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Abstract

Existing Visual Question Answering (VQA)

methods tend to exploit dataset biases and spu-

rious statistical correlations, instead of produc-

ing right answers for the right reasons. To ad-

dress this issue, recent bias mitigation meth-

ods for VQA propose to incorporate visual

cues (e.g., human attention maps) to better

ground the VQA models, showcasing impres-

sive gains. However, we show that the perfor-

mance improvements are not a result of im-

proved visual grounding, but a regularization

effect which prevents over-fitting to linguis-

tic priors. For instance, we find that it is not

actually necessary to provide proper, human-

based cues; random, insensible cues also re-

sult in similar improvements. Based on this

observation, we propose a simpler regulariza-

tion scheme that does not require any external

annotations and yet achieves near state-of-the-

art performance on VQA-CPv21.

1 Introduction

Visual Question Answering (VQA) (Antol et al.,

2015), the task of answering questions about visual

content, was proposed to facilitate the development

of models with human-like visual and linguistic

understanding. However, existing VQA models

often exploit superficial statistical biases to produce

responses, instead of producing the right answers

for the right reasons (Kafle et al., 2019).

The VQA-CP dataset (Agrawal et al., 2018)

showcases this phenomenon by incorporating dif-

ferent question type/answer distributions in the

train and test sets. Since the linguistic priors in

the train and test sets differ, models that exploit

these priors fail on the test set. To tackle this

issue, recent works have endeavored to enforce

proper visual grounding, where the goal is to make

models produce answers by looking at relevant

visual regions (Gan et al., 2017; Selvaraju et al.,
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Figure 1: We find that existing visual sensitivity en-

hancement methods improve performance on VQA-

CPv2 through regularization as opposed to proper vi-

sual grounding.

2019; Wu and Mooney, 2019), instead of exploit-

ing linguistic priors. These approaches rely on

additional annotations/cues such as human-based

attention maps (Das et al., 2017), textual expla-

nations (Huk Park et al., 2018) and object label

predictions (Ren et al., 2015) to identify relevant

regions, and train the model to base its predictions

on those regions, showing large improvements (8-

10% accuracy) on the VQA-CPv2 dataset.

Here, we study these methods. We find that their

improved accuracy does not actually emerge from

proper visual grounding, but from regularization

effects, where the model forgets the linguistic pri-

ors in the train set, thereby performing better on

the test set. To support these claims, we first show

that it is possible to achieve such gains even when

the model is trained to look at: a) irrelevant visual

regions, and b) random visual regions. Second, we

show that differences in the predictions from the

1https://github.com/erobic/negative_

analysis_of_grounding
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variants trained with relevant, irrelevant and ran-

dom visual regions are not statistically significant.

Third, we show that these methods degrade perfor-

mance when the priors remain intact and instead

work on VQA-CPv2 by hurting its train accuracy.

Based on these observations, we hypothesize

that controlled degradation on the train set allows

models to forget the training priors to improve test

accuracy. To test this hypothesis, we introduce

a simple regularization scheme that zeros out the

ground truth answers, thereby always penalizing

the model, whether the predictions are correct or

incorrect. We find that this approach also achieves

near state-of-the-art performance (48.9% on VQA-

CPv2), providing further support for our claims.

While we agree that visual grounding is a useful

direction to pursue, our experiments show that the

community requires better ways to test if systems

are actually visually grounded. We make some

recommendations in the discussion section.

2 Related Work

2.1 Biases in VQA

As expected of any real world dataset, VQA

datasets also contain dataset biases (Goyal et al.,

2017). The VQA-CP dataset (Agrawal et al., 2018)

was introduced to study the robustness of VQA

methods against linguistic biases. Since it contains

different answer distributions in the train and test

sets, VQA-CP makes it nearly impossible for the

models that rely upon linguistic correlations to per-

form well on the test set (Agrawal et al., 2018;

Shrestha et al., 2019).

