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Abstract

We propose a methodology to construct a term
dictionary for text analytics through an inter-
active process between a human and a ma-
chine. The interactive approach helps the cre-
ation of flexible dictionaries with precise gran-
ularity required in text analysis. This paper
introduces the first formulation of interactive
dictionary construction to address this issue.
To optimize the interaction, we propose a new
algorithm that effectively captures an analyst’s
intention starting from only a small number
of sample terms. Along with the algorithm,
we also design an automatic evaluation frame-
work that provides a systematic assessment of
any interactive method for the dictionary cre-
ation task. Experiments using real scenario
based corpora and dictionaries show that our
algorithm outperforms baseline methods, and
works even with a small number of interac-
tions. Also, we provide our dataset for future
studies1.

1 Introduction

Since the emergence of practical interests in text
analytics that finds insights from massive docu-
ments (Nasukawa and Nagano, 2001), there are
several requirements for enhancing valuable dis-
coveries. The one critical issue we tackle in this
paper is an effective construction of a term dic-
tionary (Godbole et al., 2010). The term dic-
tionary, which is an arbitrary set of terms, is
used in text analytics to represent interesting anal-
ysis perspectives (Nasukawa and Nagano, 2001;
Nasukawa, 2009); for example, dictionaries of
“product names” and “evaluative description” are
required for mining customer reputations about
products. The motivation of this paper is how to
reduce the human workload for the dictionary con-

1https://github.com/kohilin/
IDC-evalset.git
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Figure 1: Typical dictionaries in previous works (up-
per) and fine-grained dictionaries in this work (lower)

struction as much as possible. To this end, we es-
tablish a methodology of interactive dictionary
construction that incrementally captures an ana-
lyst’s intention starting from a small number of
sample terms and enables him/her to effortlessly
expand terms in the intended dictionary through
suggestions by a machine.

The term dictionary for text analytics is expen-
sive to be constructed because we need to fo-
cus more on terms with flexible granularity for
in-depth analysis (Takeuchi et al., 2009; Godbole
et al., 2010; Mostafa, 2013). For instance, if
the analyst wants to examine product evaluation
from both its function and appearance, he/she then
needs to separately create those dictionaries whose
boundaries are vague and overlapped (Figure 1).
In short, we need to group any terms the analyst
wants together depending on documents and the
objective of analysis, which forces an ad hoc con-
struction of the term dictionary. This situation is
rather severe in the real-world tasks because the
vocabulary size for an exhaustive search of the
texts is vast, and the analyst will go through re-

https://github.com/kohilin/IDC-evalset.git
https://github.com/kohilin/IDC-evalset.git
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peated trial and error of creating dictionaries until
he/she reaches findings.

At present, there is a demand for a machine that
decreases the cost of the ad hoc dictionary con-
struction. As the dictionary construction can be
considered as a type of collecting terms, there is
a related research field — set expansion that ex-
pands a small set of terms by means of bootstrap-
ping (Pantel and Pennacchiotti, 2006). This ap-
proach automatically finds new terms for the given
set from documents in accordance with a prede-
fined exploration strategy (Pantel et al., 2009; He
and Xin, 2011). Although such an automatic pro-
cedure is advantageous for reducing the human
workload, the quality of the collected terms is
suspicious for a term dictionary. For example, a
good analysis requires more fine-grained dictio-
naries than the original targets in set expansion
such as distinct ontological terms (e.g., country
name, Shen et al. 2017, 2018).

Several studies have incorporated a human in
the term collection process (Godbole et al., 2010;
Coden et al., 2012). Specifically, dictionaries
are built in an interactive process where the hu-
man gives feedback to the machine and the ma-
chine suggests candidates based on the given feed-
back (Alba et al., 2017, 2018). Such a human-
in-the-loop approach has been an active topic in
other fields as well, for instance, image classi-
fication (Cui et al., 2016), dialogue system (Li
et al., 2017), and audio annotation (Kim and
Pardo, 2018). We can generally expect that a re-
liable feedback provided by human makes a sys-
tem more accurate. With respect to dictionary
construction, however, experimental results in this
vein are limited due to the empirical evaluation
by just a few participants and the use of a coarse
dictionary as the test items. In short, it is a still
open question — what is a critical issue for inter-
active construction of fine-grained term dictionary
for text analytics?

Moving in the same promising direction of
leveraging both a human and a machine, we estab-
lish a well-defined and effective methodology for
constructing the term dictionary. In summary, our
contribution in this paper is fourfold: (i) We for-
mulate the interactive process of a term collection,
which brings clarity to the problem to be solved
(§2). (ii) We develop a method that captures an an-
alyst’s intention from a small number of samples
with our formulation as the basis (§3). (iii) We
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Traditional
Stretchy, Yellow?

