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Abstract

This paper studies the task of Relation Extrac-
tion (RE) that aims to identify the semantic re-
lations between two entity mentions in text. In
the deep learning models for RE, it has been
beneficial to incorporate the syntactic struc-
tures from the dependency trees of the input
sentences. In such models, the dependency
trees are often used to directly structure the
network architectures or to obtain the depen-
dency relations between the word pairs to in-
ject the syntactic information into the models
via multi-task learning. The major problems
with these approaches are the lack of general-
ization beyond the syntactic structures in the
training data or the failure to capture the syn-
tactic importance of the words for RE. In or-
der to overcome these issues, we propose a
novel deep learning model for RE that uses the
dependency trees to extract the syntax-based
importance scores for the words, serving as
a tree representation to introduce syntactic in-
formation into the models with greater gener-
alization. In particular, we leverage Ordered-
Neuron Long-Short Term Memory Networks
(ON-LSTM) to infer the model-based impor-
tance scores for RE for every word in the sen-
tences that are then regulated to be consistent
with the syntax-based scores to enable syn-
tactic information injection. We perform ex-
tensive experiments to demonstrate the effec-
tiveness of the proposed method, leading to
the state-of-the-art performance on three RE
benchmark datasets.

1 Introduction

One of the fundamental tasks in Information Extrac-
tion (IE) is Relation Extraction (RE) where the goal
is to find the semantic relationships between two
entity mentions in text. Due to its importance, RE
has been studied extensively in the literature. The
recent studies on RE has focused on deep learning
to develop methods to automatically induce sen-

tence representations from data (Zeng et al., 2014;
Nguyen and Grishman, 2015a; Verga et al., 2018).
A notable insight in these recent studies is that the
syntactic trees of the input sentences (i.e., the de-
pendency trees) can provide effective information
for the deep learning models, leading to the state-
of-the-art performance for RE recently (Xu et al.,
2015; Guo et al., 2019; Tran et al., 2019). In par-
ticular, the previous deep learning models for RE
has mostly exploited the syntactic trees to structure
the network architectures according to the word
connections presented in the trees (e.g., perform-
ing Graph Convolutional Neural Networks (GCN)
over the dependency trees (Zhang et al., 2018)).
Unfortunately, these models might not be able to
generalize well as the tree structures of the training
data might significantly differ from those in the test
data (i.e., the models are overfit to the syntactic
structures in the training data). For instance, in
the cross-domain setting for RE, the domains for
the training data and test data are dissimilar, often
leading to a mismatch between the syntactic struc-
tures of the training data and test data. In order to
overcome this issue, the overall strategy is to ob-
tain a more general representation of the syntactic
trees that can be used to inject the syntactic infor-
mation into the deep learning models to achieve
better generalization for RE.

A general tree representation for RE is presented
in (Veyseh et al., 2019) where the dependency trees
are broken down into their sets of dependency re-
lations (i.e., the edges) between the words in the
sentences (called the edge-based representation).
These dependency relations are then used in a multi-
task learning framework for RE that simultaneously
predicts both the relation between the two entity
mentions and the dependency connections between
the pairs of words in the input sentences. Although
the dependency connections might be less specific
to the training data than the whole tree structures,
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the major limitation of the edge-based represen-
tation is that it only captures the pairwise (local)
connections between the words and completely ig-
nores the overall (global) importance of the words
in the sentences for the RE problem. In particu-
lar, some words in a given sentence might involve
more useful information for relation prediction in
RE than the other words, and the dependency tree
for this sentence can help to better identify those im-
portant words and assign higher importance scores
for them (e.g., choosing the words along the short-
est dependency paths between the two entity men-
tions). We expect that introducing such importance
information for the words in the deep learning mod-
els might lead to improved performance for RE.
Consequently, in this work, we propose to obtain
an importance score for each word in the sentences
from the dependency trees (called the syntax-based
importance scores). These will serve as the gen-
eral tree representation to incorporate the syntactic
information into the deep learning models for RE.

