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Abstract

The written forms of Semitic languages are
both highly ambiguous and morphologically
rich: a word can have multiple interpretations
and is one of many inflected forms of the
same concept or lemma. This is further ex-
acerbated for dialectal content, which is more
prone to noise and lacks a standard orthogra-
phy. The morphological features can be lexi-
calized, like lemmas and diacritized forms, or
non-lexicalized, like gender, number, and part-
of-speech tags, among others. Joint modeling
of the lexicalized and non-lexicalized features
can identify more intricate morphological pat-
terns, which provide better context modeling,
and further disambiguate ambiguous lexical
choices. However, the different modeling gran-
ularity can make joint modeling more difficult.
Our approach models the different features
jointly, whether lexicalized (on the character-
level), or non-lexicalized (on the word-level).
We use Arabic as a test case, and achieve state-
of-the-art results for Modern Standard Arabic
with 20% relative error reduction, and Egyp-
tian Arabic with 11% relative error reduction.

1 Introduction

Morphological modeling in Semitic languages is
challenging. Their optional short vowels (diacrit-
ics) increase the overall ambiguity of surface forms;
and their morphological richness results in large
target spaces, which increase model sparsity. The
different morphological features can be modeled
through combined feature tags, using a single (but
very large) target space, or through having separate
models for each of the features. The combined fea-
tures approach models the relationships between
the different features explicitly, but the large tar-
get spaces for morphologically rich languages fur-
ther increase sparsity. On the other hand, separate
feature modeling guarantees smaller target spaces
for the individual features, but the hard separation

between the features prevents modeling any inter-
feature dependencies. The set of morphological
features includes lexicalized and non-lexicalized
features, which further exacerbates joint modeling.
Non-lexicalized features, like gender, and number,
among others, have limited target spaces, and usu-
ally modeled as tagging tasks. Lexicalized features,
like lemmas and diacritized forms (for Semitic lan-
guages), are open-ended, with large target vocabu-
laries. Moreover, non-lexicalized features are mod-
eled on the word level, whereas lexicalized features
are optimally modeled on the character level. This
difference in the modeling granularity can be chal-
lenging for joint models.

In this paper we present a model for handling
lexicalized and non-lexicalized features jointly. We
use a sequence-to-sequence architecture, with dif-
ferent parameter sharing strategies at the encoder
and decoder sides for the different features. The
non-lexicalized features are handled with a tagger,
which shares several parameters with the encoder,
and uses a multitask-learning architecture to model
the different non-lexicalized features jointly. The
lexicalized features, on the other hand, are handled
with a specific decoder for each feature, sharing
the same encoder. Our architecture models the
non-lexicalized features on the word level, with
a context representation that spans the entire sen-
tence. The lexicalized features are modeled on the
character level, with a fixed character context win-
dow. The character level modeling is also suitable
for surface form normalization, which is important
for noisy texts common in dialectal content.

We use Modern Standard Arabic (MSA) and
Egyptian Arabic (EGY) as test cases. Our joint
model achieves 20% relative error reduction (1.9%
absolute improvement) for MSA, and 11% rela-
tive error reduction (2.5% absolute improvement)
for EGY, compared to a baseline that models the
different morphological features separately.
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The rest of the paper is structured as follows.
We present a brief background and a survey of re-
lated work in Section 2. We introduce the approach
and various models in Section 3, and discuss the
experimental setup and results in Section 4. We
conclude and provide some directions for future
work in Section 5.

2 Background and Related Work

In this section we present a brief linguistic overview
of the challenges facing morphological modeling
in Semitic and morphologically rich languages. We
then discuss related contributions in literature, and
how our model compares to them.