User feedback Candidate selection

②

③
④

I want to have terms 
related to Formal

Yes for Traditional, 
but no for Nice

Figure 2: Interactive dictionary construction

propose an automatic evaluation framework that
provides a systematic assessment for interactive
methods (§4). (iv) Our experimental results show
that the proposed method surpasses baseline meth-
ods such as set expansion, word embedding and a
linear classifier on the crowdsourced dataset. The
dataset emulates the real-world scenario of flexi-
ble and fine-grained dictionary construction, and
we distribute the dataset to the public (§5).

2 Task Definition

In this section, we provide the definitions and no-
tations used throughout this paper.

First, a term is a string representation of a cer-
tain notion such as “apple” and “New York”. A
dictionary is a collection of terms. A user de-
notes the person who wants to construct a dictio-
nary, and system denotes the machine that helps
the user. Let W be the whole set of terms in doc-
uments. Our objective is to rapidly find as many
terms of the user’s interest U ⊂W as possible.

As seen in Figure 2, interactive dictionary con-
struction is defined as an iterative process in which
each iteration consists of the following steps: 1)
User feedback in which the user selects terms for
the dictionary from the current candidate terms,
and 2) Candidate selection in which the system
finds candidate terms for the next user feedback.
For the i-th iteration (i = 0, 1, 2, . . .), let Ci be the
set of terms that the system finds in the candidate
selection step and Ui be the set of terms that the
user selects from Ci−1 in the user feedback step as
positive examples. Here, U0 is a special feedback
we call seed terms that are directly given by the
user first. Note that, because we wish to expand
the dictionary, each term in Ci should be new to
the user in the (i+ 1)-th iteration.

In the i-th step of the user feedback (i ≥ 1), we
assume that the user can annotate which terms in
Ci−1 are in U without being aware of the whole
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Figure 3: Task definition

U . So, Ui ⊂ U for each i. Let Ũi := ∪im=0Um be
the set of words of the user’s interest that is found
by the end of the i-th iteration.

However, it is impractical to define our objec-
tive as an optimization problem for the asymptotic
convergence of Ũi because the user feedback is
done by a human, and i cannot be large. Hence,
we try to maximize |Ci ∩ U |, the number of sug-
gested terms that match the user’s interest. Also,
since Ci is manually selected by a human user, the
proper size of Ci is practically limited to 5 ∼ 10.

Figure 3 shows the steps from setting the seed
terms to giving the first feedback to the first can-
didates. Using the example in Figure 2, U0

is {Formal}, C0 is {Nice, Traditional}, U1 is
{Traditional}, and C0\U is {Nice}. The system
then next selects C1 based on U0 and U1 (i.e., Ũ1)
from W except for the shown terms C0 ∪ Ũ1. It is
important that we design the system to be effective
so that the overlapped area of Ci and U becomes
larger.

There are two major challenges for this prob-
lem; one is number of seed terms, and the other is
term overlaps of different dictionaries. In terms of
the first issue, we have only a few seed terms for
the target dictionary at the first iteration. If the sys-
tem requires more seed terms, the advantage of the
system drops because it contradicts our purpose to
decrease the human workload in constructing the
dictionary. Therefore, we need a method that cap-
tures the user’s intention from a smaller number of
samples. In terms of the second issue, identifying
terms of user’s interest is difficult because bound-
aries between dictionaries are often overlapped in
text analytics as seen in Figure 1. In other words,
the system need to be more sensitive to subtle se-
mantic differences only with a few feedbacks.

3 Method

In this section, we first describe a previous candi-
date selection model, SetExpan algorithm (Shen
et al., 2017) that inspired our method (§3.1).
Subsequently, we introduce our method as the
weighted version of SetExpan with improve-
ments in dealing with interactive settings (§3.2∼).
Throughout this section, we discuss the i-th step of
candidate selection for a certain i. For simplicity,
Ci and Ũi are denoted as C and Ũ , respectively.

3.1 Candidate Selection: Similarity Scoring
based on Feature Collection

As we stated in §2, the objective of the task is to
suggest C that contains as many terms in U as
possible. Recall that Ũ is a set of positive exam-
ples for terms of the user’s interest that are found
in previous steps. Following the strategy taken in
set expansion (Shen et al., 2017), a straightforward
and reasonable approach to determine C is to de-
fine Sim(e, e′|F ) which returns a similarity score
for two terms e and e′ based on a set of features
F , and then to select terms that are most similar to
the positive terms in Ũ .

The issue is how to obtain the ideal F that as-
signs a higher score to terms potentially included
in U . Shen et al. (2017) formulates this feature
selection problem as choosing features with the
number of fixed-size Q so that the positive terms
are most similar to each other:

F ∗ = arg max
|F |=Q

∑
1≤i≤j≤n

Sim(ei, ej |F ), (1)

where Ũ := {e1, . . . , en}. They propose using the
Jaccard coefficient for Sim(ei, ej |F ), which nar-
rows the optimization problem to a binary decision
on whether to use each feature. This combinato-
rial problem is NP-hard; hence, they use heuristics
to choose an approximation of F ∗.