2.2 Bias Mitigation for VQA

VQA algorithms without explicit bias mitigation

mechanisms fail on VQA-CP, so recent works have

focused on the following solutions:

2.2.1 Reducing Reliance on Questions

Some recent approaches employ a question-only

branch as a control model to discover the ques-

tions most affected by linguistic correlations. The

question-only model is either used to perform ad-

versarial regularization (Grand and Belinkov, 2019;

Ramakrishnan et al., 2018) or to re-scale the loss

based on the difficulty of the question (Cadene

et al., 2019). However, when these ideas are ap-

plied to the UpDn model (Anderson et al., 2018),

which attempts to learn correct visual grounding,

these approaches achieve 4-7% lower accuracy

compared to the state-of-the-art methods.

2.2.2 Enhancing Visual Sensitivities

Both Human Importance Aware Network Tuning

(HINT) (Selvaraju et al., 2019) and Self Critical

Reasoning (SCR) (Wu and Mooney, 2019), train

the network to be more sensitive towards salient

image regions by improving the alignment between

visual cues and gradient-based sensitivity scores.

HINT proposes a ranking loss between human-

based importance scores (Das et al., 2016) and the

gradient-based sensitivities. In contrast, SCR does

not require exact saliency ranks. Instead, it penal-

izes the model if correct answers are more sensitive

towards non-important regions as compared to im-

portant regions, and if incorrect answers are more

sensitive to important regions than correct answers.

3 Existing VQA Methods

Given a question Q and an image I, e.g., repre-

sented by bottom-up region proposals: v (Ander-

son et al., 2018), a VQA model is tasked with pre-

dicting the answer a:

P (a|Q, I) = fV QA(v,Q). (1)

3.1 Baseline VQA Methods

Without additional regularization, existing VQA

models such as the baseline model used in this

work: UpDn (Anderson et al., 2018), tend to rely on

the linguistic priors: P (a|Q) to answer questions.

Such models fail on VQA-CP, because the priors

in the test set differ from the train set.

3.2 Visual Sensitivity Enhancement Methods

To reduce the reliance on linguistic priors, visual

sensitivity enhancement methods attempt to train

the model to be more sensitive to relevant visual

regions when answering questions. Following (Wu

and Mooney, 2019), we define the sensitivity of an

answer a with respect to a visual region vi as:

S(a, vi) := (∇viP (a|I,Q))T1. (2)

Existing methods propose the following training

objectives to improve grounding using S:

• HINT uses a ranking loss, which penalizes the

model if the pair-wise rankings of the sensitiv-

ities of visual regions towards ground truth an-

swers agt are different from the ranks computed

from the human-based attention maps.
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• SCR divides the region proposals into influen-

tial and non-influential regions and penalizes the

model if: 1) S(agt) of a non-influential region

is higher than an influential region, and 2) the

region most influential for the correct answer has

even higher sensitivity for incorrect answers.

Both methods improve baseline accuracy by 8-10%.

Is this actually due to better visual grounding?

4 Why Did the Performance Improve?

We probe the reasons behind the performance im-

provements of HINT and SCR. We first analyze if

the results improve even when the visual cues are

irrelevant (Sec. 4.2) or random (Sec. 4.3) and exam-

ine if their differences are statistically significant

(Sec. 4.4). Then, we analyze the regularization

effects by evaluating the performance on VQA-

CPv2’s train split (Sec. 4.5) and the behavior on

a dataset without changing priors (Sec. 4.6). We

present a new metric to assess visual grounding in

Sec. 4.7 and describe our regularization method in

Sec. 5.

4.1 Experimental Setup

We compare the baseline UpDn model with HINT

and SCR-variants trained on VQAv2 or VQA-CPv2

to study the causes behind the improvements. We

report mean accuracies across 5 runs, where a pre-

trained UpDn model is fine-tuned on subsets with

human attention maps and textual explanations for

HINT and SCR respectively. Further training de-

tails are provided in the Appendix.

4.2 Training on Irrelevant Visual Cues

In our first experiment we studied how irrelevant

visual cues performed compared to relevant ones.

