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Abstract

Hierarchical Topic modeling (HTM) exploits
latent topics and relationships among them
as a powerful tool for data analysis and
exploration. Despite advantages over tradi-
tional topic modeling, HTM poses its own
challenges, such as (1) topic incoherence,
(2) unreasonable (hierarchical) structure, and
(3) issues related to the definition of the
“ideal” number of topics and depth of the
hierarchy. In this paper, we advance the state-
of-the-art on HTM by means of the design
and evaluation of CluHTM, a novel non-
probabilistic hierarchical matrix factorization
aimed at solving the specific issues of HTM.
CluHTM’s novel contributions include: (i) the
exploration of richer text representation that
encapsulates both, global (dataset level) and
local semantic information – when combined,
these pieces of information help to solve the
topic incoherence problem as well as issues
related to the unreasonable structure; (ii) the
exploitation of a stability analysis metric for
defining the number of topics and the “shape”
the hierarchical structure. In our evaluation,
considering twelve datasets and seven state-
of-the-art baselines, CluHTM outperformed
the baselines in the vast majority of the cases,
with gains of around 500% over the strongest
state-of-the-art baselines. We also provide
qualitative and quantitative statistical analyses
of why our solution works so well.

1 Introduction

Topic Modeling (TM) is the task of automatically
extracting latent topics (e.g., a concept or a theme)
from a collection of textual documents. Such topics
are usually defined as a probability distribution
over a fixed vocabulary (a set of words) that refers
to some subject and describes the latent topic as
a whole. Topics might be related to each other, and
if they are defined at different semantic granularity
levels (more general or more specific), this nat-
urally induces a hierarchical structure. Although

traditional TM strategies are of great importance to
extract latent topics, the relationships among them
are also extremely valuable for data analysis and
exploration. In this context, Hierarchical Topic
Modeling (HTM) aims to achieve – to induce latent
topics from text data while preserving the inherent
hierarchical structure (Teh et al., 2006). Relevant
scenarios have been shown to enjoy the usefulness
of HTM, such as (i) hierarchical categorization
of Web pages (Ming et al., 2010), (ii) extracting
aspects hierarchies in reviews (Kim et al., 2013)
and (iii) discovering research topics hierarchies
in academic repositories (Paisley et al., 2014).

Despite its practical importance and potential
advantages over traditional TM, HTM poses its
own challenges, the main ones being: (i) topic
incoherence and (ii) unreasonable hierarchical
structure. Topic Incoherence has to do with the
need to learn meaningful topics. That is, the top
words that represent a topic have to be semantically
consistent with each other. Unreasonable structure
is related to the extracted hierarchical topic
structure. Topics near the root should be more
general, while topics close to the leaves should be
more specific. Furthermore, child topics must be
coherent with their corresponding parent topics,
guaranteeing a reasonable hierarchical structure.
Finally, (iii) the number of topics in each hierarchy
level is usually unknown and cannot be previously
set to a predefined value since it directly depends
on the latent topical distribution of the data.

Both supervised and unsupervised approaches
have been applied to HTM. Supervised methods
use prior knowledge to build the hierarchical
tree structure, such as labeled data or linking
relationships among documents (Wang et al.,
2015). Those strategies are unfeasible when there
is no explicit taxonomy or hierarchical scheme
to associate with documents or when such an
association (a.k.a., labeling) is very cumbersome
or costly to obtain. Unsupervised HTM (uHTM)
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deals with such limitations. uHTM methods do not
rely on previous knowledge (such as taxonomies
or labeled hierarchies), having the additional
challenge of discovering the hierarchy of topics
based solely on the data at hand.

HTM solutions can also be roughly grouped
into non-probabilistic and probabilistic models. In
probabilistic strategies, textual data is considered to
be “ruled” by an unknown probability distribution
that governs the relationships between documents
and topics, hierarchically. The major drawback in
this type of approach has to do with the number of
parameters in the model, which rapidly grows with
the number of documents. This leads to learning
inefficiencies and proneness to over-fitting, mainly
for short textual data (Tang et al., 2014). To over-
come these drawbacks, non-probabilistic models
aim at extracting hierarchical topic models through
matrix factorization techniques instead of learning
probability distributions. Such strategies also
pose challenges. They are usually limited to just
local information (i.e., data limitation) as they go
deeper into the hierarchy when extracting the latent
topics. That is, as one moves more in-depth in the
hierarchical structure representing the latent topics,
the available data rapidly reduces in size, directly
impacting the quality of extracted topics (in terms
of both coherence and structure reasonableness).
Probabilistic models mitigate this phenomenon as
they rely on global information when handling the
probability distributions(Xu et al., 2018). Because
of that, the current main HTM methods are built
based on probabilistic methods (Griffiths et al.,
2004; Mimno et al., 2007).

In this paper, we aim at exploring the best prop-
erties of both non-probabilistic and probabilistic
strategies while mitigating their main drawbacks.
Up to our knowledge, the only work to explore this
research venue is (Liu et al., 2018). In that work,
the authors explore NMF for solving HTM tasks
by enforcing three optimization constraints during
matrix factorization: global independence, local
independence, and information consistency. Those
constraints allow their strategy, named HSOC, to
produce hierarchical topics that somehow preserve
topic coherence and reasonable hierarchical struc-
tures. However, as we shall see in our experiments,
HSOC is still not capable of extracting coherent
topics when applied to short text data, which is
currently prominent on the Web, especially on
social network environments.

We here propose a distinct approach, taking a
data engineering perspective, instead of focusing
on the optimization process. More specifically, we
explore a matrix factorization solution properly
designed to explore global information (akin to
probabilistic models) when learning hierarchical
topics while ensuring proper topic coherence and
structure reasonableness. This strategy allows us to
build a data-efficient HTM strategy, less prone to
over-fitting that also enjoys the desired properties
of topic coherence and reasonable (hierarchical)
structure. We do so by applying a matrix factoriza-
tion method over a richer text representation that
encapsulates both, global and semantic information
when extracting the hierarchical topics.

Recent non-probabilistic methods (Shi et al.,
2018; Viegas et al., 2019) have produced top-notch
results on traditional TM tasks by taking advantage
of semantic similarities obtained from distances be-
tween words within an embedding space (Mikolov
et al., 2013; Pennington et al., 2014). Our critical
insight for HTM was to note that the richer
(semantic) representation offered by distributional
word embeddings can be readily explored as a
global1 source of information in more profound
levels of the hierarchical structure of topics. This
insight gives us an essential building block to
overcome the challenges of matrix factorization
strategies for HTM without the need for additional
optimization constraints.

In (Viegas et al., 2019), the authors exploit the
nearest words of a given “pre-trained” word em-
bedding to generate “meta-words”, aka Cluwords,
able of expanding and enhancing the document
representation in terms of syntactic and semantic
information. Such an improved representation
is capable of mitigating the drawbacks of using
the projected space of word embeddings as well
as extracting cohesive topics when applying non-
negative matrix factorization for topic modeling.

Motivated by this finding, we here advance the
state-of-the-art in HTM, by designing, developing
and evaluating an unsupervised non-probabilistic
HTM method that exploits CluWords as a key
building block for TM when capturing the latent
hierarchical structure of topics. We focus on the
NMF method for uncovering the latent hierarchy as
it is the most effective matrix factorization method
for our purposes. Finally, the last aspect needed

1Distances in the embeddings space are global as they do
consider the whole vocabulary and interactions among words
in specific contexts.
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to be addressed for the successful use of NMF for
HTM is the definition of the appropriate number of
topics k to be extracted. Choosing just a few topics
will produce overly broad results while choosing
too many will result in over-clustering the data into
many redundant, highly-similar topics. Thus, our
proposed method uses a stability analysis concept
to automatically select the best number of topics
for each level of the hierarchy.