2.1 Linguistic Introduction

Morphologically rich languages (MRLs) tend to
have more fully inflected words than other lan-
guages, realized through many morphemes that
represent several morphological features. The tar-
get space for the combined morphological features
therefore tends to be large, which increases spar-
sity. MRLs also can be highly ambiguous, with
different interpretations of the same surface forms.
Ambiguity is further exacerbated for Semitic lan-
guages, like Arabic and Hebrew, at which the short
vowels (diacritics) can be kept or dropped. The
high degree of ambiguity in Arabic results in hav-
ing about 12 analyses per word on average (Pasha
et al., 2014).1

Both morphological richness and ambiguity can
be modeled with morphological analyzers, or mor-
phological dictionaries, which are used to encode
all potential word inflections in the language. Mor-
phological analyzers should ideally return all the
possible analyses of a surface word (to model am-
biguity), and cover all the inflected forms of a word
lemma (to model morphological richness), cover-
ing all related features. The best analysis can then
be chosen through morphological disambiguation;
by predicting the different morphological feature
values and use them to rank the relevant analyses
from the analyzer. The morphological features that
we model for Arabic include:

• Lexicalized features: lemmas (lex) and dia-
critized forms (diac).

• Non-lexicalized features: aspect (asp), case
(cas), gender (gen), person (per), part-of-

1For more information on Arabic natural language process-
ing, see (Habash, 2010).

speech (POS), number (num), mood (mod),
state (stt), voice (vox).

• Clitics: enclitics, like pronominal enclitics,
negative particle enclitics; proclitics, like ar-
ticle proclitic, preposition proclitics, conjunc-
tion proclitics, question proclitics.

Table 1 shows an example highlighting the differ-
ent morphological features. The example presents
a subset of the possible analyses for the word Ñî

�
DÖÏ

lmthm.2 Disambiguation using the non-lexicalized
features only is not conclusive enough, as we see in
the last two analyses, where the lemma and diacriti-
zation only can disambiguate the right analysis.

Dialectal Arabic (DA) includes several dialects
of Arabic, like EGY, that vary by the geographical
location in the Arab world. DA is also Semitic and
an MRL, but it is mainly spoken, and lacks a stan-
dard orthography (Habash et al., 2012a). The lack
of a standard orthography further increases sparsity
and ambiguity, hence requiring explicit normaliza-
tion. Habash et al. (2012a, 2018) proposed CODA,
a Conventional Orthography for Dialectal Arabic,
which aims to provide a conventionalized orthog-
raphy across the various Arabic dialects. We use
CODA as the reference for the normalization task.

2.2 Morphological Tagging
Arabic morphological tagging and disambiguation
have been studied extensively in literature, with
contributions for MSA (Khalifa et al., 2016; Ab-
delali et al., 2016; Habash and Rambow, 2005;
Diab et al., 2004), and DA (Habash et al., 2013;
Al-Sabbagh and Girju, 2012; Duh and Kirchhoff,
2005). There are also several recent contributions
that showed significant accuracy improvement us-
ing deep learning models (Zalmout et al., 2018;
Inoue et al., 2017; Zalmout and Habash, 2017;
Heigold et al., 2016). In addition to other deep
learning contributions that showed limited success
for Arabic (Shen et al., 2016). Most of these contri-
butions model the different morphological features
separately, or focus on a limited feature subset. We
elaborate on the contributions with some joint mod-
eling aspects later in the section.

2.3 Diacritization and Lemmatization
Diacritization and lemmatization are very useful
for tasks like information retrieval, machine trans-
lation, and text-to-speech, among others.

2Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).
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Diacrtization Lemma English POS Prc3 Prc2 Prc1 Prc0 Per Asp Vox Mod Gen Num Stt Cas Enc0
lam∼at.hum lam∼ she collected them verb 0 0 0 0 3 p a i f s na na dobj3mp

lum.tahum lAm you [m.s.] blamed them verb 0 0 0 0 2 p a i m s na na dobj3mp

lum.tihim lAm you [f.s.] blamed them verb 0 0 0 0 2 p a i f s na na dobj3mp

lum.tuhum lAm I blamed them verb 0 0 0 0 1 p a i m s na na dobj3mp

lam∼atuhum lam∼ah̄ their collection noun 0 0 0 0 na na na na f s c n poss3mp

limut∼ahamı̃ mut∼aham for a suspect noun 0 0 li (prep) 0 na na na na m s i g 0
limut∼ahimı̃ mut∼ahim for an accuser noun 0 0 li (prep) 0 na na na na m s i g 0

Table 1: A subset of all the possible analyses for the word Ñî
�
DÖÏ lmthm. Notice that in the last two analyses the

words are disambiguated through the lemmas and diacritized forms only, and they share all the other features.