We fine-tune the model with irrelevant cues defined

as: Sirrelevant := (1 − Sh), where, Sh represents

the human-based importance scores. As shown

in the ‘Grounding using irrelevant cues’ section of

Table 1, both HINT and SCR are within 0.3% of the

results obtained from looking at relevant regions,

which indicates the gains for HINT and SCR are

not necessarily from looking at relevant regions.

4.3 Training on Random Visual Cues

In our next experiment we studied how random

visual cues performed with HINT and SCR. We

assign random importance scores to the visual re-

gions: Srand ∼ uniform(0, 1). We test two variants

of randomness: Fixed random regions, where

Table 1: Results on VQA-CPv2 and VQAv2 datasets

for the baseline UpDn, visual sensitivity enhancement

methods (HINT and SCR) and our own regularization

method, including the published (pub.) numbers.

VQA-CPv2 VQAv2

Train Test Train Val

Baseline - Without visual grounding
UpDn 84.0 40.1 83.4 64.4

Grounding using human-based cues

HINTpub. N/A 46.7 N/A 63.41

SCRpub. N/A 49.5 N/A 62.2
HINT 73.9 48.2 75.7 61.3
SCR 75.9 49.1 77.9 61.3

Grounding using irrelevant cues
HINT 71.2 48.0 73.5 60.3
SCR 75.7 49.2 74.1 59.1

Grounding using fixed random cues
HINT 72.0 48.1 73.0 59.5
SCR 70.0 49.1 78.0 61.4

Grounding using variable random cues
HINT 71.9 48.1 72.9 59.4
SCR 69.6 49.2 78.1 61.5

Regularization by zeroing out answers
Ours1% fixed 78.0 48.9 80.1 62.6
Ours1% var. 77.6 48.5 80.0 62.6
Ours100% 75.7 48.2 79.9 62.4

1 The published number is a result of fine-tuning HINT
on the entire training set, but as described in Sec. 4.6,
other published numbers and our experiments fine-tune
only on the instances with cues.

Srand are fixed once chosen, and Variable ran-

dom regions, where Srand are regenerated every

epoch. As shown in Table 1, both of these vari-

ants obtain similar results as the model trained

with human-based importance scores. The perfor-

mance improves even when the importance scores

are changed every epoch, indicating that it is not

even necessary to look at the same visual regions.

4.4 Significance of Statistical Differences

To test if the changes in results were statistically

significant, we performed Welch’s t-tests (Welch,

1938) on the predictions of the variants trained

on relevant, irrelevant and random cues. We pick

Welch’s t-test over the Student’s t-test, because the

latter assumes equal variances for predictions from

different variants. To perform the tests, we first ran-

domly sample 5000 subsets of non-overlapping test

instances. We then average the accuracy of each

subset across 5 runs, obtaining 5000 values. Next,

we run the t-tests for HINT and SCR separately on

the subset accuracies. As shown in Table 2, the

p-values across the variants of HINT and SCR are
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Table 2: p-values from the Welch’s t-tests and the per-

centage of overlap between the predictions (Ovp.) of

different variants of HINT and SCR.

Methods p Ovp.(%)

HINT variants against Baseline

Default vs. Baseline 0.0 83.6
Irrelevant vs. Baseline 0.0 82.4
Fixed Random vs. Baseline 0.0 82.0
Variable Random vs. Baseline 0.0 81.5

Among HINT variants

Default vs Irrelevant 0.3 89.7
Default vs Fixed random 0.7 90.9
Default vs Variable random 0.6 91.9
Irrelevant vs Fixed random 0.5 95.6
Irrelevant vs Variable random 0.7 93.9
Fixed random vs Variable random 0.9 96.9

SCR variants against Baseline

Default vs. Baseline 0.0 85.6
Irrelevant vs. Baseline 0.0 84.2
Fixed Random vs. Baseline 0.0 80.7
Variable Random vs. Baseline 0.0 80.6

Among SCR variants

Default vs Irrelevant 0.6 92.0
Default vs Fixed random 0.8 89.3
Default vs Variable random 0.6 89.5
Irrelevant vs Fixed random 0.4 91.7
Irrelevant vs Variable random 1.0 91.6
Fixed random vs Variable random 0.4 96.7

greater than or equal to 0.3. Using a confidence

level of 95% (α = 0.05), we fail to reject the null

hypothesis that the mean difference between the

paired values is 0, showing that the variants are not

statistically significantly different from each other.