How can we employ the syntax-based impor-
tance scores in the deep learning models for RE?
In this work, we first use the representation vectors
for the words from the deep learning models to
compute another importance score for each word
(called the model-based importance scores). These
model-based importance scores are expected to
quantify the semantic information that a word con-
tributes to successfully predict the relationship be-
tween the input entity mentions. Afterward, we pro-
pose to inject the syntax-based importance scores
into the deep learning models for RE by enforcing
that the model-based importance scores are con-
sistent with the syntactic counterparts (i.e., via the
KL divergence). The motivation of the consistency
enforcement is to promote the importance scores
as the bridge through which the syntactic informa-
tion can be transmitted to enrich the representation
vectors in the deep learning models for RE.

In order to implement this idea, we employ the
Ordered-Neuron Long Short-Term Memory Net-
works (ON-LSTM) (Shen et al., 2019) to compute
the model-based importance scores for the words in
the sentences for RE. ON-LSTM extends the popu-
lar Long Short-Term Memory Networks (LSTM)
by introducing two additional gates (i.e., the master
forget and input gates) in the hidden vector com-
putation. These new gates controls how long each
neuron in the hidden vectors should be activated
across different time steps (words) in the sentence

(i.e., higher-order neurons would be maintained for
a longer time). Based on such controlled neurons,
the model-based importance score for a word can
be determined by the number of active neurons that
the word possesses in the operation of ON-LSTM.
To our knowledge, this is the first time ON-LSTM
is applied for RE in the literature.

One of the issues in the original ON-LSTM is
that the master gates and the model-based impor-
tance score for each word are only conditioned on
the word itself and the left context encoded in the
previous hidden state. However, in order to infer
the importance for a word in the overall sentence
effectively, it is crucial to have a view over the en-
tire sentence (i.e., including the context words on
the right). To this end, instead of relying only on
the current word, we propose to obtain an overall
representation of the sentence that is used as the in-
put to compute the master gates and the importance
score for each word in the sentence. This would
enrich the model-based importance scores with the
context from the entire input sentences, potentially
leading to the improved RE performance of the
model in this work.

Finally, to further improve the representations
learned by the deep learning models for RE, we
introduce a new inductive bias to promote the sim-
ilarity between the representation vectors for the
overall sentences and the words along the shortest
dependency paths between the two entity mentions.
The intuition is that the relation between the two
entity mentions of interest in a sentence for RE can
be inferred from either the entire sentence or the
shortest dependency path between the two entity
mentions (due to the demonstrated ability of the
shortest dependency path to capture the important
context words for RE in the prior work (Bunescu
and Mooney, 2005)). We thus expect that the rep-
resentation vectors for the sentence and the depen-
dency path should be similar (as both capture the
semantic relation) and explicitly exploiting such
similarity can help the models to induce more effec-
tive representations for RE. Our extensive experi-
ments on three benchmark datasets (i.e., ACE 2005,
SPOUSE and SciERC) demonstrate the effective-
ness of the proposed model for RE, leading to the
state-of-the-art performance for these datasets.

2 Related Work

RE has been traditionally solved by the feature-
based or kernel-based approaches (Zelenko et al.,
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2003; Zhou et al., 2005; Bunescu and Mooney,
2005; Sun et al., 2011; Chan and Roth, 2010;
Nguyen and Grishman, 2014; Nguyen et al., 2015c).
One of the issues in these approaches is the require-
ment for extensive feature or kernel engineering
effort that hinder the generalization and applica-
bility of the RE models. Recently, deep learning
has been applied to address these problems for the
traditional RE approaches, producing the state-of-
the-art performance for RE. The typical network
architectures for RE include the Convolutional Neu-
ral Networks (Zeng et al., 2014; Nguyen and Gr-
ishman, 2015a; dos Santos et al., 2015; Wang et al.,
2016), Recurrent Neural Networks (Nguyen and
Grishman, 2016; Zhou et al., 2016; Zhang et al.,
2017; Nguyen et al., 2019a), and self-attentions in
Transformer (Verga et al., 2018). The syntactic in-
formation from the dependency trees has also been
shown to be useful for the deep learning models
for RE (Tai et al., 2015; Xu et al., 2015; Liu et al.,
2015; Miwa and Bansal, 2016; Peng et al., 2017;
Zhang et al., 2018; Guo et al., 2019; Tran et al.,
2019; Song et al., 2019; Veyseh et al., 2019). How-
ever, these methods tend to poorly generalize to
new syntactic structures due to the direct reliance
on the syntactic trees (e.g., in different domains) or
fail to exploit the syntax-based importance of the
words for RE due to the sole focus on edges of the
dependency trees (Veyseh et al., 2019).