As we shall see, our approach outperforms
HSOC and hLDA (current state-of-the-art) for both
small and large text datasets, often by large mar-
gins. To summarize, our main contributions are: (i)
a novel non-probabilistic HTM strategy – CluHTM
– based on NMF and CluWords that excels on
HTM tasks (in both short and large text data) while
ensuring topic coherence and reasonable topic
hierarchies; (ii) the exploitation in an original
way of a cross-level stability analysis metric for
defining the number of topics and ultimately ‘the
shape’ of the hierarchical structure; as far as we
know this metric has never been applied with this
goal; (iii) an extensive empirical analysis of our
proposal considering twelve datasets and seven
state-of-the-art baselines. In our experimental
evaluation, CluHTM outperformed the baselines
in the vast majority of the cases (In case of NPMI,
in all cases), with gains of 500% when compared
to hLDA and 549% when compared to HSOC,
some of the strongest baselines; and finally, (iv)
qualitative and quantitative statistical analyses of
the individual components of our solution.

2 Related Work

Hierarchical Topic Modeling (HTM) can be
roughly grouped into supervised and unsupervised
methods. Considering the supervised HTM strate-
gies, we here highlight some relevant supervised
extensions to the traditional Latent Dirichlet
Allocation (LDA) (Blei et al., 2003), a widely
used strategy for the topic modeling (TM). LDA
assumes a Dirichlet probability distribution over
textual data to estimate the probabilities of words
for each topic. In (Mcauliffe and Blei, 2008), the
authors propose SLDA, a supervised extension
of LDA that provides a statistical model for
labeled documents. SLDA allows connecting each
document to a regression variable to find latent
topics that will best predict the response variables
for future unlabeled documents. Based on SLDA,
Hierarchical Supervised LDA (HSLDA) (Perotte

et al., 2011) incorporates the hierarchy of multi-
label and pre-labeled data into a single model, thus
providing extended prediction capabilities w.r.t.,
the latent hierarchical topics. The Supervised
Nested LDA (SNLDA) (Resnik et al., 2015), also
based on SLDA, implements a generative proba-
bilistic strategy where topics are sampled from a
probability distribution. SNLDA extends SLDA by
assuming that the topics are organized into a tree
structure. Although our focus is on unsupervised
solutions, we include SLDA, HSLDA and SNLDA
as baselines in our experimental evaluation.

We now turn our attention to unsupervised
HTM strategies, in which a hierarchical structure
is learned during topic extraction. In (Mimno
et al., 2007) the authors propose Hierarchical
Pachinko Allocation Model (hPAM), an extension
of Pachinko Allocation (PAM) (Li and McCallum,
2006). In PAM, documents are a mix of distribu-
tions over an individual topic set, using a directed
acyclic graph to represent the co-occurrences of
topics. Each node in such a graph represents a
Dirichlet distribution. At the highest level of PAM,
there is only a single node, where the lowest levels
represent a distribution between nodes of the next
higher level. In hPAM, each node is associated with
a distribution over the vocabulary of documents.

In (Griffiths et al., 2004), the authors propose
the hLDA algorithm, which is also an expansion
of LDA, being considered state-of-the-art in HTM.
In hLDA, in addition to using the text Dirichlet
distribution, the nested Chinese Restaurant Process
(nCRP) is used to generate a hierarchical tree.
NCRP needs two parameters: the tree level
and a γ parameter. At each node of the tree,
a document can belong to a path or create a
new tree path with probability controlled by γ.
More recently, in (Xu et al., 2018), the authors
propose the unsupervised HTM strategy named
a knowledge-based hierarchical topic model
(KHTM). This method is based on hLDA and, as
such, models a generative process whose parameter
estimation strategy is based on Gibbs sampling.
KHTM is able to uncover prior knowledge (such as
the semantic correlation among words), organizing
them into a hierarchy, consisting of knowledge
sets (k-sets). More specifically, the method first
generates, through hLDA, an initial set of topics.
After comparing pairs of topics, those topics with
similarity higher than α (a.k.a., k-sets) are then
filtered so that the first 20 words of each topic are
kept, and the remaining are just discarded. Those
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extracted k-sets are then used as an extra weight
when extracting the final topics. All these methods
are used as baselines in our experimentation.

Probably the most similar work to ours is the
HSOC strategy, proposed in (Liu et al., 2018),
which proposes to use NMF for solving HTM
tasks. In order to mitigate the main drawbacks
of NMF in the HTM setting2, HSOC relies on
three optimization constraints to properly drive the
matrix factorization operations when uncovering
the hierarchical topic structure. Such constraints
are global independence, local independence, and
information consistency, and allow HSOC to derive
hierarchical topics that somehow preserve topic
coherence and reasonable hierarchical structures.

As it can be observed, almost all models,
supervised or unsupervised, are based on LDA. As
discussed in Section 1, though matrix factorization
strategies normally present better results than
Dirichlet strategies in TM tasks, for HTM, the situ-
ation is quite different. In fact, matrix factorization
methods face difficult challenges in HTM, mainly
regarding data size as ones go deeper into the
hierarchy. More specifically, at every hierarchical
level, a matrix factorization needs to be applied to
increasingly smaller data sets, ultimately leading
to insufficient data at lower hierarchy levels. These
approaches also do not exploit semantics nor any
external enrichment, relying only on the statistical
information extracted from the dataset. Contrarily,
here we propose a new HTM approach, called
CluHTM, which exploits externally built word
embedding models to incorporate global semantic
information into the hierarchical topic tree creation.
This brings some important advantages to our
proposal in terms of effectiveness, topic coherence,
and hierarchy reasonableness altogether.

3 Background

3.1 CluWords Representation

Cluwords (Viegas et al., 2019) combine the
traditional Bag of Words (BoW) statistical
representation with semantic information related to
the words present in the documents. The semantic
context is obtained employing a “pre-trained”
word representation, such as Fasttext (Mikolov
et al., 2018). Figure 1 presents the process of
transforming each original word into a Cluword

2Namely, the incoherence of topics and unreasonable hier-
archical structure caused by the lack of a learned probability
distribution that governs the document/topics relationships

(cluster of words) representation. First, the strategy
uses the information about the dataset, as well as
pre-trained word embedding (i.e. Fasttext) to build
semantic relationships between a word and its
neighbors (described in Section 3.1.1). Next, sta-
tistical information on words (e.g., term frequency,
document frequency) is extracted from the dataset.
Then, both semantic and statistical information
are combined to measure the importance of each
Cluword as explained in Section 3.1.2. Cluwords
enjoy the best of “two worlds”: it conjugates
statistical information on the dataset, which has
demonstrated to be very effective, efficient and
robust in text applications, enriched with semantic
contextual information captured by distributional
word embeddings adapted to the dataset by the
clusterization process described next.

Figure 1: Diagram showing the steps for building the
CluWords representation.

3.1.1 Cluwords Generation
LetW be the set of vectors representing each word
t in the dataset vocabulary (represented as V). Each
word t ∈ V has a corresponding vector u ∈ W .
The CluWords representation is defined as in
Figure 1. The semantic matrix in the Figure 1 is de-
fined as C ∈ R|V|×|V|, where each dimension has
the size of the vocabulary (|V|), t′ represents the
rows of C while t represents the columns. Finally,
each index Ct′,t is computed according to Eq. 1.

Ct′,t =

{
ω(ut′ , ut) if ω(ut′ , ut) ≥ α
0 otherwise, (1)

where ω(ut′ , ut) is the cosine similarity and α is
a similarity threshold that acts as a regularizer for
the representation. Larger values of α lead sparser
representations. In this notation each column t of
the semantic matrix C will be forming a CluWord
t and each value of the matrix Ct′,t may receive
the cosine similarity between the vectors ut′ and
ut in the embedding spaceW if it is greater than
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or equal to α . Otherwise, the Ct′,t receives zero,
according to the Eq. 1.

3.1.2 TFIDF Weight for CluWords
In Figure 1, the CluWords representation is defined
as the product between the statistical matrix (a.k.a.
term-frequency matrix) and semantic matrix C.
The statistical matrix (TF ) can be represented as a
TF ∈ R|D|×|V|, where each position TFd,t relates
to the frequency of a word t in document d. Thus,
given a CluWord (CW) t for a document d, its data
representation corresponds to CWd,t =

−−→
TFd ×

−→
C,t,

where −−→TFd has the term-frequencies of document
d, and −→C,t is the semantic scores for the CluWord
t, according to Eq. 1.