We also compare the predictions of HINT/SCR

against baseline, and find that p-values are all ze-

ros, showing that the differences have statistical

significance.

Percentage of Overlaps: To further check if

the variants trained on irrelevant or random regions

gain performance in a manner similar to the models

trained on relevant regions, we compute the overlap

between their predictions on VQA-CPv2’s test set.

The percentage of overlap is defined as:

% Overlap =
nsame

ntotal

× 100%,

where, nsame denotes the number of instances

where either both variants were correct or both

were incorrect and ntotal denotes the total num-

ber of test instances. As shown in Table 2, we

compare %Overlap between different variants of

HINT/SCR with baseline and against each other.

Epochs

Ac
cu

ra
cy

 o
n 

VQ
Av

2

60
61
62
63
64
65

0 1 2 3 4 5 6 7 8
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Figure 2: Accuracies for HINT and SCR on VQAv2’s

val set, when fine-tuned either on the full train set or on

the subset containing visual cues.

We find 89.7− 91.9% and 89.5− 92.0% overlaps

for different variants of HINT and SCR respec-

tively. These high overlaps suggest that the vari-

ants are not working in fundamentally different

manners.

4.5 Drops in Training Accuracy

We compare the training accuracies to analyze the

regularization effects. As shown in Table 1, the

baseline method has the highest training results,

while the other methods cause 6.0 − 14.0% and

3.3−10.5% drops in the training accuracy on VQA-

CPv2 and VQAv2, respectively. We hypothesize

that degrading performance on the train set helps

forget linguistic biases, which in turn helps accu-

racy on VQA-CPv2’s test set but hurts accuracy on

VQAv2’s val set.

4.6 Drops in VQAv2 Accuracy

As observed by Selvaraju et al. (2019) and as

shown in Fig. 2, we observe small improvements

on VQAv2 when the models are fine-tuned on the

entire train set. However, if we were to compare

against the improvements in VQA-CPv2 in a fair

manner, i.e., only use the instances with visual

cues while fine-tuning, then, the performance on

VQAv2 drops continuously during the course of

the training. This indicates that HINT and SCR

help forget linguistic priors, which is beneficial for

VQA-CPv2 but not for VQAv2.

4.7 Assessment of Proper Grounding

In order to quantitatively assess visual grounding,

we propose a new metric called: Correctly Pre-

dicted but Improperly Grounded (CPIG):

%CPIG =
Ncorrect ans, improper grounding

Ncorrect ans

× 100%,

which is the number instances for which the most

sensitive visual region used to correctly predict the
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answer is not within top-3 most relevant ground

truth regions, normalized by the total number of

correct predictions. HINT and SCR trained on rele-

vant regions obtained lower CPIG values that other

variants (70.24% and 80.22% respectively), indi-

cating they are better than other variants at finding

relevant regions. However, these numbers are still

high, and show that only 29.76% and 19.78% of

the correct predictions for HINT and SCR were

properly grounded. Further analysis is presented in

the Appendix.

5 Embarrassingly Simple Regularizer

The usage of visual cues and sensitivities in ex-

isting methods is superfluous because the results

indicate that performance improves through degra-

dation of training accuracy. We hypothesize that

simple regularization that does not rely on cues

or sensitivities can also achieve large performance

gains for VQA-CP. To test this hypothesis, we de-

vise a simple loss function which continuously de-

grades the training accuracy by training the network

to always predict a score of zero for all possible

answers i.e. produce a zero vector (0). The overall

loss function can be written as:

L := BCE(P (A),Agt) + λBCE(P (A),0),

where, BCE refers to the binary cross entropy loss

and P (A) is a vector consisting of predicted scores

for all possible answers. The first term is the binary

cross entropy loss between model predictions and

ground truth answer vector (Agt), and the second

term is our regularizer with a coefficient of λ = 1.