3.2 From Feature Selection to Feature
Weighting with Predefined Similarity

Instead of explicitly choosing features to use in the
similarity calculation, we consider using all of the
possible features {f1, . . . , fL} with the weight wk

∈ R for each feature fk. In addition, we define our
optimization problem as finding the best wk for fk
(k = 1, . . . , L).

Let us develop a formula that extends (1) and
takes wk into consideration. First, in such a for-
mula, Sim(ei, ej |F ) should be a weighted sum of
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the similarity score for each feature fk, denoted
as Sim(ei, ej |f). By replacing F with w in the
expression of the similarity function, we have

Sim(ei, ej |w) =

L∑
k=1

wk · Sim(ei, ej |fk). (2)

Next, to define the similarity between a term e and
Ũ , we assume that the similarity is the average of
similarities between e and ei ∈ Ũ , that is,

Sim(e, Ũ |w) :=
1

n

n∑
i=1

Sim(e, ei|w). (3)

The initial formulation of our optimization prob-
lem is thus as follows:

w∗ = arg max
w

∑
1≤i≤n

Sim(ei, Ũ |w). (4)

We show in the Appendix that our formula-
tion of (4) can be considered as the weighted
version of (1) under the natural condition that
Sim(ei, ei|fk) = Sim(ej , ej |fk) for any i, j,
and k, and

∑L
k=1wk = 1. It is easy to set

Sim(e, e′|fk) satisfying this condition. For a fea-
ture fk, we define a vector vfk(e) of an e and de-
fine Sim(e, e′|fk) as the standard inner product of
vfk(e) and vfk(e

′). Then by normalizing all these
vectors, Sim(ei, ei|fk) = ‖vfk(ei)‖= 1 holds for
any i; hence, the condition is satisfied, and that is
a conventional cosine similarity of word vectors
(Levy et al., 2015). Thus, any mapping from W
to a vector space is available as a feature such as
the tf-idf of terms and discrete features (Manning
et al., 2008), word2vec (Mikolov et al., 2013), or
GloVe (Pennington et al., 2014). Note that the
dimension of the vector space may be different
among the features.

Hence, we assume vfk(e) is defined for each
feature fk and any e. When we use Sim(e, e′|fk)
= vfk(e) · vfk(e′), (2) is computed by

Sim(ei, ej |w) =

L∑
k=1

wk · vfk(ei) · vfk(ej), (5)

and by a simple calculation, (3) is equal to

Sim(e, Ũ |w) =

L∑
k=1

wk · vfk(e) · vfk(Ũ), (6)

where vfk(Ũ) := 1
n

∑n
i=1 vfk(ei) is the centroid

vector for {vfk(ei)}i=1,...,n in the feature space of
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Figure 4: Feature weighting puts weights on feature
spaces by placing terms of user’s interest nearby.

fk. We simply call vfk(Ũ) the centroid of Ũ . For-
mulas (5) and (6) demonstrates that the similarity
between any two terms can be measured by com-
bining the characteristics of the L different feature
spaces. We “select” the feature spaces in which
terms in Ũ become similar to each other by ad-
justing the weights, as shown in Figure 4.

Note that our feature weighting formulation is
categorized as a conventional linear regression that
finds fk characterizing Ũ via the weights. In-
stead of calculating the weights for bare features
of each term, our method estimates those for dif-
ferently predefined feature spaces (i.e., the similar-
ity scores in these spaces). It aims to mitigate the
difficulty of finding optimal weights for the vast
number of features only from few labeled sam-
ples. However, the drawback is that this sacrifices
a model’s degree of freedom; therefore, we test the
effectiveness of our proposed model compared to
an ordinary linear classifier in the experiment.

3.3 Optimization by User Feedback

Although the initial formulation (4) proved to be a
natural extension of the discrete version of feature
selection, it does not always work as expected. In
this section, we discuss the reason for this and how
we can improve the initial formulation of our op-
timization problem.