The TFIDF weighting for a CluWord t in a
document d is defined as CWd,t = CWd,t × idft.
The IDF component is defined as idft =

log
(

|D|∑
1≤d≤|D| µt,d

)
, where D is the number of

documents and µt,d is the average of semantic
weights of the semantic matrixC for the CluWord t
(−→C,t) that occurs in the vocabulary Vd. The average
µt,d is defined as µt,d = 1

|Vd,t′ |
·
∑

t′∈(Vd∩
−→
C,t)

Ct′,t.

3.2 Stability Measure

The Stability measure is motivated by the term-
centering approach generally taken in topic model-
ing strategies, where topics are usually summarized
as a truncated set of top words (Greene et al., 2014).

The intuition behind this strategy is, given some
K topics, to measure whether running multiple ran-
dom samplings for a topic modeling strategy results
in Stability, in terms of p top words extracted from
the topics. Given a range of topics [Kmin,Kmax],
and some topic modeling strategy (on our case,
Non-negative Factorization Matrix method), the
strategy proceeds as follows. First, it learns a topic
model considering the complete data set represen-
tation D, which will be used as a reference point
(WD) for analyzing the Stability afforded by the
K topics. Note that the p top words represent each
topic. Subsequently, S samples of the data are ran-
domly drawn fromD without replacement, forming
a subset of D′ documents. Then, |S| topic models
are generated, one for each subsampling (WSi).

To measure the quality of K topics, the Stabil-
ity computes the mean agreement among each pair
of (WD,WSi). The goal is to find the best match
between the p top words of the compared topics.
The agreement is defined as agree(Wx,Wy) =
1
p

∑p
i=1AJ(wxi, ρ(wxi)), where AJ(·) is the av-

erage Jaccard coefficient used to compare the sim-
ilarity among the words w and ρ(·) is the opti-
mal permutation of the words inWSi that can be
found in O(p3) time by solving the minimal weight
bipartite matching problem using the Hungarian
method (Kuhn, 2010).

4 Proposed Solution

CluHTM is an iterative method able to automat-
ically define the best number of topics in each
hierarchy, given a range of possible number
of topics [Kmin,Kmax]. CluHTM explores
Cluwords and Non-negative Matrix Factorization
(NMF) (Lee and Seung, 2001), one of the main
non-probabilistic strategies. Finally, the Stability
method (described in Section 3) is used to select
NMF k parameters (a.k.a number of topics).

CluHTM has five inputs (Algorithm 1), (i)Dmax
corresponds to the depth down to which we want
to extract the hierarchical structure. (ii) Kmin and
Kmax control the range of some topics, such range
will be used in all levels of the hierarchy; (iii) T is
the input text data; and (iv)W is the “pre-trained”
word embedding vector space used in the Clu-
Words generation. The output is the hierarchical
structureH of p top words for each topic.

Algorithm 1: CluHTM

Input: Dmax - Hierarchy Depth;
Kmin - Number of minimum topics;
Kmax - Number of maximum topics;
T - Term-frequency representation;
W - Word embedding vectors ∈ T ;

Output: H - Hierarchical Structure.
1 parent← −1;
2 queue.push(0, T );
3 while queue 6= ∅ do
4 depth, T ′ ← queue.pop();
5 Clu← GenerateCluwords(T ′,W);
6 K ← Stability(Kmin,Kmax, Clu)
7 O ← NMF (Clu,K)
8 topics← ExtractTopics(O)
9 foreach topic ∈ topics do

10 parent← parent ∪ topic;
11 H ← H∪ topic;
12 if depth+ 1 ≤ Dmax then
13 T ′ ← ExtractDocs(topic);
14 queue.push(depth+ 1, T ′)

15 returnH

The method starts by getting the root topic (line
2-3 of Algorithm 1), which is composed of all
documents in T . Since the method is iterative,
each iteration is controlled by a queue schema
to build a hierarchical structure. Thus, at each
iteration (line 3), the algorithm produces the
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CluWords representation for the documents ∈ T ′
(line 5), chooses the number of topics, exploiting
the Stability measure (line 6), and runs the NMF
method (line 7) to extract the p words for each
topic in O (line 8). Then, in the loop of line 9,
each topic is stored in the queue, as well as the
respective documents of each topic.

Summarizing, our solution exploits global
semantic information (captured by CluWords)
within local factorizations, limited by a stability
criterion that defines the ‘shape’ of the hierarchical
structure. Though simple (and original), the
combination of these ideas is extremely powerful
for solving the HTM task, as we will see next.

5 Experimental Results

5.1 Experimental Setup

The primary goal of our solution is to effectively
perform hierarchical topic modeling so that more
coherent topics can be extracted. To evaluate
topic model coherence, we consider 12 real-world
datasets as reference. All of them were obtained
from previous works in the literature. For all
datasets, we performed stopwords removal (using
the standard SMART list) and removed words
such as adverbs, using the VADER lexicon
dictionary (Hutto and Gilbert, 2014), as the vast
majority of the essential words for identifying
topics are nouns and verbs. These procedures
improved both the efficiency and effectiveness
of all analyzed strategies. Table 1 provides a
summary of the reference datasets, reporting the
number of features (words) and documents, as
well as the mean number of words per document
(density) and the corresponding references.

Table 1: Dataset characteristics

Dataset #Feat #Doc Density
Angrybirds 1,903 1,428 7.135
Dropbox 2,430 1,909 9.501
Evernote 6,307 8,273 11.002
InfoVis-Vast 3 6,104 909 86.215
Pinterest 2,174 3,168 4.478
TripAdvisor 3,152 2,816 8.532
Tweets 8,029 12,030 4.450
WhatsApp 1,777 2,956 3.103
20NewsGroup 4 29,842 15,411 76.408
ACM 16,811 22,384 30.428
Uber 5,517 11,541 7.868
Facebook 5,168 12,297 6.427

3https://www.cc.gatech.edu/gvu/ii/jigsaw/datafiles.html
4http://qwone.com/∼jason/20Newsgroups/

We compare the HTM strategies using rep-
resentative topic quality metrics in the litera-
ture (Nikolenko, 2016; Nikolenko et al., 2017). We
consider three classes of topic quality metrics based
on three criteria: (a) coherence, (b) mutual informa-
tion, and (c) semantic representation. In this paper,
we focus on these three criteria since they are the
most used metrics in the literature (Shi et al., 2018).
We consider three topic lengths (5, 10 and 20
words) for each parameter in our evaluation, since
different lengths may bring different challenges.

Regarding the metrics, coherence captures
easiness of interpretation by co-occurrence. Words
that frequently co-occur in similar contexts in a
corpus are easier to correlate since they usually
define a more well-defined “concept” or “topic”.
We employ an improved version of regular
coherence (Nikolenko, 2016), called Coherence,
defined as

c(t,Wt) =
∑

w1,w2∈Wt

log
d(w1, w2) + ε

d(w1)
, (2)

where d(w1) denotes the number of occurrences
of w1, d(w1, w2) is the number of documents
that contain both w1 and w2 together, and ε is a
smoothing factor used for preventing log(0).

Another class of topic quality metrics is based
on the notion of pairwise pointwise mutual
information (PMI) between the top words in
a topic. It captures how much one “gains” in
the information given the occurrence of the
other word, taking dependencies between words
into consideration. Following a recent work
(Nikolenko, 2016), we here compute a normalized
version of PMI (NPMI) where, for a given ordered
set of top words Wt = (w1, ..., wN ) in a topic:

NPMIt =
∑
i<j

log
p(wi,wj)

p(wi)p(wj)

−logp(wi, wj)
. (3)

Finally, the third class of metrics is based on
the distributed word representations introduced
in (Nikolenko, 2016). The intuition is that, in a
well-defined topic, the words should be semanti-
cally similar, or at least related, to be easily inter-
preted by humans. In a d-dimensional vector space
model in which every vocabulary word w ∈ W
has been assigned to a vector vw ∈ Rd, the vectors
corresponding to the top words in a topic should
be close to each other. In (Nikolenko, 2016), the
authors define topic quality as the average distance
between the top words in the topic, as follows:
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W2V − L1 =
1

|Wt|(|Wt| − 1)

∑
w1 6=w2∈Wt

dcos(vw1 , vw2).

