsequent sections.

Output space constraints serve as prior domain
knowledge for the SRL task. We will design our
constraints as invariants at the training stage. To
do so, we will first define constraints as statements
in logic. Then we will systematically relax these
Boolean statements into differentiable forms using
concepts borrowed from the study of triangular
norms (t-norms, Klement et al., 2013). Finally,
we will treat these relaxations as regularizers in
addition to the standard cross-entropy loss.

https://github.com/utahnlp/structured_tuning_srl
https://github.com/utahnlp/structured_tuning_srl
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All the constraints we consider are conditional
statements of the form:

∀x, L(x)→ R(x) (5)

where the left- and the right-hand sides—
L(x), R(x) respectively—can be either disjunctive
or conjunctive expressions. The literals that consti-
tute these expressions are associated with classifica-
tion neurons, i.e., the predicted output probabilities
are soft versions of these literals.

What we want is that model predictions satisfy
our constraints. To teach a model to do so, we trans-
form conditional statements into regularizers, such
that during training, the model receives a penalty if
the rule is not satisfied for an example.2

To soften logic, we use the conversions shown
in Table 1 that combine the product and Gödel t-
norms. We use this combination because it offers
cleaner derivatives make learning easier. A simi-
lar combination of t-norms was also used in prior
work (Minervini and Riedel, 2018). Finally, we
will transform the derived losses into log space
to be consistent with cross-entropy loss. Li et al.
(2019) outlines this relationship between the cross-
entropy loss and constraint-derived regularizers in
more detail.

Logic
∧

i ai
∨

i ai ¬a a→ b

Gödel min (ai) max (ai) 1− a –
Product Πai – 1− a min

(
1, ba
)

Table 1: Converting logical operations to differentiable
forms. For literals inside of L(s) and R(s), we use the
Gödel t-norm. For the top-level conditional statement,
we use the product t-norm. Operations not used this
paper are marked as ‘–’.

2.3 Unique Core Roles (U )

Our first constraint captures the idea that, in a
frame, there can be at most one core participant
of a given type. Operationally, this means that for
every predicate in an input sentence s, there can
be no more than one occurrence of each core argu-
ment (i.e, Acore = {A0,A1,A2,A3,A4,A5}). In

2Constraint-derived regularizers are dependent on exam-
ples, but not necessarily labeled ones. For simplicity, in this
paper, we work with sentences from the labeled corpus. How-
ever, the methodology described here can be extended to use
unlabeled examples as well.

first-order logic, we have:

∀ u, i ∈ s,X ∈ Acore,

BX(u, i)→
∧

j∈s,j 6=i

¬BX(u, j) (6)

which says, for a predicate u, if a model tags the
i-th word as the beginning of the core argument
span, then it should not predict that any other token
is the beginning of the same label.

In the above rule, the literal BX is associated
with the predicted probability for the label B-X3.
This association is the cornerstone for deriving
constraint-driven regularizers. Using the conver-
sion in Table 1 and taking the natural log of the
resulting expression, we can convert the implica-
tion in (6) as l(u, i,X):

max

(
logBX (u, i)− min

j∈s,j 6=i
log (1−BX (u, j))

)
.

Adding up the terms for all tokens and labels, we
get the final regularizer LU (s):

LU (s) =
∑

(u,i)∈s,X∈Acore

l(u, i,X). (7)

Our constraint is universally applied to all words
and predicates (i.e., i, u respectively) in the given
sentence s. Whenever there is a pair of predicted
labels for tokens i, j that violate the rule (6), our
loss will yield a positive penalty.

Error Measurement ρu To measure the viola-
tion rate of this constraint, we will report the per-
centages of propositions that have duplicate core
arguments. We will refer to this error rate as ρu.

2.4 Exclusively Overlapping Roles (O)

We adopt this constraint from Punyakanok et al.
(2008) and related work. In any sentence, an argu-
ment for one predicate can either be contained in
or entirely outside another argument for any other
predicate. We illustrate the intuition of this con-
straint in Table 2, assuming core argument spans
are unique and tags are BIO-consistent.

Based on Table 2, we design a constraint that
says: if an argument has boundary [i, j], then no
other argument span can cross the boundary at j.