By substituting (2) and (3) into (4), the objec-
tive

∑
1≤i≤n Sim(ei, Ũ |w) is a linear function of

w. Assuming that
∑L

k=1wk = 1, the optimal
w is determined by putting all the weight values
on a particular feature space which has the highest
score in the averaged similarity between the terms
in Ũ and the centroid of Ũ . This is equivalent to
selecting only one feature space for the similar-
ity computation. Such extreme optimization is not
suitable for our interactive setting because the tar-
get dictionary is obscure, especially in earlier iter-
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ations. We want the system to diversify the candi-
date terms to broadly cover the user’s interests and
allow the user to discover related vocabularies for
a customized dictionary. To address this issue, we
modify our formulation of (4) as

w∗ = arg max
w

min
1≤i≤n

Sim(ei, Ũ |w). (7)

We maximize the minimum similarity score be-
tween a term in Ũ and the centroid of Ũ . The idea
here is to reduce the distance between the farthest
positive term and the centroid. This strategy is
analogous to those used in active learning, where
examples near the separating hyperplane are ac-
tively leveraged (Schohn and Cohn, 2000). Our
objective function min1≤i≤n Sim(ei, Ũ |w) is a
concave function of w (see Appendix); therefore,
we can solve it by (for example) gradient descent.

We can also leverage negative feedback, i.e., un-
selected terms in C, to make the system more so-
phisticated. Let N := C \U = {z1, . . . , zm}, then
we can extend (7) by

w∗ = arg max
w

{
min
1≤i≤n

Sim(ei, Ũ |w)

− max
1≤j≤m

Sim(zj , Ũ |w)
}
. (8)

The second term on the right-hand side of (8) in-
creases the distance between the closest negative
term and the centroid of Ũ . Again the objective
function of (8) is a concave function of w; thus,
the information of both positive and negative ex-
amples is taken into consideration to learn the op-
timal w∗.

3.4 Feedback Denoising
Although our min-maximize optimization strategy
diversifies candidates, it may be disadvantageous
in terms of the system being affected by outliers.
It happens that several terms in Ũ (especially for
manually fed terms such as seeds) distribute dif-
ferently in possessing feature spaces compared to
the rest of the positive terms. Such a case holds
up the learning because the maximum similarity
score of the outliers to the centroid is low. The left
side of Figure 5 shows an example of this problem:
specifically, the system cannot put a higher weight
value on f1 because the optimization target, which
is the most distant one from the centroid (“water-
melon” in this case), is biased to f2.

Feedback denoising is a simple solution to this
problem. We apply a clustering algorithm (e.g.,

𝑓"

𝑓#

𝑓"

𝑓#without feedback denoising

Centroid
Centroid

Outlier

with feedback denoising

$𝑈('∗)

Figure 5: The difference in terms used in learning
(blue) with/without feedback denoising.

K-Means) to terms in Ũ , and obtain K term sets
Ũ(0), Ũ(1), ..., Ũ(K). Then, we conduct the opti-
mization by replacing Ũ in (7) and (8) with Ũ(K∗)

where K∗ = arg maxK |Ũ(K)|, that is, the major-
ity class among terms in Ũ as shown in the right
side of Figure 5. This is effective for denoising ir-
regular terms with respect to feature distribution,
and for guiding the system to a promising w∗.

4 Evaluation Framework

In this section, we explain an automatic evaluation
framework for interactive dictionary construction.
By using a predefined dictionary as the oracle dic-
tionary U∗, we emulate the manual feedback pro-
cess and apply a new evaluation metric to estimate
the effectiveness of building a dictionary with con-
sideration of the human interaction.

4.1 Human Emulation

We describe the emulation process with U∗, and
the entire flow of the emulation procedure is in
Algorithm 1. At the beginning of the emulation
process, a small number of seed terms are ran-
domly chosen from U∗, and U0 is initialized with
them (l.1). The number of iterations I (l.2) and
the number of suggested terms per iteration |C|
(l.3) are also determined. The iteration consisting
of user feedback and candidate selection is then
launched. In every i-th iteration, the system first
suggests the Ci based on the known positive terms
Ũi−1 (l.5). After receiving the suggested Ci, the
automatic evaluation process takes the intersection
of Ci and U∗, and records the overlapped terms as
Ui (l.6). It also takes the difference set of Ci and
U∗ as the negative terms Ni (l.7). If the system is
trainable, its training process runs before moving
to the next iteration (l.8− 10).
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Algorithm 1 Human emulation with oracle dictionary

1: SET seed terms U0 from U∗

2: SET number of iterations I
3: SET number of suggested terms per iteration
|C|

4: for i = 1 to I do
5: Ci ← Suggest from Ũi−1
6: Ui ← Ci ∩ U∗
7: Ni ← Ci\U∗
8: if System is trainable then
9: Run training with Ũi (and Ñi)

10: end if
11: end for

4.2 A Metric for Effectiveness Estimation
In addition to the automatic evaluation process, we
introduce a new metric that takes the interaction
quality into account when evaluating the accuracy
of the candidate selection.