Diacritization has generally been an active area
of research (Darwish et al., 2017; Zitouni et al.,
2006; Nelken and Shieber, 2005). More recent con-
tributions use Deep Learning models in different
configurations; Belinkov and Glass (2015) model
diacritization as a classification task, using Long
Short Term Memory (LSTM) cells. And Aban-
dah et al. (2015) use LSTMs to model diacritiza-
tion as a sequence transcription task, similar to
Mubarak et al. (2019) who model diacritization as
a sequence-to-sequence task.

Early contributions for lemmatization used finite
state machines (Schmid et al., 2004; Minnen et al.,
2001), which had a limited capacity for modeling
unseen words or lemmas. There were also sev-
eral contributions that utilize a joint tagging and
lemmatization approach, using CRFs and Maxi-
mum Entropy models (Müller et al., 2015; Chru-
pala et al., 2008). Other contributions approached
lemmatization as a lemma selection task (Ezeiza
et al., 1998), where the goal is to select the correct
lemma from a set of lemmas provided by a morpho-
logical analyzer. Many of the lemmatization mod-
els for Arabic use a similar approach (Pasha et al.,
2014; Roth et al., 2008). More recently, sequence-
to-sequence models with attention (Bahdanau et al.,
2014) have been shown useful in several NLP tasks,
with several lemmatization contributions (Malaviya
et al., 2019; Bergmanis and Goldwater, 2018; Pütz
et al., 2018). Other contributions use additional
morphosyntactic features as part of the modeling ar-
chitecture (Kanerva et al., 2019; Kondratyuk et al.,
2018), somewhat similar to our approach.

2.4 Joint Morphological Modeling in Arabic

There are also several contributions for the joint
modeling of the different morphological features in
Arabic. However, most of these contributions use
separate models for each of the features, and usu-
ally use a ranking step to select the best overall mor-
phological analysis from an external morphological

analyzer (Roth et al., 2008; Habash and Rambow,
2007). MADAMIRA (Pasha et al., 2014) is a pop-
ular system for Arabic morphological tagging and
disambiguation. It uses SVMs for the different non-
lexicalized features, and n-gram language models
for the lemmas and diacritized forms. Zalmout
and Habash (2017) presented a neural extension of
this model, with LSTM taggers for the individual
features, and neural language models for the lexi-
calized features. Inoue et al. (2017) used multi-task
learning for fine-grained POS tagging, modeling
the different morphological features jointly, but
they do not model lemmas or diacritized forms.
Zalmout and Habash (2019) also used multitask
learning for the different non-lexicalized morpho-
logical features, and neural language models for
lemmas and diacritized forms. This model cur-
rently provides state-of-the-art results for Arabic.
In the models that rely on morphological analyz-
ers (Zalmout and Habash, 2019, 2017; Pasha et al.,
2014) surface form normalization are byproducts
of selecting the correct analysis, rather than being
explicitly modeled.

3 Approach

Non-lexicalized features are usually modeled on
the word level, whereas lexicalized features are bet-
ter handled through character level models. More-
over, the context representation for morphologi-
cal tagging of the non-lexicalized features usually
spans the entire sentence, using LSTMs for exam-
ple. The optimal context representation for the
lexicalized features, on the other hand, is through a
fixed number of characters before and after the tar-
get word (Bergmanis and Goldwater, 2018). This
difference in modeling granularity, in terms of con-
text representation or word/character level model-
ing, can be very challenging for joint modeling.

We use a modified sequence-to-sequence archi-
tecture, where some components of the encoder are
shared between a tagger, for the non-lexicalized
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features, and the encoder-decoder architecture, for
the lexicalized features. We also use separate de-
coders for the different lexicalized features, that
share the same encoder and trained jointly using a
shared loss function. The remainder of this section
discusses the architecture in more detail.