3 We will use BX(u, i) to represent both the literal that
the token i is labeled with B-X for predicate u and also the
probability for this event. We follow a similar convention for
the I-X labels.



8405

Token index i · · · j j + 1

[i-j] has label X BX · · · IX ¬IX
Not allowed – – BY IY
Not allowed ¬BY ∧ ¬IY – IY IY

Table 2: Formalizing the exclusively overlapping role
constraint in terms of the B and I literals. For every
possible span [i-j] in a sentence, whenever it has a label
X for some predicate (first row), token labels as in the
subsequent rows are not allowed for any other predicate
for any other argument Y. Note that this constraint does
not affect the cells marked with a –.

This constraint applies to all argument labels in the
task, denoted by the set A.

∀ u, i, j ∈ s such that j > i, and ∀ X ∈ A,
P (u, i, j,X)→

∧
v∈s,Y∈A

(u,X)6=(v,Y)

Q(v, i, j,Y) (8)

where
P (u, i, j,X) = BX(u, i) ∧ IX(u, j) ∧ ¬IX(u, j + 1)

Q(v, i, j,Y) = Q1(v, i, j,Y) ∧Q2(v, i, j, η)

Q1(v, i, j,Y) = ¬BY(v, j) ∨ ¬IY(v, j + 1)

Q2(v, i, j,Y) =

BY(v, i) ∨ IY(v, i) ∨ ¬IY(v, j) ∨ ¬IY(v, j + 1)

Here, the term P (u, i, j,X) denotes the indicator
for the argument span [i, j] having the label X for a
predicate u and corresponds to the first row of Ta-
ble 2. The terms Q1(v, i, j,Y) and Q2(v, i, j,Y)
each correspond to prohibitions of the type de-
scribed in the second and third rows respectively.

As before, the literals BX, etc are relaxed as
model probabilities to define the loss. By combin-
ing the Gödel and product t-norms, we translate
Rule (8) into:

LO(s) =
∑

(u,i,j)∈s
j>i,X∈A

l(u, i, j,X). (9)

where,

l(u, i, j,X) = max
(
0, logP (u, i, j,X)

− min
v∈s,Y∈A

(u,X)6=(v,Y)

logQ(v, i, j,Y)
)

P (u, i, j,X) =

min (BX (u, i) , IX (u, j) , 1− IX (u, j + 1))

Q(v, i, j,Y) = min (Q1(v, i, j,Y), Q2(v, i, j,Y))

Q1(v, i, j,Y) = 1−min (BY(v, j), IY(v, j + 1))

Q2(v, i, j,Y) =

max (BY(v, i), IY(v, i), 1− IY(v, j), 1− IY(v, j + 1))

Again, our constraint applies to all predicted prob-
abilities. However, doing so requires scanning over
6 axes defined by (u, v, i, j,X,Y), which is com-
putationally expensive. To get around this, we ob-
serve that, since we have a conditional statement,
the higher the probability of P (u, i, j,X), the more
likely it yields non-zero penalty. These cases are
precisely the ones we hope the constraint helps.
Thus, for faster training and ease of implementa-
tion, we modify Equation 8 by squeezing the (i, j)
dimensions using top-k to redefine LO above as:

T (u,X) = arg top-k(i,j)∈sP (u, i, j,X) (10)

LO(s) =
∑

u∈s,X∈A

∑
(i,j)∈T (v,X)

l(u, i, j,X). (11)

where T denotes the set of the top-k span bound-
aries for predicate u and argument label X. This
change results in a constraint defined by u, v, X, Y
and the k elements of T .

Error Measurement ρo We will refer to the er-
ror of the overlap constraint as ρo, which describes
the total number of non-exclusively overlapped
pairs of arguments. In practice, we found that
models rarely make such observed mistakes. In
§3, we will see that using this constraint during
training helps models generalize better with other
constraints. In §4, we will analyze the impact of the
parameter k in the optimization described above.

2.5 Frame Core Roles (F )

The task of semantic role labeling is defined using
the PropBank frame definitions. That is, for any
predicate lemma of a given sense, PropBank de-
fines which core arguments it can take and what
they mean. The definitions allow for natural con-
straints that can teach models to avoid predicting
core arguments outside of the predefined set.