The final goal of dictionary construction is to
obtain a complete set of terms consistent with U∗;
however, there is a limitation stemming from a
user’s workload in real scenarios. Given that an
effective system should suggest terms of user’s in-
terest in earlier iterations, we propose weighted
coverage per iteration (WCpI) as the evaluation
metric for interactive dictionary construction:

WCpI =

∑I
i=1 (1− α)i−1

|Ũi|
min{i|C|,|U∗|}∑I

i=1 (1− α)i−1
, (9)

where α is the hyperparameter to adjust the im-
portance of the iteration number. We illustrate the
intuition of WCpI in Figure 6. WCpI is an area
ratio of accumulated positive terms from system
suggestions to its upper bound in each iteration.
In short, it measures how many correct sugges-
tions the system can provide in the comparison
with a “perfect” system that never suggests unre-
lated terms.

We can also regulate the importance of iteration
number by adjusting α. Specifically, a larger value
of α underestimates the importance of terms found
in the later iterations, in other words, it attaches
importance to terms found in the earlier iterations.
As an intuitive explanation based on an actual sce-
nario, α is like representing a constant probability
for the user to quit dictionary construction mid-
way through. The graphs in Figure 6 compare the
calculation of WCpI for the same system sugges-
tions. The right one with α = 0.1, in which we as-
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Figure 6: Weighted coverage per iteration WCpI .
TheThe x- and y-axes are the number of iterations and
accumulated positive terms, respectively. The blue and
red areas represent the upper bound and system per-
formance, respectively. The left side is for α = 0.0
and the right side is for α = 0.1 when |C| = 10,
|U∗| > 100, |Ui| = 10− i, and I = 10.

sume the user quit creating a dictionary with 10%
probability at every iteration, has a higher WCpI
than the left one with α = 0.0.

5 Experiments

We conduct an experiment following the au-
tomatic evaluation framework by using public
datasets and oracle dictionaries created through
crowdsourcing. In the experiment, we com-
pare several methods in addition to our proposed
method. As emulation parameters, we set number
of seed terms (|U0| ), the number of terms in one
suggestion (|C|), and number of total iterations (I)
to 3, 10, and 30, respectively. Note that we tried
different numbers of seeds (1 and 5), but the over-
all tendencies were the same.

5.1 Dataset

We used crowdsourcing to create oracle dictionar-
ies on the Amazon review corpus (Blitzer et al.,
2007), which is publicly available.2 First, we ex-
plain the corpus processing and the procedure to
construct the oracle dictionaries. We then describe
the evaluation items. Our evaluation items will be
publicly available for the system evaluation in fu-
ture research.

Corpus. The corpus originally consists of sub
corpora from 25 domains. Given that size and do-
main vary, we pick five domains; apparel (APP),
baby (BAB), camera & photo (CAM), health &
personal care (HEL), and sports & outdoors (SPO).
We process the raw texts with spaCy 3 and its dis-

2https://www.cs.jhu.edu/ mdredze/datasets/sentiment/
3https://spacy.io/



795

tributed English model 4. We then construct the
vocabulary with words and noun chunks that ap-
peared more than five times except for standard
stopwords. Note that all terms in the vocabulary
are identified after lemmatization by spaCy.

Oracle Dictionaries. For each selected corpus,
we create oracle dictionaries through crowdsourc-
ing.5 In the task for workers, we provide prede-
fined dictionaries and ask the worker to choose
one or more dictionaries to which a given term
belongs. For example, we prepared three inde-
pendent dictionaries nursery items dictionaries for
sleeping, movement, and safety in the BAB cor-
pus, and asked a worker to judge which dictio-
nary includes the term “car seat”. With respect
to each corpus, we define multiple dictionaries and
request three workers to make judgments for every
term in the vocabulary. We determine that a term is
included in a dictionary when at least one of three
workers choose the dictionary for the term. Note
that we filter noisy users and their answers before-
hand according to the reliability score estimated
by the crowdsourcing service 6. Finally, we also
manually clean each dictionary. Excluding dictio-
naries consisting of less than 15 terms or too much
noise, we eventually obtain 22 dictionaries. We
list the dictionaries and example terms in Table 1.

Evaluation Item. We generate ten evaluation
items per dictionary, for 220 items in total. An
evaluation item consists of a unique set of seed
terms (U0) and the remaining terms in the corre-
sponding dictionary as the oracle (U∗ := U\U0).
We suggest that fewer seed terms are adequate for
evaluating an interactive dictionary construction
method; because the purpose is to gather terms
with a minimum human effort as mentioned in §2.

5.2 Methods

We compare four methods: Word2Vec, SetExpan,
logistic regression, and our proposed method with
several configurations. All methods possess the
same vocabulary W , and all methods excluding
Word2Vec use the same feature spaces: tf-idfs of
Bag of Words, unigrams, bigrams, and word em-
beddings. Any feature space is applicable, though.

4https://spacy.io/models/en#en core web sm
5https://www.figure-eight.com/
6Although we also tried other thresholds such as corre-

spondence between three workers, this criterion provided the
best balance of data cleanliness and size.