3 Model

The RE problem can be formulated as a multi-class
classification problem. Formally, given an input
sentence W = w1, w2, . . . , wN where wt is the
t-th word in the sentence W of length N , and two
entity mentions of interest at indexes s and o (1 ≤
s < o ≤ N ), our goal is to predict the semantic
relation between ws and wo in W .

Similar to the previous work on deep learning
for RE (Shi et al., 2018; Veyseh et al., 2019), we
first transform each word wt into a representation
vector xt using the concatenation of the three fol-
lowing vectors: (i) the pre-trained word embed-
dings of wt, (ii) the position embedding vectors (to
encode the relative distances of wt to the two en-
tity mentions of interest ws and wo (i.e., t− s and
t − o)), and (iii) the entity type embeddings (i.e.,
the embeddings of the BIO labels for the words
to capture the entity mentions present in X). This
word-to-vector transformation converts the input
sentence W into a sequence of representation vec-

tors X = x1, x2, . . . , xN to be consumed by the
next neural computations of the proposed model.

There are three major components in the RE
model in this work, namely (1) the CEON-LSTM
component (i.e., context-enriched ON-LSTM) to
compute the model-based importance scores of the
words wt, (2) the syntax-model consistency compo-
nent to enforce the similarity between the syntax-
based and model-based importance scores, and (3)
the similarity component between the representa-
tion vectors of the overall sentence and the shortest
dependency path.

3.1 CEON-LSTM

The goal of this component is to obtain a score for
each word wt that indicates the contextual impor-
tance of wt with respect to the relation prediction
between ws and wo in W . In this section, we first
describe the ON-LSTM model to achieve these im-
portance scores (i.e., the model-based scores). A
new model (called CEON-LSTM) that integrates
the representation of the entire sentence into the
cells of ON-LSTM will be presented afterward.

ON-LSTM: Long-short Term Memory Net-
works (LSTM) (Hochreiter and Schmidhuber,
1997) has been widely used in Natural Language
Processing (NLP) due to its natural mechanism to
obtain the abstract representations for a sequence
of input vectors (Nguyen and Nguyen, 2018b,
2019). Given the input representation vector se-
quence X = x1, x2, . . . , xN , LSTM produces a
sequence of hidden vectors H = h1, h2, . . . , hN
using the following recurrent functions at the time
step (word) wt (assuming the zero vector for h0):

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

ĉt = tanh(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ ĉt
ht = ot ◦ tanh(ct)

(1)

where ft, it and ot are called the forget, input and
output gates (respectively).

In order to compute the importance score for
each word wt, ON-LSTM introduce into the mech-
anism of LSTM two additional gates, i.e., the mas-
ter forget gate f̂t and the master input gate ît (Shen
et al., 2019). These gates are computed and inte-
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grated into the LSTM cell as follow:

f̂t = cummax(Wf̂xt + Uf̂ht−1 + bf̂ )

ît = 1− cummax(Wîxt + Uîht−1 + bî)

f̄t = f̂t ◦ (ftît + 1− ît)
īt = ît ◦ (itf̂t + 1− f̂t)
ct = f̄t ◦ ct−1 + īt ◦ ĉt

(2)

where cummax is an activation function defined
as cummax(x) = cumsum(softmax(x))1.

The forget and input gates in LSTM (i.e., ft and
it) are different from the master forget and input
gates in ON-LSTM (i.e., f̂t and ît) as the gates
in LSTM assume that the neurons/dimensions in
their hidden vectors are equally important and that
these neurons are active at every step (word) in the
sentence. This is in contrast to the master gates in
ON-LSTM that impose a hierarchy over the neu-
rons in the hidden vectors and limit the activity of
the neurons to only a portion of the words in the sen-
tence (i.e., higher-ranking neurons would be active
for more words in the sentence). Such hierarchy
and activity limitation are achieved via the function
cumax(x) that aggregates the softmax output of
the input vector x along the dimensions. The out-
put of cumax(x) can be seen as the expectation of
some binary vector of the form (0, . . . , 0, 1, . . . , 1)
(i.e., involving two consecutive segments: the 0’s
segment and the 1’s segment). At one step, the
1’s segments in the gate vectors represents the neu-
rons that are activated at that step. In ON-LSTM,
a word wi is more contextually important than an-
other word wj if the master gates for wi have more
active neurons than those for wj . Consequently, in
order to compute the importance score for the word
wt, we can rely on the number of active neurons
in the master gates that can be estimated by the
sum of the weights of the neurons in the master
gates in ON-LSTM. Following (Shen et al., 2019),
we employ the hidden vectors for the master for-
get gate in ON-LSTM to compute the importance
scores for the words in this work. Specifically, let
f̂t = f̂t1, f̂t2, . . . , f̂tD be the weights for the neu-
rons/dimensions in ĥt (i.e., D is the dimension of
the gate vectors). The model-based importance
score modt for the word wt ∈W is then obtained
by: modt = 1−