∀u ∈ s, k ∈ S(u),

Sense(u, k)→
∧
i∈s

X6∈R(u,k)

¬ (BX(u, i) ∧ IX(u, i))

where S(u) denotes the set of senses for a predicate
u, and R(u, k) denotes the set of acceptable core
arguments when the predicate u has sense k.

As noted in §2.2, literals in the above statement
can to be associated with classification neurons.
Thus the Sense(u, k) corresponds to either model
prediction or ground truth. Since our focus is to
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validate the approach of using relaxed constraints
for SRL, we will use the latter.

This constraint can be also converted into reg-
ularizer following previous examples, giving us a
loss term LF (s).

Error Measurement ρf We will use ρf to de-
note the violation rate. It represents the percentage
of propositions that have predicted core arguments
outside the role sets of PropBank frames.

Loss Our final loss is defined as:

LE(s) + λULU (s) + λOLO(s) + λFLF (s)
(12)

Here, LE(s) is the standard cross entropy loss over
the BIO labels, and the λ’s are hyperparameters.

3 Experiments & Results

In this section, we study the question: In what sce-
narios can we inform an end-to-end trained neural
model with declarative knowledge? To this end,
we experiment with the CoNLL-05 and CoNLL-12
datasets, using standard splits and the official evalu-
ation script for measuring performance. To empiri-
cally verify our framework in various data regimes,
we consider scenarios ranging from where only lim-
ited training data is available, to ones where large
amounts of clean data are available.

3.1 Experiment Setup

Our baseline (described in §2.1) is based on
RoBERTa. We used the pre-trained base version
released by Wolf et al. (2019). Before the final
linear layer, we added a dropout layer (Srivastava
et al., 2014) with probability 0.5. To capture the se-
quential dependencies between labels, we added a
standard CRF layer. At testing time, Viterbi decod-
ing with hard transition constraints was employed
across all settings. In all experiments, we used the
gold predicate and gold frame senses.

Model training proceeded in two stages:
1. We use the finetuned the pre-trained

RoBERTa model on SRL with only cross-
entropy loss for 30 epochs with learning rate
3× 10−5.

2. Then we continued finetuning with the com-
bined loss in Equation 12 for another 5 epochs
with a lowered learning rate of 1× 10−5.

During both stages, learning rates were warmed up
linearly for the first 10% updates.

For fair comparison, we finetuned our baseline
twice (as with the constrained models); we found
that it consistently outperformed the singly fine-
tuned baseline in terms of both error rates and role
F1. We grid-searched the λ’s by incrementally
adding regularizers. The combination of λ’s with
good balance between F1 and error ρ’s on the dev
set were selected for testing. We refer readers to
the appendix for the values of λ’s.

For models trained on the CoNLL-05 data, we
report performance on the dev set, and the WSJ
and Brown test sets. For CoNLL-12 models, we
report performance on the dev and the test splits.

3.2 Scenario 1: Low Training Data
Creating SRL datasets requires expert annotation,
which is expensive. While there are some efforts on
semi-automatic annotation targeting low-resource
languages (e.g., Akbik et al., 2016), achieving high
neural network performance with small or unla-
beled datasets remains a challenge (e.g., Fürstenau
and Lapata, 2009, 2012; Titov and Klementiev,
2012; Gormley et al., 2014; Abend et al., 2009).

In this paper, we study the scenario where we
have small amounts of fully labeled training data.
We sample 3% of the training data and an equiva-
lent amount of development examples. The same
training/dev subsets are used across all models.

Table 3 reports the performances of using 3%
training data from CoNLL-05 and CoNLL-12 (top
and bottom respectively). We compare our strong
baseline model with structure-tuned models using
all three constraints. Note that for all these evalua-
tions, while we use subsamples of the dev set for
model selection, the evaluations are reported using
the full dev and test sets.

We see that training with constraints greatly im-
proves precision with low training data, while re-
call reduces. This trade-off is accompanied by a
reduction in the violation rates ρu and ρf . As noted
in §2.4, models rarely predict label sequences that
violate the exclusively overlapping roles constraint.
As a result, the error rate ρo (the number of viola-
tions) only slightly fluctuates.