Word2Vec: Word2Vec is a popular and promis-
ing method for representing word meanings in
a continuous vector space, and the vector simi-
larity is naturally applicable to interactive dictio-
nary construction (Alba et al., 2018). We use
two computation methods of candidate selection
based on Word2Vec. The first is w2v(avg)and
involves simply taking cosine similarity with an
averaged vector of terms among Ũ . The second
is w2v(rank)and calculates the mean reciprocal
rank from terms in Ũ . Both select the candidates
in order of their estimated scores. The embeddings
are learned for each corpus with the gensim imple-
mentation using the default parameters.7

SetExpan: We implement SetExpan (SE; Shen
et al. 2017), which is a feature-selection method
for conventional set expansion. The original ver-
sion does not involve the user in the iteration and
updates Ũi according to its own criteria to filter
incorrect terms. In our scenario, we provide the
correct terms in the update phase of Ũi. We use
the same input features with other methods and set
the hyperparameters to those Shen et al. (2017) re-
ported as best.

Logistic Regression: We include logistic re-
gression in our comparison because the feature
weighting is one of the conventional types of lin-
ear discriminant analysis. The logistic regres-
sion version, LR, takes a word representation and
then predicts the probability of the word appear-
ing in a current dictionary. For word represen-
tation, we concatenate vectors in each feature
space (explained in §5.2) and then use the vec-
tor compressed into 300 dimensions with singu-
lar value decomposition. In every iteration, we
train LR from scratch with positive and negative
terms. For the negative terms at the first iteration
(i.e., N0), however, we randomly select |U0| of
negative words from the entire vocabulary except
for dictionary terms. We select candidates follow-
ing the order of estimated probabilities. While we
tried other regression models (SVM and Random
Forest) and dimensions of the input vector (non-
compression, 50, 100, 200, 500, and 1000), the
above condition was the best configuration.

Feature Weighting with Predefined Similarity:
We test six versions of our proposed methods:

• FWPS: Our base model without optimization
7https://radimrehurek.com/gensim/models/word2vec.html
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Corpus Dictionary name Size Examples

APP

Accessory 63 flower, watch, glove, ring, case, scarf, garter, holder
Wearables for upper body 92 visor, tuxedo, sweatshirt, tank, pajama, blanket, glass, outer
Wearables for lower body 83 gown, robe, harness, sandal jersey, boot, loafer, nightgown
Items for outdoor 39 sweatshirt, glove, trunk, bike, backpack, coat, hat

BAB

Nursery items for transport 37 carrier, stroller, leash, walker, backpack, strap, seat cover, sunshade
Nursery items for safety 74 cover, sterilizer, infant car seat, seat belt, beeping, monitor, sunshade
Nursery items for sleeping 62 cover, hammock, bedding, mattress, sleep sack, bumper, cushion, lamp
Enjoyments for baby 134 car, playmat, crayon, ring, dad, bell, bird, toy box
Wearables for baby 52 shoe, bouncer, towel, cloth, comforter, fleece, diaper, head support

CAM

Scene of photograph 84 summer, space, excursion, cruise, pool, face, wildlife, land
Subject of photograph 71 space, performer, ocean, magic, young, garden, action, snow
Functions of camera 108 remote switch, waterproof, trigger, telephoto, interface, portrait
External accessories 93 station, remote switch, polarizer, trigger, case, battery, microphone

HEL

Health equipment or product 54 bathtub, air bed, vitamin, heater, read glass, flosser, supplement, pillow
Appearance description 58 clear, oily, tint, sharp, handy, masculine, cheap, small
Functional description 86 naturally, refill, powerful, rapid, oily, sharp, smooth shave, handy
Beauty equipment or product 88 mirror, nivea, eyebrow, vanity, straightner, dryer, vitamin,fragrance

SPO

Body 57 blood, knuckle, eye, nose, chin, nail, knee, face, bone, palm
Wearables 70 pedometer, roll, strap, vest, rattle, cloth, boat, tent, slip, altimeter
Items for exercise 148 fanny pack, dumbell, pod, rower, bottle, pedometer, knee pad, rack, towel
Items for outdoors 132 bicycle, opener, bottle, rack, towel, strap, guitar, fanny pack
Movements in exercise 86 sit, twist, pull, stand, situp, running, roll, rowing, swing setter, punch

Table 1: Examples of dictionaries.

where w is uniform distribution→ §3

• +PickOne: Selecting only one feature
space with the highest similarity scores
among positive terms→ §3.3

• +Op(p): With optimization using positive
feedback→ Eq.(7)

• +Op(p/n): With optimization using both
positive and negative feedback→ Eq.(8)

• +Fd(p): With +Op(p)and feedback de-
noising→ §3.4

• +Fd(p/n):With +Op(p/n)and feedback
denoising→ §3.4

We use the K-means algorithm for +Op(p) and
+Op(p/n) with K = 3, though the overall trend
was almost the same with K = 2 and 5.