∑
i=1..D f̂ti. For convenience, we

also use H = h1, h2, . . . , hN to denote the hidden

1cumsum(u1, u2, . . . , un) = (u′
1, u

′
2, . . . , u

′
n) where

u′
i =

∑
j=1..i uj .

vectors returned from the application of ON-LSTM
over the input representation vectors X .

Introducing Sentence Context into ON-LSTM

One limitation of the ON-LSTM model is that it
only relies on the representation vector of the cur-
rent word xt and the hidden vector for the left con-
text (encoded in ht−1) to compute the master gate
vectors and the model-based important score for
the word wt as well. However, this score compu-
tation mechanism might not be sufficient for RE
as the importance score for wt might also depend
on the context information on the right (e.g., the
appearance of some word on the right might make
wt less important for the relation prediction be-
tween ws and wo). Consequently, in this work,
we propose to first obtain a representation vector
x′t = g(x1, x2, . . . , xN ) that has the context infor-
mation about the entire sentence W (i.e., both the
left and right context for the current word wt). Af-
terward, x′t will replace the input representation
vector xt in the computation for the master gates
and importance score at step t of ON-LSTM (i.e.,
in the formulas for f̂t and ît in Equation 2). In this
way, the model-based importance score for wt will
be able to condition on the overall context in the
input sentence.

In this work, we obtain the representation vec-
tor x′t for each step t of ON-LSTM based on
the weighted sum of the transformed vectors of
the input representation sequence x1, x2, . . . , xN :
x′t =

∑
i αti(Wxxi + bx). The weight αti for the

term with xi in this formula is computed by:

αti =
exp((Whht−1 + bh) · (Wxxi + bx))∑N
j=1 exp((Whht−1 + bh) · (Wxxj + bx))

(3)
where Wh, bh,Wx and bx are the learnable param-
eters. Note that in this formula, we use the ON-
LSTM hidden vector ht−1 from the previous step
as the query vector to compute the attention weight
for each word. The rationale is to enrich the atten-
tion weights for the current step with the context
information from the previous steps (i.e., encoded
in ht−1), leading to the contextualized input repre-
sentation x′t with richer information for the mas-
ter gates and importance score computations in
ON-LSTM. The proposed ON-LSTM with the en-
riched input vectors x′t is called CEON-LSTM (i.e.,
Context-Enriched ON-LSTM) in this work.



8025

3.2 Syntax-Model Consistency

As mentioned in the introduction, the role of
the model-based importance scores obtained from
CEON-LSTM is to serve as the bridge to inject
the information from the syntactic structures of W
into the representation vectors of the deep learn-
ing models for RE. In particular, we first leverage
the dependency tree of W to obtain another im-
portance score synt for each word wt ∈ W (i.e.,
the syntax-based importance score). Similar to the
model-based scores, the syntax-based scores are
expected to measure the contextual importance of
wt with respect to the relation prediction for ws

and wo. Afterward, we introduce a constraint to en-
courage the consistency between the model-based
and syntax-based importance scores (i.e.,modt and
synt) for the words via minimizing the KL diver-
gence Limport between the normalized scores:

mod1, . . . ,modN = softmax(mod1, . . . ,modN )

syn1, . . . , synN = softmax(syn1, . . . , synN )

Limport = −Σimodilog
modi
syni

(4)

The intuition is to exploit the consistency to super-
vise the model-based importance scores from the
models with the syntax-based importance scores
from the dependency trees. As the model-based
importance scores are computed from the master
gates with the active and inactive neurons in CEON-
LSTM, this supervision allows the syntactic infor-
mation to interfere directly with the internal compu-
tation/structure of the cells in CEON-LSTM, poten-
tially generating representation vectors with better
syntax-aware information for RE.