3.3 Scenario 2: Large Training Data
Table 4 reports the performance of models trained
with our framework using the full training set of
the CoNLL-05 dataset which consists of 35k sen-
tences with 91k propositions. Again, we com-
pare RoBERTa (twice finetuned) with our structure-
tuned models. We see that the constrained models
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CoNLL-05 (3%, 1.1k)

Dev P R F1 δF1 ρu ρo ρf

RoBERTa2 67.79 72.69 70.15 14.56 23 6.19
+U,F,O 70.40 71.91 71.15 1.0 8.56 20 5.82

WSJ P R F1 δF1 ρu ρo ρf

RoBERTa2 70.48 74.96 72.65 13.35 37 NA
+U,F,O 72.60 74.13 73.36 0.7 7.46 49 NA

Brown P R F1 δF1 ρu ρo ρf

RoBERTa2 62.16 66.93 64.45 12.94 6 NA
+U,F,O 64.31 65.64 64.97 0.5 5.47 6 NA

CoNLL-12 (3%, 2.7k)

Dev P R F1 δF1 ρu ρo ρf

RoBERTa2 74.39 76.88 75.62 7.43 294 3.23
+U,F,O 75.99 76.80 76.39 0.8 4.37 245 3.01

Test P R F1 δF1 ρu ρo ρf

RoBERTa2 74.79 77.17 75.96 6.92 156 2.67
+U,F,O 76.31 76.88 76.59 0.6 4.12 171 2.41

Table 3: Results on low training data (3% of CoNLL-
05 and CoNLL-12). RoBERTa2: Baseline finetuned
twice. U: Unique core roles. F: Frame core roles. O:
Exclusively overlapping roles. δF1: improvement over
baseline. ρf is marked NA for the CoNLL-05 test re-
sults because ground truth sense is unavailable on the
CoNLL-05 shared task page.

CoNLL-05 (100%, 36k)

Dev P R F1 δF1 ρu ρf

RoBERTa2 86.74 87.24 86.99 1.97 3.23
+U,F,O 87.24 87.26 87.25 0.3 1.35 2.99
Oracle 0.40 2.34

WSJ P R F1 δF1 ρu ρf

RoBERTa2 87.75 87.94 87.85 1.71 NA
+U,F,O 88.05 88.00 88.03 0.2 0.85 NA
Oracle 0.30 NA

Brown P R F1 δF1 ρu ρf

RoBERTa2 79.38 78.92 78.64 3.36 NA
+U,F,O 80.04 79.56 79.80 1.2 1.24 NA
Oracle 0.30 NA

Table 4: Results on the full CoNLL-05 data. Oracle:
Errors of oracle. ρo is in [0,6] across all settings.

consistently outperform baselines on the dev, WSJ,
and Brown sets. With all three constraints, the con-
strained model reaches 88 F1 on the WSJ. It also
generalizes well on new domain by outperforming
the baseline by 1.2 points on the Brown test set.

As in the low training data experiments, we ob-
serve improved precision due to the constraints.

This suggests that even with large training data,
direct label supervision might not be enough for
neural models to pick up the rich output space struc-
ture. Our framework helps neural networks, even
as strong as RoBERTa, to make more correct pre-
dictions from differentiable constraints.

Surprisingly, the development ground truth has
a 2.34% error rate on the frame role constraint,
and 0.40% on the unique role constraint. Similar
percentages of unique role errors also appear in
WSJ and Brown test sets. For ρo, the oracle has no
violations on the CoNLL-05 dataset.

The exclusively overlapping constraint (i.e. ρo)
is omitted as we found models rarely make such
prediction errors. After adding constraints, the
error rate of our model approached the lower bound.
Note that our framework focuses on the learning
stage without any specialized decoding algorithms
in the prediction phase except the Viterbi algorithm
to guarantee that there will be no BIO violations.

What about even larger and cleaner data?
The ideal scenario, of course, is when we have
the luxury of massive and clean data to power neu-
ral network training. In Table 5, we present results
on CoNLL-12 which is about 3 times as large as
CoNLL-05. It consists of 90k sentences and 253k
propositions. The dataset is also less noisy with
respect to the constraints. For instance, the ora-
cle development set has no violations for both the
unique core and the exclusively overlapping con-
straints.