(4)

Generally speaking, let d(w1, w2) be a distance
function in Rd. In this case, larger d(w1, w2)
corresponds to worse topics (with words not as lo-
calized as in topics with smaller average distances).
In (Nikolenko, 2016), the authors suggest four
different distance metrics, with cosine distance
achieving the best results. We here also employ the
cosine distance, defined as dcos(x, y) = 1− xT y.

We compare our approach described in Sec-
tion 4, with seven hierarchical topic model
strategies marked in bold in Section 2. For the
input parameters of CluHTM (Algorithm 1), we
set Kmin = 5, Kmax=25, R = 10 and Dmax = 3.
We define Kmin through empirical experiments,
and the Kmax was defined according to the number
of topics exploited in (Viegas et al., 2019). For
the baseline methods, we adopt the parameters
suggested by their own works. We assess the statis-
tical significance of our results employing a paired
t-test with 95% confidence and Holm-Bonferroni
correction to account for multiple tests.

5.2 Experimental Results
We start by comparing CluHTM against four
state-of-the-art uHTM baselines considering the
twelve reference datasets. Three hierarchical levels
for each strategy are used in this comparison. In
Figures 2, 4 and 3 we contrast the results of our pro-
posed CluHTM and the reference strategies, consid-
ering the NPMI, W2V-L1, and Coherence metrics.

Figure 2: uHTM Comparative Results (NPMI).

Figure 3: uHTM Comparative Results (Coherence)

Figure 4: uHTM Comparative Results (W2V-L1)

Note that each strategy extracted a different
number of topics in its hierarchical structure.
Considering NPMI, the most important metric
to evaluate the quality of topics (Nikolenko,
2016), we can see in Figure 2 that our strategy
outperforms all baselines in all datasets by large
margins, with gains over 500% against some of
the strongest ones. Some of these results are the
highest in terms of NMPI ever reported for several
of these datasets. Considering the Coherence
scores (Figure 3), our strategy achieves the single
best results in 2 out of 12 datasets, with gains up
to 58% and 92% against the most robust baseline
(hPAM), tying in 8 out 12 and losing two times for
hLDA and hPAM. Similar results can be observed
for the W2V-L1 metric (Figure 4) – CluHTM ties
in 10 out of 12 results, with one win and one loss
for KHTM. As we will see, even with very few
losses in these metrics, our method proves to be
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Dataset CluHTM SLDA SNLDA HSLDA
Coherence

20News −62.6898 ± 21.0606 N −403.3413 ± 90.2313 −410.0020 ± 71.2366 −309.9041 ± 132.5511
ACM −32.3371 ± 29.5853 N −539.6660 ± 115.2125 −507.4476 ± 108.6966 −486.4835 ± 104.9369

W2V-L1
20News 1.1863 ± 0.1176 H 0.3093 ± 0.2006 0.3456 ± 0.2051 0.0952 ± 0.1094
ACM 1.0489 ± 0.6506 • 0.6347 ± 0.2617 0.6803 ± 0.2243 0.2816 ± 0.1567

NPMI
20News 0.9351 ± 0.0365 N 0.2714 ± 0.1157 0.2205 ± 0.0752 0.4383 ± 0.2162
ACM 0.9641 ± 0.0416 N 0.2071 ± 0.0579 0.2064 ± 0.0529 0.2761 ± 0.0978

Table 2: Comparing the results achieved by each supervised HTM strategy for Coherence, W2V-L1 and NPMI.

Table 3: Number of times each strategy was the top per-
former. CluHTM is the best performer in most cases.

Method Metric
∑

NPMI W2V-L1 Coherence (Sum)
CluHTM 12 11 10 33

hPAM 0 9 8 17
hLDA 0 2 9 11
HSOC 0 9 0 9
KHTM 0 6 2 8
SNLDA 0 2 0 2
HSLDA 0 2 0 2

textbfSLDA 0 1 0 1

more consistent than the baselines.
We now turn our attention to the effectiveness

of our proposal when compared to the supervised
HTM strategies. We consider the 20News and
ACM datasets for which have a ground truth for su-
pervised strategies. Table 2 presents the results con-
sidering Coherence, W2V-L1, and NPMI. The sta-
tistical significance tests ensure that the best results,
marked in N, are superior to others. The statisti-
cally equivalent results are marked in • while sta-
tistically significant losses are marked in H. Once
again, in Table 2, our proposed strategy achieves
the best results in 4 out of 6 cases, tying with
SNLDA and HSLDA in ACM and loosing only to
SLDA in 20News, both considering the W2V-L1
metric. It is important to remind that, differently
from these supervised baselines, our method does
not use any privileged class information to build
the hierarchical structure nor to extract topics.

We provide a comparative table with all exper-
imental results5, including the results for each
extracted level of the hierarchical structure. We
summarize our findings regarding the behavior of
all analyzed strategies in the 12 datasets, counting
the number of times each strategy figured out as
a top performer6. The summarized results can be
seen in Table 3. Our proposal is in considerable
advantage over the other explored baselines, being

5see Appendix, Section Supplementary Results for detailed
results

6If two approaches are statistically tied as top performers
in the same dataset, both will be counted.

the strategy of choice in the vast majority of cases.
Overall, considering a universe of 36 experimental
results (the combination of 3 evaluation metrics
over 12 datasets), we obtained the best results (33
best performances), with the most robust baseline
– hPAM – coming far away, with just 17 top perfor-
mances. Another interesting observation is that, in
terms of NPMI, CluHTM wins in all cases. Details
of this analysis are summarized in the Appendix.

5.3 Impact of the Factors

One important open question remains to be
answered: To what extent the characteristics
of the dataset impact the quality of the topics
generated by our strategy? To answer this question,
we provide a quantitative analysis regarding
the hierarchical topic modeling effectiveness,
measured by the NPMI score.

We start our analysis by quantifying the effects
of the parameters of interest (i.e., factors). Those
factors might affect the performance of the system
under study, while also determining whether the ob-
served variations are due to significant effects (e.g.,
measurement errors, the inherent variability of the
process being analyzed (Jain, 1991)). To this end,
we adopt a full factorial design, which uses all the
possible combinations of the levels of the factors
in each complete experiment. The first factor is the
dataset. The idea is to analyze the impact of textual
properties such as dataset size, density, dimension-
ality, etc. Thus, each level of this factor is a dataset
in Table 1. The second factor is the HTM strategies
evaluated in the previous Section. In this factor,
we intend to assess the impact of the extracted
topics, as well as the hierarchical structure. Each
level of this factor is an evaluated HTM strategy.
All the possible combination between these two
factors will be measured by the average of NMPI
among topics of the hierarchical structure.

Results are shown in Table 4. In the Table, we
highlight the average NPMI and the effects of each
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Dataset-Algorithm CluHTM hLDA hPAM HSOC KHTM Row Sum Row Mean Row Effect
Angry Birds 0.8934 0.5593 0.3604 0.2120 0.4940 2.5191 0.5038 0.0507
Dropbox 0.9002 0.5806 0.2529 0.1703 0.4022 2.3062 0.4612 0.0082
Evernote 0.9374 0.5668 0.1534 0.1222 0.4426 2.2224 0.4445 -0.0086
Facebook 0.8686 0.5998 0.1517 0.1128 0.4791 2.2120 0.4424 -0.0107
InfoVis-Vast 0.9935 0.1650 0.1191 0.1632 0.1459 1.5867 0.3173 -0.1357
Pinterest 0.8482 0.5614 0.3028 0.1865 0.3912 2.2901 0.4580 0.0049
Trip Advisor 0.9265 0.5769 0.2745 0.1477 0.5007 2.4263 0.4853 0.0322
Tweets 0.8950 0.5966 0.2130 0.1928 0.4759 2.3733 0.4747 0.0216
Uber 0.9116 0.5829 0.1403 0.1006 0.4168 2.1522 0.4304 -0.0226
Whatsapp 0.8594 0.5881 0.3976 0.2031 0.5172 2.5654 0.5131 0.0600
Col Sum 9.0338 5.3774 2.3657 1.6112 4.2656 22.6537 - -
Col Mean 0.9034 0.5377 0.2366 0.1611 0.4266 - 0.4531 -
Col effect 0.4503 0.0847 -0.2165 -0.2920 -0.0265 - - -