3.1 Tagger
The tagging architecture is similar to the architec-
ture presented by Zalmout and Habash (2019). We
use two Bi-LSTM layers on the word level to model
the context for each direction of the target word.
The context in the tagging network spans the en-
tire input sentence. For each sentence of length
L {w1, w2, ..., wL}, every word wj is represented
by vector vj , which is comprised of the concate-
nation: vj = [wj ; sj ;aj ], where wj is the word
embedding vector, sj is a vector representation of
the characters within the word, and aj is a vec-
tor representing all the candidate morphological
tags (from an analyzer), for all the non-lexicalized
morphological features.

To obtain the vector sj , we use an LSTM-based
model, applied to the character sequence in each
word separately. We use the last state vector as the
embedding representation of the word’s characters.
Whereas to get the aj vector, for each morphologi-
cal feature f , we use a morphological analyzer to
obtain all possible feature values of the word to be
analyzed. We then embed each value separately
(with separate embedding tensors for each feature,
learnt within the model), then sum all the resulting
vectors to to get afj (since these tags are alterna-
tives and do not constitute a sequence) (Zalmout
and Habash, 2019). We concatenate the individ-
ual afj vectors for each morphological feature f of
each word, to get a single representation, aj , for all
the features:

afj =

Nf∑
n=1

afj,n

aj = [aposj ; ...;anumj ; ...;avoxj ]

Where Nf is the set of possible candidate values for
each feature f (from the analyzer). The aj vector
does not constitute a hard constraint and can be
discarded if a morphological analyzer is not used.

Several previous contributions for Arabic
showed that pretraining the word embeddings is
very useful (Erdmann et al., 2018; Watson et al.,
2018; Zalmout and Habash, 2017), including the
baselines used in this paper. We therefore pre-train

the word embeddings with FastText (Bojanowski
et al., 2017), using a large external dataset. The
pre-trained embeddings are fixed during the model
training. The character and tag embeddings are
learnt within the model.

We use a multitask learning setup to train the dif-
ferent morphological features jointly, through shar-
ing the parameters of the hidden layers in the Bi-
LSTM network. The input is also shared, through
the vj vector. The output of the network is then fed
to a separate non-linearity function, output layer,
and softmax, for a probability distribution of each
of the features separately. Figure 1 shows the over-
all tagging architecture.

3.2 Encoder
We share the character and word embeddings from
the tagger network in the encoder. The input con-
text is modeled through a sliding window of a fixed
number of characters around the target word, as
in the Lematus model (Bergmanis and Goldwa-
ter, 2018). We also use additional special sym-
bols for the whitespace and target word bound-
aries. In addition to the character embeddings, we
also condition on the word level embedding of the
word containing the characters. We concatenate
the word embedding vector with the input char-
acter embeddings. Each character embedding ci
is replaced by the concatenation [ci;wj ], where
wj is the dw-dimensional word embedding of the
word j in which character i appears in. Given the
characters of input sentence c and its lemmatized
equivalent y, the goal is to model P (yk|ci,wj).

We then feed the input vectors to a network of
two Bi-LSTM layers for the hidden representation
at the encoder.

3.3 Decoders
We use separate decoders for lemmatization and di-
acritization, with two LSTM layers for each. Both
decoders share the same input and parameters of
the encoder Bi-LSTM network. For each decoder,
we condition on the decoder output of the previ-
ous step, along with Luong attention (Luong et al.,
2015) over the encoder outputs hi, and the pre-
dicted tags from the tagger. We use the last encoder
output as the initial states for the decoder layers.
We use scheduled sampling (Bengio et al., 2015)
during training, and feed the dc-dimensional char-
acter embeddings at every time step. But we found
empirically that using a constant sampling proba-
bility instead of scheduling provides better results.
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We also use dropout on the non-recurrent connec-
tions of both the encoder and decoder layers during
training. The decoder outputs are fed to a softmax
layer that reshapes the vectors to dimension dvoc,
then argmax to yield an output sequence y one
character at a time.

Conditioning on the Predicted Tags In addi-
tion to the attention distribution and the previous
time step, we also condition on the predicted tags
from the tagger during decoding. The goal is to pro-
vide an additional contextual signal to the decoders,
and to disambiguate the possible lexical choices.
We use the output of the argmax (over the softmax
distribution) for each feature, and concatenate the
different tags as in the aj vector:

t̂j = [t̂aspj ; ...; t̂posj ; ...; t̂voxj ]
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Figure 1: The tagger model, showing the multitask
learning architecture for the features. The concatenated
predicted tags are used to condition on, at the decoders.