We see that, while adding constraints reduced
error rates of ρu and ρf , the improvements on label
consistency do not affect F1 much. As a result, our
best constrained model performes on a par with
the baseline on the dev set, and is slightly better
than the baseline (by 0.1) on the test set. Thus we
believe when we have the luxury of data, learning
with constraints would become optional. This ob-
servation is in line with recent results in Li and
Srikumar (2019) and Li et al. (2019).

But is it due to the large data or the strong base-
line? To investigate whether the seemingly satu-
rated performance is from data or from the model,
we also evaluate our framework on the original
BERT (Devlin et al., 2019) which is relatively less
powerful. We follow the same model setup for ex-
periments and report the performances in Table 5
and Table 9. We see that compared to RoBERTa,
BERT obtains similar F1 gains on the test set, sug-
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gesting performance ceiling is due to the train size.

CoNLL-12 (100%, 90k)

Dev P R F1 δF1 ρu ρf

RoBERTa2 86.62 86.91 86.76 0.86 1.18
+U,F,O 86.60 86.89 86.74 0 0.59 1.04
Oracle 0 0.38

Test P R F1 δF1 ρu ρf

RoBERTa2 86.28 86.67 86.47 0.91 0.97
+U,F,O 86.40 86.83 86.61 0.1 0.50 0.93
Oracle 0 0.42

Dev P R F1 δF1 ρu ρf

BERT2 85.62 86.22 85.92 1.41 1.12
+U,F,O 85.97 86.38 86.18 0.3 0.78 1.07

Test P R F1 δF1 ρu ρf

BERT2 85.52 86.24 85.88 1.32 0.94
+U,F,O 85.82 86.36 86.09 0.2 0.79 0.90

Table 5: Results on CoNLL-12. BERT2: The origi-
nal BERT finetuned twice. ρo is around 50 across all
settings. With the luxury of large and clean data, con-
strained learning becomes less effective.

4 Ablations & Analysis

In §3, we saw that constraints not just improve
model performance, but also make outputs more
structurally consistent. In this section, we will
show the results of an ablation study that adds one
constraint at a time. Then, we will examine the
sources of improved F-score by looking at individ-
ual labels, and also the effect of the top-k relaxation
for the constraintO. Furthermore, we will examine
the robustness of our method against randomness
involved during training. We will end this section
with a discussion about the ability of constrained
neural models to handle structured outputs.

Constraint Ablations We present the ablation
analysis on our constraints in Table 6. We see
that as models become more constrained, precision
improves. Furthermore, one class of constraints
do not necessarily reduce the violation rate for the
others. Combining all three constraints offers a
balance between precision, recall, and constraint
violation.

One interesting observation that adding the O
constraints improve F-scores even though the ρo
values were already close to zero. As noted in §2.4,
our constraints apply to the predicted scores of all
labels for a given argument, while the actual de-
coded label sequence is just the highest scoring

sequence using the Viterbi algorithm. Seen this
way, our regularizers increase the decision margins
on affected labels. As a result, the model predicts
scores that help Viterbi decoding, and, also gener-
alizes better to new domains i.e., the Brown set.

CoNLL-05 (100%, 36k)

Dev P R F1 ρu ρf

RoBERTa2 86.74 87.24 86.99 1.97 3.23
+U 87.21 87.32 87.27 1.29 3.23
+U,F 87.19 87.54 87.37 1.20 3.11
+U,F,O 87.24 87.26 87.25 1.35 2.99

WSJ P R F1 ρu ρf

RoBERTa2 87.75 87.94 87.85 1.71 NA
+U 87.88 88.01 87.95 1.18 NA
+U,F 88.05 88.09 88.07 0.89 NA
+U,F,O 88.05 88.00 88.03 0.85 NA

Brown P R F1 ρu ρf

RoBERTa2 79.38 78.92 78.64 3.36 NA
+U 79.36 79.15 79.25 1.74 NA
+U,F 79.60 79.24 79.42 1.00 NA
+U,F,O 80.04 79.56 79.80 1.24 NA

Table 6: Ablation tests on CoNLL-05.