Table 4: Overview of the factorial desgin

Component Sum of Degrees % Variation Degrees of Freedom Mean Square F-Computed F-Table (0.99)
y 14.0670 - 50 - - -
y.. 10.2638 - 1 - - -
y − y.. 3.8032 100.00% 49 - - -
A 3.4276 90.12% 4 0.8569 127.9197 3.8903
B 0.1345 3.92% 9 0.0149 2.2303 2.9461
e 0.2412 6.34% 36 0.0067 - -

Table 5: ANOVA Test with 99% confidence to measure the impact of each factor.

factor. From the effects, we can observe that the
CluHTM impact in the NPMI value is 99.38%
higher than the overall average. We can also see
that hLDA has an NPMI score higher than the
overall average (18.67%) and HSOC has an NPMI
score of approximately 64.44% smaller than
overall NMPI. Concerning the datasets’ effects, the
full factorial design experiment tells us that they
have a small impact on the variation concerning
the obtained average NPMI scores. We can also
observe that the dataset with the most variation
of NPMI is InfoVis-Vast, with a score of 29.97%
smaller than the overall NPMI.

We perform a ANOVA test to assess whether the
studied factors are indeed statistically significant
and conclude, with 99% confidence according to
the F-test, that the choice of algorithm (factor B)
explains approximately 90% of the obtained NPMI
values. We can also conclude that the investigated
properties of the textual data (factor A), as well
as the experimental errors, have a small influence
on the experimental results. Summarizing, we can
conclude that the characteristics of the datasets
have a lower impact on the results and that the
impact of CluHTM is consistent across all of them.
The ANOVA test details are presented in Table 5.

6 Conclusion

We advanced the state-of-the-art in hierarchical
topic modeling (HTM) by designing, implement-
ing and evaluation a novel unsupervised non-
probabilistic method – CluHTM. Our new method
exploits a more elaborate (global) semantic data

representation – CluWords – as well as an orig-
inal application of a stability measure to define
the “shape” of the hierarchy. CLUHTM excelled
in terms of effectiveness, being around two times
more effective than the strongest state-of-the-art
baselines, considering all tested datasets and evalu-
ation metrics. The overall gains over some of these
strongest baselines are higher than 500% in some
datasets. We also showed that CluHTM results are
consistent across most datasets, independently of
the data characteristics and idiosyncrasies. As fu-
ture work, we intend to apply CluHTM in other
representative applications on the Web, such as hi-
erarchical classification by devising a supervised
version of CluHTM. We also intend to incorporate
some type of attention mechanism into our meth-
ods to better understand which Cluwords are more
important to define certain topics.
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A Appendix

Supplementary Results
The Tables below expand on the results of Section 5.

Datasets CluNMF SLDA SNLDA HSLDA
20News -62.68 ± 21.06 -403.34 ± 90.23 -410.00 ± 71.23 -309.90 ± 132.55

ACM -32.33 ± 29.58 -539.66 ± 115.21 -507.44 ± 108.69 -486.48 ± 104.93

Table 6: Overall Coherence results compared with supervised HTM strategies.

Datasets CluNMF SLDA SNLDA HSLDA
20News 0.9351 ± 0.0365 0.2714 ± 0.1157 0.2205 ± 0.0752 0.4383 ± 0.2162

ACM 0.9641 ± 0.0416 0.2071 ± 0.0579 0.2064 ± 0.0529 0.2761 ± 0.0978

Table 7: Overall NPMI results compared with supervised HTM strategies.

Datasets CluNMF SLDA SNLDA HSLDA
20News 1.1863 ± 0.1176 0.3093 ± 0.2006 0.3456 ± 0.2051 0.0952 ± 0.1094

ACM 1.0489 ± 0.6506 0.6347 ± 0.2617 0.6803 ± 0.2243 0.2816 ± 0.1567

Table 8: Overall W2V-L1 results compared with supervised HTM strategies.

Datasets Level CluNMF SLDA SNLDA HSLDA

20News
1 Level -12.65 ± 0.00 -403.34 ± 90.23 -428.59 ± 0.00 -317.08 ± 0.00
2 Level -45.37 ± 22.72 - -426.88 ± 103.53 -194.91 ± 0.00
3 Level -39.03 ± 22.94 - -403.75 ± 56.71 -313.75 ± 135.41

ACM
1 Level -34.15 ± 16.73 -539.66 ± 115.21 -451.24 ± 0.00 -594.07 ± 0.00
2 Level -34.15 ± 16.7377 - -431.38 ± 55.64 -467.37 ± 0.00
3 Level -27.26 ± 6.48 - -516.92 ± 110.93 -483.32 ± 106.59

Table 9: Coherence results by level of hierarchy compared with supervised HTM strategies.

Datasets CluNMF hLDA hPAM HSOC KHTM
20News -62.68 ± 21.06 -339.45 ± 186.20 -62.56 ± 9.81 -393.40 ± 76.70 -397.19 ± 143.59

ACM -32.33 ± 29.58 -219.85 ± 159.25 -77.20 ± 9.92 -577.08 ± 102.33 -341.39 ± 98.87
AngryBirds -77.39 ± 41.17 -107.70 ± 65.08 -46.80 ± 16.44 -492.40 ± 33.12 -148.41 ± 94.66

Dropbox -69.56 ± 33.86 -119.76 ± 103.54 -65.52 ± 12.96 -529.34 ± 28.97 -285.62 ± 88.38
Evernote -54.45 ± 32.81 -190.48 ± 123.60 -87.33 ± 8.80 -634.04 ± 51.01 -292.90 ± 93.97
Facebook -110.57 ± 51.62 -151.63 ± 130.89 -98.11 ± 12.53 -689.19 ± 51.92 -297.75 ± 96.46

InfoVis-Vast -4.46 ± 11.36 -407.05 ± 74.89 -61.9381 ± 10.1260 -416.49 ± 42.25 -464.38 ± 60.96
Pinterest -111.90 ± 48.77 -106.95 ± 87.06 -58.00 ± 16.46 -533.79 ± 42.19 -267.71 ± 84.46

TripAdvisor -55.60 ± 27.54 -126.96 ± 90.43 -68.95 ± 15.60 -584.30 ± 29.14 -147.53 ± 97.18
Tweets -93.11 ± 31.38 -114.24 ± 71.03 -92.52 ± 9.71 -665.23 ± 59.39 -266.22 ± 77.54
Uber -75.25 ± 39.94 -185.50 ± 136.32 -94.72 ± 9.24 -681.78 ± 55.40 -391.70 ± 108.40

Whatsapp -105.28 ± 38.64 -60.81 ± 62.04 -48.48 ± 15.55 -552.77 ± 45.50 -204.83 ± 87.73

Table 10: Overall Coherence results compared with uHTM strategies.