Preventing Backpropagation to Tagger The
decoder produces the lexicalized features at the
character level, whereas the predicted tags are on
the word level. The different granularities might
create some biases, and we found that backprop-
agating gradients from the decoder to the tagger
network leads to instability at the tagger. There-
fore, we prevent the decoder from backpropagating
gradients to the tagger during training. This is con-
sistent with the model of Kondratyuk et al. (2018).

3.4 Surface Form Normalization
We use the term normalization in the sense of
enriched normalization introduced by El Kholy
and Habash (2012) for MSA; and in the sense
of spelling conventionalization (into CODA) for
DA as described by Eskander et al. (2013). Both

Bi-LSTM Encoder

Lex Decoder
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Figure 2: The sequence-to-sequence architecture for
the lexicalized features, with a shared encoder, and
separate decoders for lemmatization and diacritization.
The figure does not show the fixed context window of
10 characters before and after the target word.

are non-trivial tasks comparable to true-casing or
spelling correction for other languages.

The normalization task is particularly important
for dialectal content, which lack a standardized or-
thography. The training data that we use has the
diacritized annotations already in the CODA nor-
malized form for EGY. So the output sequence
of the diacritization task should be both the dia-
critized and CODA normalized version of the input
sequence. This normalization is learnt explicitly
in our character level sequence-to-sequence model.
For MSA there is no need for CODA normaliza-
tion, so the normalized output includes any error
correction that might happen in the training dataset.
Normalization is assessed as part of the overall
diacritization accuracy.

3.5 Training Procedure

We use a small held out tuning set of about 5%
of the training data to save the best model during
training. We did not use the development set here
to be consistent with other contributions in litera-
ture, where the development set is primarily used
to evaluate high level design decisions only. We
train the model for a fixed number of epochs and
select the model that performs best on the tuning
set. This method provided the most stable results,
compared to early stopping or other methods.

The loss function is based on minimizing cross
entropy H for each feature f . The overall loss is
the average of the individual losses for the different
features, whether lexicalized or non-lexicalized:
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H(ŷ, y) =
1

|F |
∑
f∈F

H(ŷf , yf )

Where F is the set of features that we model.
y represents the true feature value, and ŷ is the
predicted value. We experimented with having
different optimizers for the lexicalized and non-
lexicalized features. We also experimented with a
weighted average for the different features, where
the weights are learnt as part of the end-to-end
system. None of these modifications provided any
improvement. We use Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.0005, and
we run the various models for 50 epochs.

3.6 Full Morphological Disambiguation

Morphological disambiguation involves predicting
the right combination of morphological features for
each word in context. We can either present the
predicted features from the model directly, or use
a morphological analyzer to guarantee more con-
sistent feature values. If a morphological analyzer
is used, the disambiguation system selects the opti-
mal analysis for the word from the set of analyses
returned by the analyzer. We use the predicted tags
to rank the analyses, and select the analysis with
highest number of matched feature values. The
different features can be assigned different weights
during ranking. Refer to other contributions that
use a similar approach for more details (Zalmout
and Habash, 2019, 2017; Pasha et al., 2014).

4 Experiments and Results

4.1 Data

We use the Penn Arabic Treebank (PATB parts 1,2,
and 3) (Maamouri et al., 2004) for MSA, and the
ARZ dataset (Maamouri et al., 2012) from the Lin-
guistic Data Consortium (LDC), parts 1–5, for EGY.
We use the same datasets as used in MADAMIRA
(Pasha et al., 2014), which involves synchroniz-
ing the datasets with morphological analyzers, us-
ing the process described by Habash and Rambow
(2005). We follow the data splits recommended
by Diab et al. (2013) for TRAIN, DEVTEST, and

BLINDTEST.3 Both datasets include gold annota-
tions for the diacritized forms, lemmas, and the re-
maining 14 features. The diacritized forms are nor-
malized following the CODA guidelines for EGY.
We use Alif/Ya and Hamza normalization, which
is commonly used for morphological modeling in
Arabic (Zalmout et al., 2018; Pasha et al., 2014;
Habash et al., 2013).