To obtain the syntax-based importance scores,
we take the motivation from the previous work on
RE where the shortest dependency paths between
the two entity mentions of interest have been shown
to capture many important context words for RE.
Specifically, for the sentence W , we first retrieve
the shortest dependency path DP between the two
entity mentions ws and wo and the length T of the
longest path between any pairs of words in the de-
pendency tree of W . The syntax-based importance
score synt for the word wt ∈W is then computed
as the difference between T and the length of the
shortest path between wt and some word in DP
in the dependency tree (i.e., the words along DP
will have the score of T ). On the one hand, these

syntax-based importance scores are able to capture
the importance of the words that is customized for
the relation prediction between ws and wo. This is
better suited for RE than the direct use of the edges
in the dependency trees in (Veyseh et al., 2019) that
is agnostic to the entity mentions of interest and
fails to encode the importance of the words for RE.
On the other hand, the syntax-based importance
scores synt represent a relaxed form of the original
dependency tree that might have a better chance to
generalize over different data and domains for RE
than the prior work (i.e., the ones that directly fit
the models to the whole syntactic structures (Zhang
et al., 2018) and run the risk of overfitting to the
structures in the training data).

3.3 Sentence-Dependency Path Similarity

In this component, we seek to further improve the
representation vectors in the proposed deep learn-
ing model for RE by introducing a novel constraint
to maximize the similarity between the representa-
tion vectors for the overall input sentence W and
the words along the shortest dependency path DP
(i.e., inductive bias). The rationale for this bias is
presented in the introduction.

In order to implement this idea, we first ob-
tain the representation vectors RW and RDP

for the sentence W and the words along DP
(respectively) by applying the max-pooling op-
eration over the CEON-LSTM hidden vectors
h1, h2, . . . , hN for the words in W and DP :
RW = max poolingwi∈W {hi} and RDP =
max poolingwi∈DP {hi}. In the next step, we pro-
mote the similarity between RW and RDP by ex-
plicitly minimizing their negative cosine similar-
ity2, i.e., adding the following term Lpath into the
overall loss function:

Lpath = 1− cos (RW , RDP ) (5)

3.4 Prediction

Finally, in the prediction step, following the prior
work (Veyseh et al., 2019), we employ the fol-
lowing vector V as the overall representation vec-
tor to predict the relation between ws and wo in
W : V = [xs, xo, hs, ho, RW ]. Note that V in-
volves the information at different abstract levels
for W , i.e., the raw input level with xs and xo,
the abstract representation level with hs and ho

2We tried the KL divergence and the mean square error for
this, but cosine similarity achieved better performance.
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from CEON-LSTM, and the overall sentence vec-
tor RW . In our model, V would be fed into a
feed-forward neural network with the softmax layer
in the end to estimate the probability distribution
P (.|W,ws, wo) over the possible relations for W .
The negative log-likelihood function is then ob-
tained to serve as the loss function for the model:
Llabel = − logP (y|W,ws, wo) (y is the golden re-
lation label for ws and wo in W ). Eventually, the
overall loss function of the model in this work is:

L = Llabel + αLimport + βLpath (6)

where α and β are trade-off parameters. The model
is trained with shuffled mini-batching.

4 Experiments

4.1 Datasets and Hyper-parameters

We evaluate the models in this work using three
benchmark datasets, i.e., ACE 2005, SPOUSE, and
SciERC. For ACE 2005, similar to the previous
work (Nguyen and Grishman, 2016; Fu et al., 2017;
Shi et al., 2018; Veyseh et al., 2019), we use the
dataset preprocessed and provided by (Yu et al.,
2015) for compatible comparison. There are 6 dif-
ferent domains in this dataset, i.e., (bc, bn, cts,
nw, un, and wl), covering text from news, conver-
sations and web blogs. Following the prior work,
the union of the domains bn and nw (called news)
is used as the training data (called the source do-
main); a half of the documents in bc is reserved
for the development data, and the remainder (cts,
wl and the other half of bc) serve as the test data
(called the target domains). This data separation
facilitates the evaluation of the cross-domain gener-
alization of the models due to the domain difference
of the training and test data.