Datasets CluNMF hLDA hPAM HSOC KHTM
20News 0.9351 ± 0.0365 0.4603 ± 0.1498 0.2176 ± 0.0622 0.2875 ± 0.0782 0.4433 ± 0.1223

ACM 0.9641 ± 0.0416 0.5781 ± 0.1021 0.1758 ± 0.0432 0.1889 ± 0.0490 0.4631 ± 0.0769
AngryBirds 0.8934 ± 0.0514 0.5593 ± 0.0565 0.3604 ± 0.1005 0.2120 ± 0.0306 0.4940 ± 0.0711

Dropbox 0.9002 ± 0.0454 0.5806 ± 0.0864 0.2529 ± 0.0877 0.1703 ± 0.0325 0.4022 ± 0.0615
Evernote 0.9374 ± 0.0334 0.5668 ± 0.0819 0.1534 ± 0.0564 0.1222 ± 0.0232 0.4426 ± 0.0763
Facebook 0.8686 ± 0.0531 0.5998 ± 0.0734 0.1517 ± 0.0765 0.1128 ± 0.0458 0.4791 ± 0.0744

InfoVis-Vast 0.9935 ± 0.0190 0.1650 ± 0.0732 0.1191 ± 0.0533 0.1632 ± 0.0504 0.1459 ± 0.0793
Pinterest 0.8482 ± 0.0535 0.5614 ± 0.0664 0.3028 ± 0.0988 0.1865 ± 0.0414 0.3912 ± 0.0559

TripAdvisor 0.9265 ± 0.0344 0.5769 ± 0.0745 0.2745 ± 0.0906 0.1477 ± 0.0306 0.5007 ± 0.0744
Tweets 0.8950 ± 0.0323 0.5966 ± 0.0381 0.2130 ± 0.0453 0.1928 ± 0.0534 0.4759 ± 0.0472
Uber 0.9116 ± 0.0424 0.5829 ± 0.0863 0.1403 ± 0.0582 0.1006 ± 0.0305 0.4168 ± 0.0861

Whatsapp 0.8594 ± 0.0456 0.5881 ± 0.0326 0.3976 ± 0.0750 0.2031 ± 0.0385 0.5172 ± 0.0634

Table 11: Overall NPMI results compared with uHTM strategies.
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Datasets CluNMF hLDA hPAM HSOC KHTM
20News 1.1863 ± 0.1176 1.4423 ± 0.1412 1.1318 ± 0.0860 0.3201 ± 0.2085 0.2153 ± 0.1757

ACM 1.0489 ± 0.6506 1.4741 ± 0.0915 1.1296 ± 0.0987 0.6408 ± 0.2712 0.1544 ± 0.1522
AngryBirds 1.1489 ± 0.1157 1.3236 ± 0.0327 1.2286 ± 0.0779 1.1816 ± 0.0388 1.2603 ± 0.0285

Dropbox 1.1454 ± 0.0918 1.3388 ± 0.0402 1.1794 ± 0.0873 1.1687 ± 0.0417 1.3032 ± 0.0421
Evernote 1.0999 ± 0.1247 1.3828 ± 0.0524 1.1447 ± 0.0643 1.1825 ± 0.0453 1.3272 ± 0.0525
Facebook 1.1909 ± 0.1224 1.4152 ± 0.0411 1.1598 ± 0.0541 1.1767 ± 0.0561 1.3008 ± 0.0390

InfoVis-Vast 1.1047 ± 0.0867 1.1939 ± 0.0717 1.1651 ± 0.0651 1.1919 ± 0.0509 1.1720 ± 0.0510
Pinterest 1.2101 ± 0.0963 1.2912 ± 0.0263 1.2147 ± 0.0712 1.1760 ± 0.0495 1.2255 ± 0.0257

TripAdvisor 1.1081 ± 0.1082 1.3686 ± 0.0464 1.1814 ± 0.0685 1.1470 ± 0.0318 1.3161 ± 0.0327
Tweets 1.0493 ± 0.1086 1.4315 ± 0.0314 1.2142 ± 0.0654 1.2242 ± 0.0687 1.3285 ± 0.0372
Uber 1.1323 ± 0.1328 1.3758 ± 0.0419 1.1370 ± 0.0664 1.1677 ± 0.0381 1.3018 ± 0.0518

Whatsapp 1.1239 ± 0.1087 1.2254 ± 0.0141 1.2162 ± 0.0656 1.1732 ± 0.0423 1.2952 ± 0.0268

Table 12: Overall W2V-L1 results compared with uHTM strategies.

Datasets Level CluNMF SLDA SNLDA HSLDA

20News
1 Level 0.9863 ± 0.0000 0.2714 ± 0.1157 0.1829 ± 0.0000 0.6622 ± 0.0000
2 Level 0.9386 ± 0.0311 - 0.1753 ± 0.0644 0.5728 ± 0.0000
3 Level 0.9495 ± 0.0319 - 0.2368 ± 0.0732 0.4255 ± 0.2179

ACM
1 Level 0.9552 ± 0.0185 0.2071 ± 0.0579 0.1107 ± 0.0000 0.3060 ± 0.0000
2 Level 0.9552 ± 0.0185 - 0.1472 ± 0.0319 0.3909 ± 0.0000
3 Level 0.9682 ± 0.0071 - 0.2155 ± 0.0483 0.2709 ± 0.0986

Table 13: NPMI results by level of hierarchy compared with supervised HTM strategies.

Datasets Level CluNMF SLDA SNLDA HSLDA

20News
1 Level 1.0232 ± 0.0000 0.3093 ± 0.2006 0.2961 ± 0.0000 ***
2 Level 1.1925 ± 0.1096 - 0.2625 ± 0.1157 0.3296 ± 0.0000
3 Level 1.2060 ± 0.1183 - 0.3750 ± 0.2231 0.0902 ± 0.1025

ACM
1 Level 1.0955 ± 0.1047 0.6347 ± 0.2617 0.5365 ± 0.0000 0.1488 ± 0.0000
2 Level 1.0955 ± 0.1047 - 0.5060 ± 0.0302 0.0074 ± 0.0000
3 Level 1.0320 ± 0.0716 - 0.7025 ± 0.2296 0.2961 ± 0.1510

Table 14: W2V-L1 results by level of hierarchy compared with supervised HTM strategies.

Datasets Level CluNMF hLDA hPAM HSOC KHTM

20News
1 Level -12.6556 ± 0.00 -323.30 ± 0.00 -64.17 ± 0.00 -389.41 ± 69.27 -334.20 ± 0.00
2 Level -45.37 ± 22.72 -448.93 ± 166.05 -57.03 ± 8.52 -395.88 ± 88.74 -595.39 ± 139.97
3 Level -39.03 ± 22.94 -328.58 ± 184.81 -63.10 ± 9.81 -394.92 ± 72.10 -389.23 ± 137.96

ACM
1 Level -34.15 ± 16.73 -368.20 ± 0.00 -69.87 ± 0.00 -529.64 ± 107.93 -371.89 ± 0.00
2 Level -34.15 ± 16.73 -544.64 ± 111.50 -80.91 ± 9.70 -566.92 ± 103.18 -708.12 ± 146.29
3 Level -27.26 ± 6.48 -210.03 ± 149.94 -76.90 ± 9.89 -594.03 ± 95.85 -336.04 ± 87.40

AngryBirds
1 Level -20.27 ± 0.00 -514.71 ± 0.00 -68.27 ± 0.00 -528.23 ± 17.38 -546.60 ± 0.00
2 Level -40.73 ± 16.47 -168.89 ± 66.22 -14.35 ± 10.30 -510.20 ± 22.09 -549.78 ± 151.09
3 Level -80.55 ± 40.95 -98.05 ± 57.18 -49.83 ± 13.05 -474.54 ± 28.33 -133.16 ± 46.61

Dropbox
1 Level -12.78 ± 0.00 -487.63 ± 0.00 -65.27 ± 0.00 -536.63 ± 34.81 -527.14 ± 0.00
2 Level -60.01 ± 25.01 -247.70 ± 81.57 -42.53 ± 18.08 -537.71 ± 23.30 -569.05 ± 36.06
3 Level -70.81 ± 34.32 -100.89 ± 91.65 -67.82 ± 9.78 -523.33 ± 28.47 -270.74 ± 61.27

Evernote
1 Level -20.85 ± 0.00 -489.14 ± 0.00 -91.59 ± 0.00 -608.34 ± 44.38 -513.78 ± 0.00
2 Level -29.64 ± 7.40 -364.60 ± 106.17 -76.91 ± 12.32 -620.48 ± 50.72 -634.88 ± 28.08
3 Level -57.31 ± 33.23 -177.60 ± 114.68 -88.33 ± 7.67 -647.25 ± 48.42 -286.84 ± 83.09

Facebook
1 Level -57.62 ± 16.87 -589.33 ± 0.00 -85.66 ± 0.00 -663.14 ± 53.09 -607.85 ± 0.00
2 Level -82.49 ± 39.87 -547.12 ± 113.61 -84.63 ± 18.77 -684.94 ± 55.76 -748.77 ± 13.93
3 Level -115.51 ± 51.69 -138.70 ± 109.50 -99.58 ± 10.82 -697.83 ± 46.95 -291.21 ± 80.64