Hybrid: We also introduce a joint method
HB that combines LR and an FWPS version. The
strategy is simple; HB firstly uses FWPS ’s mech-
anism to broadly cover candidate terms, and then
switches to LR when the amount of feedback in-
creases. This mechanism naturally solves LR’s
problems that require negative feedback from the
beginning and demand a moderate number of la-
bels for training. Any of the FWPS versions can
be combined with LR; therefore, we chose the best
one for our experiment. The switch timing is em-
pirically set to the 5-th iteration.

5.3 Results and Discussion

Table 2 lists the WCpI scores for each method
across five corpora with α = 0.0. In all do-
main texts, HB outperforms the others. The
scores of LR are second highest, which implies
that a combination with a FWPS model boosts
performance. Among the versions of FWPS,
+PickOne largely drops in score, which indi-
cates the importance of the min-maximizing op-
timization strategy for this task (see §3.3). How-
ever, at least when α = 0.0 that assumes the user
never quit the process in the midway through, the
performances of FWPS and other versions with
optimized w are not different much. In partic-
ular, the negative feedback tends to degrade the
performance. Subsequently, SE, w2v(avg), and
w2v(rank)perform poorly. SE may not be suit-
able for gathering arbitrary terms from a non-
large corpus because it was originally designed
and tested for collecting ontological terms from
large-scaled data (Shen et al., 2017). Also, we
find that leveraging embeddings in a straightfor-
ward manner is not sufficient, especially for inter-
active dictionary construction.

Let us now discuss changes when adjusting the
WCpI’s α listed in Table 3. Ignoring corpus dif-
ferences, we take the average scores among all
evaluation items. The most crucial change can
be found in LR which significantly drops in score
along with an increase in α. When α = 0.1,
the score of LR already becomes inferior to most
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Methods APP BAB CAM HEL SPO
SE 21.20 18.83 11.34 17.01 16.79
w2v(avg) 18.51 12.77 10.36 14.60 14.28
w2v(rank) 24.39 12.71 10.29 18.63 17.04
LR 51.99 36.76 31.18 38.17 37.59
FWPS 46.90 34.32 27.61 38.17 35.56
+PickOne 18.51 12.79 10.36 14.40 14.28
+Op(p) 45.60 33.73 26.13 36.43 35.29
+Op(p/n) 43.42 30.88 23.13 33.19 31.91
+Fd(p) 46.17 34.92 26.76 37.60 36.03
+Fd(p/n) 46.33 32.01 25.36 37.04 34.63
HB (+Fd(p)) 53.07 37.38 32.31 42.22 39.74

Table 2: WCpI scores across corpora (α = 0.0)

Methods α
0.0 0.1 0.3 0.5

SE 17.05 14.36 14.26 15.46
w2v(avg) 14.10 10.83 9.39 9.63
w2v(rank) 16.61 12.42 9.95 9.68
LR 39.14 30.06 23.39 22.45
FWPS 36.51 32.02 30.49 31.51
+PickOne 14.07 10.93 9.64 9.95
+Op(p) 35.44 31.79 30.72 31.58
+Op(p/n) 32.50 29.17 28.89 30.32
+Fd(p) 36.30 32.42 31.10 31.95
+Fd(p/n) 35.07 30.92 29.56 30.53
HB (+Fd(p)) 40.95 34.14 30.97 31.62

Table 3: Change in WCpI scores when increasing α.
The scores are averaged among all evaluation items.

of the FWPS versions. Also, the scores of FWPS
tend to be higher with a larger value of α. When
α ≥ 0.3, +Fd(p) performs the best among all
methods. In short, LR suggests correct terms in
latter iterations; while FWPS, in particular with
trainable ones (+Op(p), +Fd(p)), suggests cor-
rect terms in earlier iterations.

Figure 7 directly describes the score differences
with different alphas by showing the hit ratios de-
fined as |Ui|/|C| in terms of each iteration num-
ber for LR, +Fd(p), and HB. Regardless of the
number of seed terms, LR suggests fewer correct
terms in earlier iterations, but its hit ratio stably
goes beyond +Fd(p) after obtaining a moderate
number of training labels (around five iterations,
i.e., fifty labels). On the other hand, +Fd(p) per-
forms better by a large margin in earlier iterations
than LR. In short, our method using predefined
term similarities overcomes the smaller sample is-
sue which a conventional linear classifier suffers
from and contributes to quick dictionary construc-
tion. This result is practically important because
the analyst will go through repeated trial and er-
ror — observing documents from various points of
views — by creating many small dictionaries. In
addition, such contrasts are much stronger when
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Figure 7: Hit ratio (|Ui|/|C|) in terms of each iteration
number by LR, +Fd(p), and HB. The upper and lower
graphs start with one and three seeds, respectively.