Note that this regularizer continually penalizes the

model during the course of the training, whether its

predictions are correct or incorrect.

As shown in Table 1, we present results when

this loss is used on: a) Fixed subset covering 1% of

the dataset, b) Varying subset covering 1% of the

dataset, where a new random subset is sampled ev-

ery epoch and c) 100% of the dataset. Confirming

our hypothesis, all variants of our model achieve

near state-of-the-art results, solidifying our claim

that the performance gains for recent methods come

from regularization effects.

It is also interesting to note that the drop in

training accuracy is lower with this regularization

scheme as compared to the state-of-the-art meth-

ods. Of course, if any model was actually visually

grounded, then we would expect it to improve per-

formances on both train and test sets. We do not

observe such behavior in any of the methods, indi-

cating that they are not producing right answers for

the right reasons.

6 Discussion on Proper Grounding

While our results indicate that current visual

grounding based bias mitigation approaches do not

suffice, we believe this is still a good research di-

rection. However, future methods must seek to

verify that performance gains are not stemming

from spurious sources by using an experimental

setup similar to that presented in this paper. We

recommend that both train and test accuracy be

reported, because a model truly capable of visual

grounding would not cause drastic drops in training

accuracy to do well on the test sets. Finally, we

advocate for creating a dataset with ground truth

grounding available for 100% of the instances us-

ing synthetically generated datasets (Kafle et al.,

2017; Kafle and Kanan, 2017; Kafle et al., 2018;

Acharya et al., 2019b; Hudson and Manning, 2019;

Johnson et al., 2017), enabling the community to

evaluate if their methods are able to focus on rele-

vant information. Another alternative is to use tasks

that explicitly test grounding, e.g., in visual query

detection an agent must output boxes around any

regions of a scene that match the natural language

query (Acharya et al., 2019a).

7 Conclusion

Here, we showed that existing visual grounding

based bias mitigation methods for VQA are not

working as intended. We found that the accuracy

improvements stem from a regularization effect

rather than proper visual grounding. We proposed

a simple regularization scheme which, despite not

requiring additional annotations, rivals state-of-the-

art accuracy. Future visual grounding methods

should be tested with a more comprehensive exper-

imental setup and datasets for proper evaluation.

Acknowledgement. This work was supported

in part by AFOSR grant [FA9550-18-1-0121], NSF

award #1909696, and a gift from Adobe Research.

We thank NVIDIA for the GPU donation. The

views and conclusions contained herein are those

of the authors and should not be interpreted as

representing the official policies or endorsements

of any sponsor. We are grateful to Tyler Hayes for

agreeing to review the paper at short notice and

suggesting valuable edits and corrections for the

paper.



8177

References

Manoj Acharya, Karan Jariwala, and Christopher
Kanan. 2019a. VQD: Visual query detection in nat-
ural scenes. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 1955–1961, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Manoj Acharya, Kushal Kafle, and Christopher Kanan.
2019b. Tallyqa: Answering complex counting ques-
tions. In Association for the Advancement of Artifi-
cial Intelligence (AAAI).

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and
Aniruddha Kembhavi. 2018. Dont just assume; look
and answer: Overcoming priors for visual question
answering. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 4971–4980.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual question an-
swering. In The IEEE International Conference on
Computer Vision (ICCV).

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi
Parikh, et al. 2019. Rubi: Reducing unimodal bi-
ases for visual question answering. In Advances in
Neural Information Processing Systems (NeurIPS),
pages 839–850.

Abhishek Das, Harsh Agrawal, C Lawrence Zitnick,
Devi Parikh, and Dhruv Batra. 2016. Human atten-
tion in visual question answering: Do humans and
deep networks look at the same regions? In Con-
ference on Empirical Methods on Natural Language
Processing (EMNLP).

Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi
Parikh, and Dhruv Batra. 2017. Human attention in
visual question answering: Do humans and deep net-
works look at the same regions? Computer Vision
and Image Understanding (CVIU), 163:90–100.