InfoVis-Vast
1 Level 0.20 ± 0.00 -257.31 ± 0.00 -33.92 ± 0.00 -387.50 ± 38.85 -334.82 ± 0.00
2 Level 0.08 ± 0.08 -310.04 ± 41.24 -59.86 ± 4.40 -403.23 ± 39.74 -425.13 ± 62.71
3 Level -4.91 ± 11.81 -432.98 ± 54.56 -62.42 ± 10.16 -430.37 ± 38.30 -481.76 ± 47.85

Pinterest
1 Level -70.83 ± 18.60 -533.33 ± 0.00 -71.06 ± 0.00 -576.22 ± 30.36 -572.82 ± 0.00
2 Level -99.54 ± 42.53 -233.10 ± 75.69 -23.58 ± 18.07 -551.13 ± 30.74 -597.43 ± 29.30
3 Level -130.69 ± 50.72 -92.76 ± 74.58 -61.31 ± 11.70 -514.51 ± 37.95 -255.41 ± 56.51

TripAdvisor
1 Level -19.15 ± 0.00 -457.78 ± 0.00 -74.75 ± 0.00 -583.20 ± 32.28 -493.97 ± 0.00
2 Level -33.33 ± 11.39 -224.06 ± 80.71 -33.34 ± 22.71 -590.83 ± 22.31 -651.94 ± 13.39
3 Level -58.03 ± 27.52 -113.90 ± 82.96 -72.45 ± 8.90 -581.31 ± 30.75 -132.31 ± 43.91

Tweets
1 Level -80.04 ± 0.00 -826.50 ± 0.00 -94.64 ± 0.00 -683.25 ± 68.75 -832.73 ± 0.00
2 Level -68.88 ± 24.80 -251.61 ± 64.09 -79.45 ± 9.09 -673.96 ± 66.61 -805.36 ± 25.10
3 Level -98.40 ± 30.67 -106.99 ± 62.55 -93.81 ± 8.80 -656.36 ± 50.74 -260.31 ± 53.26

Uber
1 Level -34.86 ± 0.00 -555.34 ± 0.00 -94.14 ± 0.00 -658.81 ± 52.17 -577.00 ± 0.00
2 Level -40.37 ± 10.30 -576.02 ± 92.22 -85.52 ± 17.19 -678.75 ± 57.32 -673.40 ± 21.48
3 Level -79.09 ± 40.06 -172.80 ± 117.45 -95.64 ± 7.48 -689.03 ± 53.47 -386.45 ± 102.42

Whatsapp
1 Level -56.74 ± 0.00 -597.47 ± 0.00 -55.41 ± 0.00 -604.01 ± 14.66 -686.37 ± 0.00
2 Level -59.06 ± 15.53 -147.96 ± 84.02 -23.31 ± 14.63 -577.14 ± 27.50 -571.32 ± 90.15
3 Level -110.30 ± 37.06 -47.66 ± 43.13 -50.93 ± 13.31 -527.78 ± 40.16 -188.80 ± 38.45

Table 15: Coherence results by level of hierarchy compared with uHTM strategies.
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Datasets Level CluNMF hLDA hPAM HSOC KHTM

20News
1 Level 0.9863 ± 0.0000 0.1577 ± 0.0000 0.2338 ± 0.0000 0.2786 ± 0.0870 0.1059 ± 0.0000
2 Level 0.9386 ± 0.0311 0.3358 ± 0.1395 0.3014 ± 0.0861 0.3041 ± 0.1177 0.2082 ± 0.0739
3 Level 0.9495 ± 0.0319 0.4735 ± 0.1443 0.2090 ± 0.0526 0.2799 ± 0.0298 0.4542 ± 0.1123

ACM
1 Level 0.9552 ± 0.0185 0.1701 ± 0.0000 0.2192 ± 0.0000 0.1979 ± 0.0516 0.1960 ± 0.0000
2 Level 0.9552 ± 0.0185 0.3193 ± 0.1018 0.1943 ± 0.0238 0.1875 ± 0.0507 0.0771 ± 0.0540
3 Level 0.9682 ± 0.0071 0.5861 ± 0.0911 0.1735 ± 0.0442 0.1874 ± 0.0473 0.4690 ± 0.0607

AngryBirds
1 Level 0.9729 ± 0.0000 0.0749 ± 0.0000 0.2516 ± 0.0000 0.1708 ± 0.0211 0.0530 ± 0.0000
2 Level 0.9486 ± 0.0135 0.4849 ± 0.0657 0.5608 ± 0.0777 0.2006 ± 0.0232 0.2076 ± 0.1048
3 Level 0.8887 ± 0.0504 0.5711 ± 0.0406 0.3415 ± 0.0783 0.2280 ± 0.0226 0.5055 ± 0.0346

Dropbox
1 Level 0.9819 ± 0.0000 0.0522 ± 0.0000 0.2795 ± 0.0000 0.1385 ± 0.0262 0.0565 ± 0.0000
2 Level 0.9184 ± 0.0312 0.4441 ± 0.0768 0.3911 ± 0.0873 0.1589 ± 0.0263 0.2048 ± 0.0490
3 Level 0.8980 ± 0.0459 0.6009 ± 0.0645 0.2389 ± 0.0753 0.1839 ± 0.0289 0.4131 ± 0.0378

Evernote
1 Level 0.9760 ± 0.0000 0.0522 ± 0.0000 0.1485 ± 0.0000 0.1105 ± 0.0225 0.0698 ± 0.0000
2 Level 0.9659 ± 0.0092 0.4177 ± 0.0706 0.2694 ± 0.0918 0.1190 ± 0.0247 0.0398 ± 0.0116
3 Level 0.9341 ± 0.0334 0.5780 ± 0.0704 0.1419 ± 0.0348 0.1268 ± 0.0213 0.4499 ± 0.0544

Facebook
1 Level 0.9330 ± 0.0141 0.0167 ± 0.0000 0.1863 ± 0.0000 0.1035 ± 0.0601 0.0448 ± 0.0000
2 Level 0.9017 ± 0.0402 0.3331 ± 0.0908 0.2471 ± 0.1057 0.1100 ± 0.0463 -0.0237 ± 0.0082
3 Level 0.8627 ± 0.0527 0.6086 ± 0.0530 0.1418 ± 0.0660 0.1166 ± 0.0406 0.4865 ± 0.0434

InfoVis-Vast
1 Level 1.0001 ± 0.0000 0.0379 ± 0.0000 0.0353 ± 0.0000 0.1610 ± 0.0516 0.0128 ± 0.0000
2 Level 1.0000 ± 0.0001 0.0441 ± 0.0037 0.1949 ± 0.0486 0.1576 ± 0.0521 0.0666 ± 0.0430
3 Level 0.9929 ± 0.0198 0.1938 ± 0.0475 0.1124 ± 0.0472 0.1666 ± 0.0489 0.1750 ± 0.0660

Pinterest
1 Level 0.9042 ± 0.0258 0.0161 ± 0.0000 0.2502 ± 0.0000 0.1391 ± 0.0376 0.0051 ± 0.0000
2 Level 0.8634 ± 0.0488 0.4311 ± 0.0594 0.5187 ± 0.1105 0.1700 ± 0.0362 0.1688 ± 0.0343
3 Level 0.8246 ± 0.0503 0.5762 ± 0.0440 0.2818 ± 0.0669 0.2065 ± 0.0298 0.4001 ± 0.0303

TripAdvisor
1 Level 0.9775 ± 0.0000 0.0701 ± 0.0000 0.1002 ± 0.0000 0.1147 ± 0.0159 0.0656 ± 0.0000
2 Level 0.9561 ± 0.0109 0.4652 ± 0.0746 0.4475 ± 0.1408 0.1350 ± 0.0193 0.1549 ± 0.0250
3 Level 0.9232 ± 0.0342 0.5920 ± 0.0585 0.2589 ± 0.0599 0.1623 ± 0.0288 0.5115 ± 0.0420