Table 2 shows the data sizes. The TUNE dataset
is used during the model training process, for early
stopping or to keep the best performing model.
TUNE is extracted randomly from the original
TRAIN split (almost 5% of TRAIN), so the other
splits are consistent with the splits used in liter-
ature. The DEVTEST dataset is used during the
system development to assess design choices. The
BLINDTEST dataset is used to evaluate the sys-
tem after finalizing the architecture design, and to
report the overall performance.

TRAIN TUNE DEVTEST BLINDTEST

MSA 479K 23K 63K 63K
EGY 127K 6K 21K 20K

Table 2: Word count statistics for MSA and EGY.

We use the same morphological analyzers that
were used in MADAMIRA (Pasha et al., 2014), and
the other baselines, for both MSA and EGY. For
MSA we use SAMA (Graff et al., 2009), and the
combination of SAMA, CALIMA (Habash et al.,
2012b), and ADAM (Salloum and Habash, 2014)
for EGY. We use the LDC’s Gigaword corpus
(Parker et al., 2011) to pretrain the MSA word
embeddings, and the BOLT Arabic Forum Discus-
sions corpus (Tracey et al., 2018) for EGY, as used
in the reported baselines. We preprocessed both
datasets with Alif/Ya and Hamza normalization, as
we did for the training dataset.

4.2 Experimental Setup
Tagger We use a similar setup as used by Zal-
mout and Habash (2019). We use two Bi-LSTM
hidden layers of size 800, and dropout probabil-
ity of 0.4, with peephole connections. The LSTM

3We use the LDC datasets because their annotations cover
many of the tasks that are relevant to morphological disam-
biguation, and they are often used for benchmarking purposes.
Other available datasets are usually limited to a particular
task, like diacritization or POS tagging (Darwish et al., 2017,
2018; Abandah et al., 2015). Evaluating our model using
these datasets is also not straightforward, since they often use
different tagsets or representations (especially for diacritiza-
tion), for which automatic conversion would require extensive
post-processing.
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character embedding architecture uses two LSTM
layers of size 100, and embedding size 50. We use
FastText (Bojanowski et al., 2017) to pretrain the
word embeddings, with embedding dimension of
250, and an embedding window of size two.

Encoder-Decoder We use two LSTM layers of
size 400 for both the encoder and decoder (bidirec-
tional for the encoder), dropout value of 0.4, fixed
sampling probability of 0.4 (Bengio et al., 2015).
We use the same word and character embeddings
as the tagger. We use beam decoding with beam
size of 5, and a context window of 10 characters
before and after the target word.

Metrics The evaluation metrics we use include:

• POS accuracy (POS): The accuracy of the
POS tags, of a tagset comprised of 36 tags
(Habash et al., 2013).

• Non-lexicalized morphological features accu-
racy (TAGS): The accuracy of the combined
14 morphological features we model, exclud-
ing lemmas and diacritized forms.

• Diacritization accuracy (DIAC): The accuracy
of the diacritized forms, for MSA only.

• CODA-based normalization accuracy
(CODA): The accuracy of the CODA-
normalized, and diacritized, EGY forms.
MSA does not need CODA normalization.

• Lemmatization accuracy (LEMMA): Lemma
accuracy. The lemmas are also fully dia-
critized in the LDC datasets, so this metric
reflects the fully diacritized lemmas.

• Full Analysis Accuracy (FULL): Accuracy
over the full analysis – the strictest metric.

Baselines The first baseline is MADAMIRA
(Pasha et al., 2014), which is one of the most com-
monly used morphological disambiguation models
for Arabic. We also use the model suggested by
Zalmout and Habash (2017), which is based on a
similar architecture, but uses LSTM taggers instead
of the SVM models in MADAMIRA, and LSTM-
based language models instead of the n-gram mod-
els. The last baseline uses a multitask learning
architecture to model the different non-lexicalized
features jointly, but neural language models for the
lexicalized features (Zalmout and Habash, 2019).
We use the same feature weights during the disam-
biguation process as this baseline.