Chuang Gan, Yandong Li, Haoxiang Li, Chen Sun, and
Boqing Gong. 2017. Vqs: Linking segmentations
to questions and answers for supervised attention in
vqa and question-focused semantic segmentation. In
Proceedings of the IEEE International Conference
on Computer Vision, pages 1811–1820.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the

V in VQA matter: Elevating the role of image under-
standing in visual question answering. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume 1, page 3.

Gabriel Grand and Yonatan Belinkov. 2019. Adver-
sarial regularization for visual question answering:
Strengths, shortcomings, and side effects. In Pro-
ceedings of the Second Workshop on Shortcomings
in Vision and Language, pages 1–13, Minneapolis,
Minnesota. Association for Computational Linguis-
tics (ACL).

Drew A Hudson and Christopher D Manning. 2019.
GQA: A new dataset for real-world visual reasoning
and compositional question answering. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 6700–6709.

Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata,
Anna Rohrbach, Bernt Schiele, Trevor Darrell, and
Marcus Rohrbach. 2018. Multimodal explanations:
Justifying decisions and pointing to the evidence.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
8779–8788.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. 2017. Clevr: A diagnostic dataset for
compositional language and elementary visual rea-
soning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 1988–1997. IEEE.

Kushal Kafle and Christopher Kanan. 2017. An analy-
sis of visual question answering algorithms. In Pro-
ceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 1983–1991. IEEE.

Kushal Kafle, Brian Price, Scott Cohen, and Christo-
pher Kanan. 2018. DVQA: Understanding data vi-
sualizations via question answering. In Proc. IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 5648–5656.

Kushal Kafle, Robik Shrestha, and Christopher Kanan.
2019. Challenges and prospects in vision and lan-
guage research. Frontiers in Artificial Intelligence.

Kushal Kafle, Mohammed Yousefhussien, and Christo-
pher Kanan. 2017. Data augmentation for visual
question answering. In Proceedings of the 10th In-
ternational Conference on Natural Language Gener-
ation (INLG), pages 198–202.

Sainandan Ramakrishnan, Aishwarya Agrawal, and
Stefan Lee. 2018. Overcoming language priors in
visual question answering with adversarial regular-
ization. In Advances in Neural Information Process-
ing Systems (NeurIPS), pages 1541–1551.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster R-CNN: Towards real-time ob-
ject detection with region proposal networks. In
Advances in Neural Information Processing Systems
(NeurIPS).



8178

Ramprasaath R Selvaraju, Stefan Lee, Yilin Shen,
Hongxia Jin, Shalini Ghosh, Larry Heck, Dhruv Ba-
tra, and Devi Parikh. 2019. Taking a hint: Leverag-
ing explanations to make vision and language mod-
els more grounded. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 2591–2600.

Robik Shrestha, Kushal Kafle, and Christopher Kanan.
2019. Answer them all! toward universal visual
question answering models. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Bernard L Welch. 1938. The significance of the differ-
ence between two means when the population vari-
ances are unequal. Biometrika, 29(3/4):350–362.

Jialin Wu and Raymond Mooney. 2019. Self-critical
reasoning for robust visual question answering. In
Advances in Neural Information Processing Systems
(NeurIPS), pages 8601–8611.

A Appendix

A.1 Training Details

We compare four different variants of HINT and

SCR to study the causes behind the improvements

including the models that are fine-tuned on: 1) rele-

vant regions (state-of-the-art methods) 2) irrelevant

regions 3) fixed random regions and 4) variable

random regions. For all variants, we fine-tune a pre-

trained UpDn, which was trained on either VQA-

CPv2 or VQAv2 for 40 epochs with a learning rate

of 10−3. When fine-tuning with HINT, SCR or our

method, we also use the main binary cross entropy

VQA loss, whose weight is set to 1. The batch size

is set to 384 for all of the experiments.

HINT

Following (Selvaraju et al., 2019), we train

HINT on the subset with human-based attention

maps (Das et al., 2017), which are available for 9%

of the VQA-CPv2 train and test sets. The same

subset is used for VQAv2 too. The learning rate is

set to 2× 10−5 and the weight for the HINT loss

is set to 2.