Tweets
1 Level 0.9036 ± 0.0000 0.0149 ± 0.0000 0.1987 ± 0.0000 0.1756 ± 0.0715 0.0180 ± 0.0000
2 Level 0.9176 ± 0.0311 0.4764 ± 0.0442 0.2763 ± 0.0422 0.1850 ± 0.0566 0.1019 ± 0.0236
3 Level 0.8902 ± 0.0310 0.6029 ± 0.0231 0.2068 ± 0.0407 0.2010 ± 0.0441 0.4801 ± 0.0254

Uber
1 Level 0.9600 ± 0.0000 0.0195 ± 0.0000 0.1076 ± 0.0000 0.0845 ± 0.0319 0.0232 ± 0.0000
2 Level 0.9544 ± 0.0091 0.2844 ± 0.0916 0.2504 ± 0.0871 0.0953 ± 0.0313 0.0090 ± 0.0160
3 Level 0.9069 ± 0.0419 0.5927 ± 0.0658 0.1297 ± 0.0408 0.1073 ± 0.0275 0.4246 ± 0.0657

Whatsapp
1 Level 0.9241 ± 0.0000 0.1105 ± 0.0000 0.3840 ± 0.0000 0.1574 ± 0.0222 0.0533 ± 0.0000
2 Level 0.9208 ± 0.0201 0.5428 ± 0.0525 0.5285 ± 0.0741 0.1893 ± 0.0307 0.2394 ± 0.0770
3 Level 0.8528 ± 0.0426 0.5951 ± 0.0166 0.3846 ± 0.0618 0.2214 ± 0.0324 0.5295 ± 0.0161

Table 16: NPMI results by level of hierarchy compared with uHTM strategies.

Datasets Level CluNMF hLDA hPAM HSOC KHTM

20News
1 Level 1.0232 ± 0.0000 0.9866 ± 0.0000 1.0314 ± 0.0000 0.3025 ± 0.2030 0.0346 ± 0.0000
2 Level 1.1925 ± 0.1096 1.3775 ± 0.1562 1.1515 ± 0.0843 0.3221 ± 0.1925 0.2698 ± 0.1107
3 Level 1.2060 ± 0.1183 1.4500 ± 0.1361 1.1308 ± 0.0857 0.3356 ± 0.2301 0.2137 ± 0.1775

ACM
1 Level 1.0955 ± 0.1047 0.9653 ± 0.0000 1.1710 ± 0.0000 0.6783 ± 0.2517 0.4138 ± 0.0000
2 Level 1.0955 ± 0.1047 1.3447 ± 0.1152 1.1661 ± 0.0721 0.6292 ± 0.2627 0.6458 ± 0.2348
3 Level 1.0320 ± 0.0716 1.4782 ± 0.0873 1.1255 ± 0.1006 0.6373 ± 0.2791 0.1470 ± 0.1382

AngryBirds
1 Level 0.9416 ± 0.0000 1.2087 ± 0.0000 1.2447 ± 0.0000 1.1833 ± 0.0379 1.2514 ± 0.0000
2 Level 1.1148 ± 0.1406 1.2806 ± 0.0502 1.2878 ± 0.0569 1.1797 ± 0.0343 1.1949 ± 0.0341
3 Level 1.1532 ± 0.1120 1.3300 ± 0.0229 1.2225 ± 0.0777 1.1822 ± 0.0410 1.2626 ± 0.0256

Dropbox
1 Level 0.9895 ± 0.0000 1.1067 ± 0.0000 1.2108 ± 0.0000 1.1641 ± 0.0264 1.1113 ± 0.0000
2 Level 1.1191 ± 0.0966 1.2912 ± 0.0507 1.2193 ± 0.0613 1.1590 ± 0.0426 1.1794 ± 0.0472
3 Level 1.1489 ± 0.0905 1.3459 ± 0.0318 1.1751 ± 0.0889 1.1747 ± 0.0432 1.3099 ± 0.0288

Evernote
1 Level 0.9707 ± 0.0000 1.1173 ± 0.0000 1.1561 ± 0.0000 1.1660 ± 0.0490 1.0959 ± 0.0000
2 Level 1.0048 ± 0.0658 1.3185 ± 0.0671 1.1936 ± 0.0806 1.1725 ± 0.0385 1.1449 ± 0.0305
3 Level 1.1109 ± 0.1249 1.3876 ± 0.0475 1.1397 ± 0.0606 1.1916 ± 0.0452 1.3306 ± 0.0464

Facebook
1 Level 1.0722 ± 0.1251 1.1125 ± 0.0000 1.2397 ± 0.0000 1.1611 ± 0.0444 1.1435 ± 0.0000
2 Level 1.1471 ± 0.1405 1.2787 ± 0.0575 1.1766 ± 0.0346 1.1707 ± 0.0522 1.1124 ± 0.0168
3 Level 1.1993 ± 0.1170 1.4197 ± 0.0314 1.1573 ± 0.0550 1.1836 ± 0.0594 1.3036 ± 0.0319

InfoVis-Vast
1 Level 1.0569 ± 0.0000 1.0817 ± 0.0000 1.0517 ± 0.0000 1.1783 ± 0.0507 1.1137 ± 0.0000
2 Level 1.0604 ± 0.0589 1.0673 ± 0.0066 1.2105 ± 0.0526 1.1824 ± 0.0490 1.1466 ± 0.0570
3 Level 1.1091 ± 0.0881 1.2228 ± 0.0440 1.1617 ± 0.0639 1.2000 ± 0.0504 1.1820 ± 0.0457

Pinterest 1 Level 1.1468 ± 0.1059 1.1385 ± 0.0000 1.1699 ± 0.0000 1.1522 ± 0.0531 1.1640 ± 0.0000
2 Level 1.1850 ± 0.0991 1.2690 ± 0.0321 1.2962 ± 0.0771 1.1617 ± 0.0495 1.1918 ± 0.0331
3 Level 1.2467 ± 0.0772 1.2938 ± 0.0236 1.2070 ± 0.0655 1.1892 ± 0.0441 1.2269 ± 0.0244

TripAdvisor
1 Level 0.9554 ± 0.0000 1.0859 ± 0.0000 1.1188 ± 0.0000 1.1275 ± 0.0247 1.1113 ± 0.0000
2 Level 1.0465 ± 0.0663 1.2975 ± 0.0563 1.2573 ± 0.0611 1.1441 ± 0.0320 1.1783 ± 0.0327
3 Level 1.1155 ± 0.1087 1.3782 ± 0.0345 1.1744 ± 0.0646 1.1534 ± 0.0310 1.3204 ± 0.0206

Tweets
1 Level 0.9102 ± 0.0000 1.0165 ± 0.0000 1.2447 ± 0.0000 1.2161 ± 0.0827 1.1532 ± 0.0000
2 Level 1.0231 ± 0.0463 1.3655 ± 0.0525 1.2616 ± 0.0339 1.2282 ± 0.0679 1.1491 ± 0.0227
3 Level 1.0592 ± 0.1151 1.4350 ± 0.0246 1.2092 ± 0.0661 1.2242 ± 0.0650 1.3304 ± 0.0323

Uber
1 Level 1.0136 ± 0.0000 1.1040 ± 0.0000 1.1916 ± 0.0000 1.1716 ± 0.0340 1.1249 ± 0.0000
2 Level 1.0353 ± 0.0867 1.2679 ± 0.0557 1.2252 ± 0.0630 1.1684 ± 0.0371 1.1468 ± 0.0195
3 Level 1.1431 ± 0.1329 1.3794 ± 0.0360 1.1277 ± 0.0600 1.1663 ± 0.0396 1.3048 ± 0.0474

Whatsapp
1 Level 0.9615 ± 0.0000 1.1816 ± 0.0000 1.2917 ± 0.0000 1.1685 ± 0.0421 1.1781 ± 0.0000
2 Level 0.9975 ± 0.0661 1.2235 ± 0.0270 1.2748 ± 0.0427 1.1675 ± 0.0401 1.2057 ± 0.0394
3 Level 1.1380 ± 0.1030 1.2257 ± 0.0110 1.2095 ± 0.0644 1.1773 ± 0.0430 1.2991 ± 0.0178

Table 17: W2V-L1 results by level of hierarchy compared with uHTM strategies.