Sources of Improvement Table 7 shows label-
wise F1 scores for each argument. Under low train-
ing data conditions, our constrained models gained
improvements primarily from the frequent labels,
e.g., A0-A2. On CoNLL-05 dataset, we found the
location modifier (AM-LOC) posed challenges to
our constrained models which significantly per-
formed worse than the baseline. Another challenge
is the negation modifier (AM-NEG), where our mod-
els underperformed on both datasets, particularly
with small training data. When using the CoNLL-
12 training set, our models performed on par with
the baseline even on frequent labels, confirming
that the performance of soft-structured learning is
nearly saturated on the larger, cleaner dataset.

Impact of Top-k Beam Size As noted in §2.4,
we used the top-k strategy to implement the con-
straint O. As a result, there is a certain chance for
predicted label sequences to have non-exclusive
overlap without our regularizer penalizing them.
What we want instead is a good balance between
coverage and runtime cost. To this end, we analyze
the CoNLL-12 development set using the baseline
trained on 3% of CoNLL-12 data. Specifically, we
count the examples which have such overlap but
the regularization loss is ≤ 0.001. In Table 8, we
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CoNLL-05 3% CoNLL-05 100% CoNLL-12 3% CoNLL-12 100%
RoBERTa2 +U,F,O RoBERTa2 +U,F,O RoBERTa2 +U,F,O RoBERTa2 +U,F,O

A0 81.28 82.11 93.43 93.52 84.99 85.73 92.78 92.81
A1 72.12 73.59 89.23 89.80 78.36 79.67 89.88 89.75
A2 46.50 47.52 79.53 79.73 68.24 69.20 84.93 84.90
A3 39.58 42.11 81.45 81.86 33.26 34.47 72.96 73.24
A4 51.61 51.56 74.60 75.59 56.29 58.38 80.80 80.33
AM-ADV 44.07 47.56 66.67 66.91 55.26 54.93 66.37 66.92
AM-DIR 16.39 18.92 55.26 55.56 36.51 35.81 64.92 64.95
AM-DIS 71.07 70.84 80.20 80.50 76.35 76.40 82.86 82.71
AM-LOC 53.08 51.60 69.02 66.50 59.74 59.94 72.74 73.21
AM-MNR 44.30 44.18 68.63 69.87 56.14 55.67 70.89 71.13
AM-MOD 91.88 91.60 98.27 98.60 95.50 95.76 97.88 98.04
AM-NEG 91.18 88.35 94.06 93.60 93.29 93.05 95.93 95.83
AM-TMP 74.05 74.13 88.24 88.08 79.00 78.78 87.58 87.56

Overall 70.48 71.55 87.33 87.61 76.66 77.45 87.60 87.58

Table 7: Label-wise F1 scores for the CoNLL-05 and CoNLL-12 development sets.

see that k = 4 yields good coverage.

k 1 2 4 6
# Ex. 10 8 3 2

Table 8: Impact of k for the top-k strategy, showing
the number of missed examples for different k. We set
k = 4 across all experiments.

Robustness to random initialization We ob-
served that model performance with structured tun-
ing is generally robust to random initialization. As
an illustration, we show the performance of models
trained on the full CoNLL-12 dataset with different
random initializations in Table 9.

CoNLL-12 (100%, 90k)

Test F1 Seed1 Seed2 Seed3 avg δF1

BERT2 85.88 85.91 86.13
+U,F,O 86.09 86.07 86.19 0.1

Test F1 Seed1 Seed2 Seed3 avg δF1

RoBERTa2 86.47 86.33 86.45
+U,F,O 86.61 86.48 86.57 0.1

Table 9: F1 scores models trained on the CoNLL-12
data with different random seeds. The randomness af-
fects the initialization of the classification layers and
the batch ordering during training.

Can Constrained Networks Handle Structured
Prediction? Larger, cleaner data may presum-
ably be better for training constrained neural mod-
els. But it is not that simple. We will approach
the above question by looking at how good the

transformer models are at dealing with two classes
of constraints, namely: 1) structural constraints
that rely only on available decisions (constraint U ),
2) constraints involving external knowledge (con-
straint F ).