SCR

Since (Wu and Mooney, 2019) reported that human-

based textual explanations (Huk Park et al., 2018)

gave better results than human-based attention

maps for SCR, we train all of the SCR variants

on the subset containing textual explanation-based

cues. SCR is trained in two phases. For the first

phase, which strengthens the influential objects, we

use a learning rate of 5 × 10−5, loss weight of 3

Table A3: Results on VQA-CPv2 and VQAv2 datasets

for the baseline UpDn, visual sensitivity enhancement

methods (HINT and SCR) and our own regularization

method, including the published (pub.) numbers.

VQA-CPv2 VQAv2

Baseline - Without visual grounding
UpDn 0.0110 0.0155

Grounding using human-based cues
HINT 0.1020 0.1350
SCR 0.0340 -0.0670

Grounding using irrelevant cues
HINT -0.0048 -0.0200
SCR 0.0580 -0.0100

Grounding using fixed random cues
HINT 0.0510 0.0620
SCR -0.0250 -0.0350

Grounding using variable random cues
HINT 0.0570 0.0623
SCR -0.0380 0.0246

Regularization by zeroing out answers
Ours1% fixed -0.1050 -0.1200
Ours100% -0.0750 -0.0100

and train the model to a maximum of 12 epochs.

Then, following (Wu and Mooney, 2019), for the

second phase, we use the best performing model

from the first phase to train the second phase, which

criticizes incorrect dominant answers. For the sec-

ond phase, we use a learning rate of 10−4 and

weight of 1000, which is applied alongside the

loss term used in the first phase. The specified hy-

perparameters worked better for us than the values

provided in the original paper.

Our Zero-Out Regularizer

Our regularization method, which is a binary cross

entropy loss between the model predictions and a

zero vector, does not use additional cues or sensi-

tivities and yet achieves near state-of-the-art per-

formance on VQA-CPv2. We set the learning rate

to: 2×10
−6

r
, where r is the ratio of the training in-

stances used for fine-tuning. The weight for the

loss is set to 2. We report the performance obtained

at the 8th epoch.

A.2 Results

Correlation with Ground Truth Visual Cues

Following (Selvaraju et al., 2019), we report Spear-

man’s rank correlation between network’s sensi-

tivity scores and human-based scores in Table A3.

For HINT and our zero-out regularizer, we use

human-based attention maps. For SCR, we use tex-

tual explanation-based scores. We find that HINT



8179

trained on human attention maps has the highest

correlation coefficients for both datasets. How-

ever, compared to baseline, HINT variants trained

on random visual cues also show improved cor-

relations. For SCR, we obtain surprising results,

with the model trained on irrelevant cues obtaining

higher correlation than that trained on relevant vi-

sual cues. As expected, applying our regularizer

does not improve rank correlation. Since HINT

trained on relevant cues obtains the highest cor-

relation values, it does indicate improvement in

visual grounding. However, as we have seen, the

improvements in performance cannot necessarily

be attributed to better overlap with ground truth

localizations.

A Note on Qualitative Examples

Presentation of qualitative examples in visual

grounding models for VQA suffers from confir-

mation bias i.e., while it is possible to find qualita-

tive samples that look at relevant regions to answer

questions properly, it is also possible to find sam-

ples that produce correct answers without looking

at relevant regions. We present examples for such

cases in Fig. A3. We next present a quantitative

assessment of visual grounding, which does not

suffer from the confirmation bias.

Quantitative Assessment of Grounding

In order to truly assess if existing methods are us-

ing relevant regions to produce correct answers,

we use our proposed metric: Correctly Predicted

but Improperly Grounded (CPIG). If the CPIG val-

ues are large, then it implies that large portion

of correctly predicted samples were not properly

grounded. Fig. A4 shows % CPIG for different

variants of HINT trained on human attention-based

cues, whereas Fig. A5 shows the metric for differ-

ent variants of SCR trained on textual explanation-

based cues. We observe that HINT and SCR trained

on relevant regions have the lowest % CPIG val-

ues (70.24% and 80.22% respectively), indicating

that they are better than other variants in finding

relevant regions. However, only a small percent-

age of correctly predicted samples were properly

grounded (29.76% and 19.78% for HINT and SCR

respectively), even when trained on relevant cues.