4.3 Results

Table 3 presents the results for the baselines, and
the joint modeling architecture. The results show
a significant accuracy improvement for the joint
modeling approach, compared to all baselines.

Diacritization The diacritization task seems to
have benefited the most of the joint modeling archi-
tecture, with about 16% relative error reduction for
MSA. This is probably due to the relatively large
target space for diacritized forms when using the
language modeling approach in the baseline, com-
pared to lemmatization for example, which has a
smaller overall types count. The character level
sequence-to-sequence architecture is more suitable
to this task, with a small character target space.

Normalization In the baseline model normaliza-
tion is a byproduct of selecting the right analysis,
rather than a modeling goal. However, character
level models provide for an explicit and direct nor-
malization capability, as the model learns to map
the erroneous sequence to the normalized target
sequence. Our model results in 12% relative error
reduction for EGY.

Overall Feature Consistency An analysis is
consistent if all the feature values are linguistically
acceptable to co-occur with each other. For ex-
ample, case is undefined for verbs, so if a verb
analysis had a defined case value, this analysis is
inconsistent. The same applies to consistency be-
tween the tags and the corresponding lemma (or
diacritized form). The TAGS metric, which repre-
sents the accuracy of the combined non-lexicalized
features, also shows noticeable improvement for
MSA. The fact that TAGS improved, along with
FULL, while the POS accuracy remained somewhat
similar, indicates that the model is now producing
more consistent morphological predictions. This
improved consistency is probably the result of en-
hanced diacritization and lemmatization models,
which provide a better signal to the overall analy-
sis ranking. The improvement in TAGS for EGY,
on the other hand, is limited. This indicates that
the model was probably already producing more
consistent non-lexicalized morphological features,
and the improvement in the FULL metric is due to
improved diacritization and lemmatization only.

The Role of Morphological Analyzers Mor-
phological analyzers are also used to guarantee
consistency in the predicted features. The base-
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Model FULL TAGS DIAC LEX POS
(a) MADAMIRA (SVM models + analyzer) (Pasha et al., 2014) 85.6 87.1 87.7 96.3 97.1
(b) LSTM models + analyzer (Zalmout and Habash, 2017) 90.4 92.3 92.4 96.9 97.9

MSA (c) + Multitask learning for the tags (Zalmout and Habash, 2019) 90.8 92.7 92.7 96.9 97.9
(d) Joint modeling + analyzer 92.3 93.5 93.9 97.6 98.1
(e) Joint modeling without analyzer 90.3 92.7 92.8 96.3 97.7

Model FULL TAGS CODA LEX POS
(a) MADAMIRA (SVM models + analyzer) (Pasha et al., 2014) 76.2 86.7 82.4 86.4 91.7
(b) LSTM models + analyzer (Zalmout and Habash, 2017) 77.0 88.8 82.9 87.6 92.9

EGY (c) + Multitask learning for the tags (Zalmout and Habash, 2019) 77.2 88.8 82.9 87.6 93.1
(d) Joint modeling + analyzer 79.5 89.0 85.0 88.5 93.1
(e) Joint modeling without analyzer 73.2 84.9 81.5 84.4 91.1

Table 3: The results of the various models on the DEVTEST for MSA and EGY. The first and second baselines,
(a) and (b), use separate models for the features, and the third, (c), uses a multitask learning architecture for the
non-lexicalized features only.

lines and our best performing model all use mor-
phological analyzers, to get the candidate tags at
the input, and to produce the best analysis through
the ranking process. We train our model without us-
ing the analyzer – without the t vector and without
ranking – to evaluate its role in the morphological
disambiguation task. The results are lower, both
for MSA and EGY. However, the result for MSA is
very close to the (Zalmout and Habash, 2017) base-
line, which uses separate feature models (with the
analyzer). This indicates that our model can match
the accuracy of a strong baseline, without relying
on expensive external resources. This does not ap-
ply to EGY, probably due to the lower training data
size and noisier content. Even with a better model,
morphological analyzers still provide additional
consistency between the different features.