For the former, we expected neural models to
perform very well since the constraint U represents
a simple local pattern. From Tables 4 and 5, we see
that the constrained models indeed reduced viola-
tions ρu substantially. However, when the training
data is limited, i.e., comparing CoNLL-05 3% and
100%, the constrained models, while reducing the
number of errors, still make many invalid predic-
tions. We conjecture this is because networks learn
with constraints mostly by memorization. Thus
the ability to generalize learned patterns on unseen
examples relies on training size.

The constraint F requires external knowledge
from the PropBank frames. We see that even with
large training data, constrained models were only
able to reduce error rate ρf by a small margin. In
our development experiments, having larger λF
tends to strongly sacrifice argument F1, yet still
does not to improve development error rate sub-
stantially. Without additional training signal in the
form of such background knowledge, constrained
inference becomes a necessity, even with strong
neural network models.

5 Discussion & Conclusion

Semantic Role Labeling & Constraints The
SRL task is inherently knowledge rich; the out-
puts are defined in terms of an external ontology
of frames. The work presented here can be gener-
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alized to several different flavors of the task, and
indeed, constraints could be used to model the inter-
play between them. For example, we could revisit
the analysis of Yi et al. (2007), who showed that
the PropBank A2 label takes on multiple mean-
ings, but by mapping them to VerbNet, they can
be disambiguated. Such mappings naturally define
constraints that link semantic ontologies.

Constraints have long been a cornerstone in the
SRL models. Several early linear models for SRL
(e.g. Punyakanok et al., 2004, 2008; Surdeanu et al.,
2007) modeled inference for PropBank SRL us-
ing integer linear programming. Riedel and Meza-
Ruiz (2008) used Markov Logic Networks to learn
and predict semantic roles with declarative con-
straints. The work of (Täckström et al., 2015)
showed that certain SRL constraints admit efficient
decoding, leading to a neural model that used this
framework (FitzGerald et al., 2015). Learning with
constraints has also been widely adopted in semi-
supervised SRL (e.g., Fürstenau and Lapata, 2012).

With the increasing influence of neural networks
in NLP, however, the role of declarative constraints
seem to have decreased in favor of fully end-to-
end training (e.g., He et al., 2017; Strubell et al.,
2018, and others). In this paper, we show that even
in the world of neural networks with contextual
embeddings, there is still room for systematically
introducing knowledge in the form of constraints,
without sacrificing the benefits of end-to-end learn-
ing.

Structured Losses Chang et al. (2012) and
Ganchev et al. (2010) developed models for struc-
tured learning with declarative constraints. Our
work is in the same spirit of training models that
attempts to maintain output consistency.

There are some recent works on the design of
models and loss functions by relaxing Boolean for-
mulas. Kimmig et al. (2012) used the Łukasiewicz
t-norm for probabilistic soft logic. Li and Srikumar
(2019) augment the neural network architecture it-
self using such soft logic. Xu et al. (2018) present
a general framework for loss design that does not
rely on soft logic. Introducing extra regularization
terms to a downstream task have been shown to be
beneficial in terms of both output structure consis-
tency and prediction accuracy (e.g., Minervini and
Riedel, 2018; Hsu et al., 2018; Mehta et al., 2018;
Du et al., 2019; Li et al., 2019).

Final words In this work, we have presented a
framework that seeks to predict structurally consis-
tent outputs without extensive model redesign, or
any expensive decoding at prediction time. Our ex-
periments on the semantic role labeling task show
that such an approach can be especially helpful
in scenarios where we do not have the luxury of
massive annotated datasets.
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A Appendices

A.1 Hyperparameters
We show the hyperparameters of λ‘s in Table 10.
We conducted grid search on the combinations of
λ‘s for each setting and the best one on develop-
ment set is selected for reporting.

Model λU λO λF

RoBERTa CoNLL-05 (3%)
+U,F,O 2 0.5 0.5

RoBERTa CoNLL-2012 (3%)
+U,F,O 1 2 1

RoBERTa CoNLL-05 (100%)
+U 1
+U,F 1 0.5
+U,F,O 1 0.5 0.1

RoBERTa CoNLL-2012 (100%)
+U,F,O 1 1 0.1

BERT CoNLL-2012 (100%)
+U,F,O 0.5 1 0.1

Table 10: Values of hyperparameter λ‘s.
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