Breakdown by Answer Types

Table A4 shows VQA accuracy for each answer

type on VQACPv2’s test set. HINT/SCR and our

regularizer show large gains in ‘Yes/No’ questions.

Table A4: VQA accuracy per answer-type on

VQACPv2 test set.

Over-
all Yes/No

Num Other

Baseline - Without visual grounding
UpDn 40.1 41.1 12.0 47.2

Grounding using human-based cues
HINT 48.2 65.2 13.8 47.5
SCR 49.1 70.3 11.5 48.0

Grounding using irrelevant cues
HINT 48.0 67.2 13.5 47.1
SCR 49.2 73.4 11.5 46.4

Grounding using fixed random cues
HINT 48.1 66.9 13.8 46.9
SCR 49.1 74.7 12.2 45.1

Grounding using variable random cues
HINT 48.1 67.1 13.9 46.9
SCR 49.2 74.7 12.2 45.1

Regularization by zeroing out answers
Ours1% fixed 48.9 69.8 11.3 47.8
Ours100% 48.2 66.7 11.7 47.9

We hypothesize that the methods help forget lin-

guistic priors, which improves test accuracy of such

questions. In the train set of VQACPv2, the answer

‘no’ is more frequent than the answer ‘yes’, tempt-

ing the baseline model to answer ‘yes/no’ questions

with ‘no’. However, in the test set, answer ‘yes’

is more frequent. Regularization effects caused

by HINT/SCR and our method cause the models

to weaken this prior i.e., reduce the tendency to

just predict ‘no’, which would increase accuracy at

test because ‘yes’ is more frequent in the test set.

Next, all of the methods perform poorly on ‘Num-

ber (Num)’ answer type, showing that methods find

it difficult to answer questions that are most reliant

on correct visual grounding such as: localizing and

counting objects. Finally, we do not observe large

improvements in ‘Other’ question type, most likely

due to the large number of answers present under

this answer type.

Accuracy versus Size of Train Set

We test our regularization method on random sub-

sets of varying sizes. Fig. A6 shows the results

when we apply our loss to 1 − 100% of the train-

ing instances. Clearly, the ability to regularize the

model does not vary much with respect to the size

of the train subset, with the best performance occur-

ring when our loss is applied to 1% of the training

instances. These results support our claims that it is

possible to improve performance without actually

performing visual grounding.
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Q: Is this food sweet? A: yes

Remarks: The most sensitive regions for irrelevant/random variants do not contain food, yet their 

answers are correct.

Ground Truth

Localization

HINT trained on 

relevant cues

HINT trained on 

irrelevant cues

HINT trained on  

random cues

Q: Has the boy worn out his jeans? A: yes

Remarks: All of the variants look at both relevant and irrelevant regions to produce correct 

answer.

Q: Is the sport being played tennis or volleyball? A: tennis

Remarks: None of the variants look at relevant regions, and yet produce correct answer.

Q: What is the swimmer doing? A: surfing

Remarks: Models trained on irrelevant/random cues do not look at the swimmer at all, yet 

produce correct answer.

Figure A3: Visualizations of most sensitive visual regions used by different variants of HINT to make predictions.

We pick samples where all variants produce correct response to the question. The first column shows ground truth

regions and columns 2-4 show visualizations from HINT trained on relevant, irrelevant and fixed random regions

respectively.
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Figure A4: % CPIG for baseline and different variants of HINT and our method, computed using ground truth

relevant regions taken from human attention maps (lower is better).
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Figure A5: % CPIG for baseline and different variants of SCR and our method, computed using ground truth

relevant regions taken from textual explanations (txt).
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Figure A6: The regularization effect of our loss is invariant with respect to the dataset size.