BLINDTEST Results The results for the
BLINDTEST dataset were consistent with the
DEVTEST. The accuracy for EGY using the
strongest baseline is 78.1, based on the multitask
learning architecture for the tags. The accuracy
of the best system, using the joint modeling
architecture along with the morphological analyzer,
is 80.3. We also observed the same behavior for
MSA, with somewhat similar values to DEVTEST.
The strongest baseline had an accuracy of 90.8,
whereas the best model had an accuracy of 92.6.

4.4 Error Analysis

The Role of Morphological Analyzers The
goal is to assess the role of morphological analyz-
ers in the consistency (following the consistency
definition mentioned earlier) of the predicted fea-
tures. We took a sample of 1000 words from the
MSA DEVTEST, and ran it through the joint model

that does not use a morphological analyzer, and
checked the errors in the predictions. There were
110 errors (11% of the sample), for an accuracy
of 89%, which is close to the reported accuracy
over the entire dataset. About 62% of the errors
had consistent feature predictions, but the predicted
analysis did not match the gold. And around 13%
of the errors are due to gold errors. Around 25%
of the errors (2.8% of sample) had inconsistent pre-
dictions. This roughly matches the accuracy gap
between the joint model with and without the mor-
phological analyzer, which is also around 2%. This
indicates that the accuracy boost that the morpho-
logical analyzer provides is to a large extent due
to the consistency it conveys. We also observed
that 37% of the inconsistent predictions (1% of the
sample) had a correct lemma, but the lemma was
inconsistent with the analysis. The remaining 63%
(1.7% of sample), had an invalid lemma.

Joint Modeling vs Separate Modeling We also
investigated the distribution of errors over the dif-
ferent features for the joint model against the base-
line of separate feature models, both using the mor-
phological analyzer. We annotated the errors in a
1000-word sample from DEVTEST, for both MSA
and EGY, with the main erroneous feature. For ex-
ample, if the predicted analysis is a verb inflection
of a gold noun, the main erroneous feature would
be the POS tag, even if other features ended up
being wrong as a result. For MSA, the error distri-
bution for the baseline is: case 27%, diacritization
22%, POS 18%, lemmatization 13%, gold errors
11%, and smaller percentages for state, voice, per-
son, and enclitics. Whereas the distribution for the
joint model is: case 26%, POS 21%, lemmatiza-
tion 18%, gold errors 14%, diacritization 13%, and
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small percentages for state, voice, and person. In
both models, case dominates the error distribution,
since identifying the case ending in MSA is particu-
larly challenging. The main difference between the
models in terms of error distribution is the diacriti-
zation, where we observe a significant boost when
we use the joint model. The apparent increase in
the error percentages of the other error types at the
joint model is due to the drop in the overall errors
count, while many have a lower drop rate.

For EGY, a notable error pattern is when the pre-
diction matches the MSA-equivalent analysis of the
dialectal word, like having an MSA-like diacritiza-
tion, or having a case ending (DA, like EGY, does
not have case ending). This happens due to code-
switching with MSA in the dialectal content, which
is also reflected at the analyzer. This error type is
not an error per se, but we do include it in the anal-
ysis. The error distribution for the separate features
baseline is: gold errors 23%, MSA-equivalents
21%, POS 17%, lemmatization 14%, diacritization
12%, and smaller percentages for several other er-
ror types. Whereas the distribution for the joint
model is: gold errors 27%, MSA-equivalents 21%,
lemmatization 18%, POS 14%, diacritization 7%,
and smaller frequencies for the other errors. Gold
errors are frequent, but this is consistent with other
contributions that use the same dataset (Zalmout
et al., 2018). Like MSA, the percentage increase
of the other error types is due to lower drop rates.

5 Conclusions and Future Work

We presented a joint modeling approach for the
lexicalized and non-lexicalized features in morpho-
logically rich and Semitic languages. Our model
achieves a significant improvement over several
baselines for Arabic, and matches the baseline for
MSA without having to use an expensive morpho-
logical analyzer. The results highlight the benefits
of joint modeling, where diacritization seems to
have benefitted the most. We observe, however,
that further research is needed to enhance the over-
all consistency of the predicted features, without
relying on external morphological analyzers.
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