we give only one seed term (the upper graph),
which is also meaningful because the user often
starts dictionary construction with only one seed
term in a real situation.
HB enjoys both benefits of coverage by LR and

quickness by +Fd(p). In other words, a conven-
tional classifier and our method are complemen-
tary; LR becomes favorable when the user prior-
itizes coverage than quickness, and +Fd(p) be-
comes favorable when vice versa. As a possible
use case of HB, the analyst may quickly find in-
teresting perspectives by creating various dictio-
naries with one of the FWPS methods, and once
finding those, he/she switches to a linear classifier
to expand the promising dictionaries more.

6 Conclusion

To the best of our knowledge, this paper proposes
the first formulation of interactive dictionary con-
struction for text analytics, which clarifies the crit-
ical issues to resolve. In response to those issues,
we provide the method, the evaluation framework,
and the experimental dataset. Also, our experi-
mental results show the promising performances
of our method in concern with real situations of
text analytics. Our systematic study will pave the
way to future research about the effective con-
struction of dictionaries for text analytics.
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A Appendix

A.1 Proof
We prove that our formulation of the optimiza-
tion problem is a natural extension of that of Set-
Expan, assuming a reasonable normalization con-
straint for entity vectors and their weights. Nota-
tions follow from the main paper. Recall that the
formulation of SetExpan is

F ∗ = arg max
|F |=Q

∑
1≤i<j≤n

Sim(ei, ej |F ), (1)

where Q is the number of features in F and is a
fixed integer value.

Building on this, our formulation is

w∗ = arg max
w

n∑
i=1

Sim(ei, Ũ |w). (4)

Substitute (2) and (3) in the main paper into the
above formulation to obtain

w∗ = arg max
w

n∑
i=1

{ 1

n

n∑
j=1

Sim(ei, ej |w)
}

= arg max
w

1

n

{
2×

∑
1≤i<j≤n

Sim(ei, ej |w)

+

n∑
i=1

Sim(ei, ei|w)
}

= arg max
w

{ 2

n

∑
1≤i<j≤n

Sim(ei, ej |w)

+
1

n2

L∑
k=1

wk

( n∑
i=1

‖vfk(ei)‖
)
.
}

In the right-hand side of the last equation, the
second term is a constant when all of the vec-
tors {vfk(ei)}i=1,...,n have the same norm and∑L

k=1wk = 1. Then our optimization problem is
equivalent to

w∗ = arg max
w

∑
1≤i<j≤n

Sim(ei, ej |w),

which is a continuous version of (1).
Next, let us prove that in the modified version of

our optimization problem ((7) in the main paper),

min
1≤i≤n

Sim(ei, Ũ |w) (10)

is a concave function of w. Hence we can ap-
ply standard techniques of convex optimization to
solve (7). First let us rewrite (10) as follows:

min
1≤i≤n

Sim(ei, Ũ |w)

= min
1≤i≤n

L∑
k=1

wk · (vfk(ei) · vfk(Ũ))

= min
1≤i≤n

L∑
k=1

wk · xik,

where xik = vfk(ei) ·vfk(Ũ). Then it is sufficient
to prove the following lemma.
Lemma 1. The following function is concave for
w when w is defined on a convex set.

g(w) := min
1≤i≤n

L∑
k=1

wk · xik (11)

Proof. It is a straightforward calculation by
the definition of concavity. for any w1 =
{w11, · · · , w1L}, w2 = {w21, · · · , w2L}, and λ ∈
(0, 1), we need to prove that

g((1−λ)w1+λw2) ≥ (1−λ)g(w1)+λg(w2).

We can compute the left-hand side of this equa-
tion by using (11):

g((1− λ)w1 + λw2)

= min
1≤i≤n

L∑
k=1

((1− λ)w1k + λw2k) · xik

= min
1≤i≤n

L∑
k=1

{
(1− λ)w1kxik + λw2kxik

}
≥ min

1≤i≤n

L∑
k=1

(1− λ)w1kxik

+ min
1≤i≤n

L∑
k=1

λw2kxik

= (1− λ) min
1≤i≤n

L∑
k=1

w1kxik

+λ min
1≤i≤n

L∑
k=1

w2kxik

= (1− λ)g(w1) + λg(w2).

Here we use the inequality min1≤i≤n(Ai +Bi)
≥ min1≤i≤nAi + min1≤i≤nBi that holds for
any sequences of real numbers {Ai}i=1,...,n and
{Bi}i=1,...,n.

Since
∑L

k=1wk = 1, 0 ≤ wk (k = 1, . . . , L)
is a convex set, we can apply this lemma to our
objective function.