The SPOUSE dataset is recently introduced by
(Hancock et al., 2018), involving 22,195 sentences
for the training data, 2,796 sentences for the vali-
dation data, and 2,697 sentences for the test data.
Each sentence in this dataset contains two marked
person names (i.e., the entity mentions) and the
goal is to identify whether the two people men-
tioned in the sentence are spouses.

Finally, the SciERC dataset (Luan et al., 2018)
annotates 500 scientific abstracts for the entity men-
tions along with the coreferences and relations be-
tween them. For RE, this dataset provides 3,219
sentences in the training data, 455 sentences in the
validation data and 974 sentences in the test data.

We fine tune the hyper-parameters for the mod-
els in this work on the validation data of the ACE
2005 dataset. The best parameters suggested by
this process include: 30 dimensions for the posi-
tion embeddings and entity type embeddings, 200
hidden units for the CEON-LSTM model and all
the other hidden vectors in the model (i.e., the hid-
den vectors in the final feed-forward neural network
(with 2 layers) and the intermediate vectors in the
weighted sum vector for x′t), 1.0 for both loss trade-
off parameters α and β, and 0.001 for the initial
learning rate with the Adam optimizer. The batch
size is set to 50. Finally, we use either the uncontex-
tualized word embeddings word2vec (with 300
dimensions) or the hidden vectors in the last layer
of the BERTbase model (with 768 dimensions) (De-
vlin et al., 2019) to obtain the pre-trained word
embeddings for the sentences (Devlin et al., 2019).
We find it better to fix BERT in the experiments.
Note that besides this section, we provide some
additional analysis for the models in the Appendix.

4.2 Comparison with the state of the art

We fist compare the proposed model (called CEON-
LSTM) with the baselines on the popular ACE
2005 dataset. In particular, the four following
groups of RE models in the prior work on RE with
the ACE 2005 dataset is chosen for comparison:

(i) Feature based models: These models hand-
design linguistic features for RE, i.e., FCM, Hybrid
FCM, LRFCM, and SVM (Yu et al., 2015; Hen-
drickx et al., 2010).

(ii) Deep sequence-based models: These models
employ deep learning architectures based on the
sequential order of the words in the sentences for
RE, i.e., log-linear, CNN, Bi-GRU, Forward GRU,
Backward GRU (Nguyen and Grishman, 2016),
and CNN+DANN (Fu et al., 2017).

(iii) Adversarial learning model: This model,
called GSN, attempts to learn the domain-
independent features for RE (Shi et al., 2018).

(iv) Deep structure-based models: These mod-
els use dependency trees either as the input fea-
tures or the graphs to structure the network archi-
tectures in the deep learning models. The state-of-
the-art models of this type include: AGGCN (At-
tention Guided GCN) (Guo et al., 2019), SACNN
(Segment-level Attention-based CNN) (Tran et al.,
2019) and DRPC (the Dependency Relation Pre-
diction and Control model) (Veyseh et al., 2019).
DRPC has the best reported performance on ACE
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System bc cts wl Avg.
FCM (2015) 61.90 52.93 50.36 55.06
Hybrid FCM (2015) 63.48 56.12 55.17 58.25
LRFCM (2015) 59.40 - - -
Log-linear (2016) 57.83 53.14 53.06 54.67
CNN (2016) 63.26 55.63 53.91 57.60
Bi-GRU (2016) 63.07 56.47 53.65 57.73
Forward GRU (2016) 61.44 54.93 55.10 57.15
Backward GRU (2016) 60.82 56.03 51.78 56.21
CNN+DANN (2017) 65.16 - - -
GSN (2018) 66.38 57.92 56.84 60.38
C-GCN (2018) 65.55 62.98 55.91 61.48
AGGCN (2019) 63.47 59.70 56.50 59.89
SACNN (2019) 65.06 61.71 59.82 62.20
DRPC (2019) 67.30 64.28 60.19 63.92
CEON-LSTM (ours) 68.55 65.42 61.93 65.30

Table 1: F1 scores of the models on the ACE 2005 test
datasets using the word2vec word embeddings.

2005. Note that we obtain the performance of these
models on the considered datasets using the actual
implementation released by the original papers.

Most of the prior RE work on the ACE 2005
dataset uses the uncontextualized word embeddings
(i.e., word2vec) for the initial word representa-
tion vectors. In order to achieve a fair comparison
with the baselines, we first show the performance
of the models (i.e., the F1 scores) on the ACE
2005 test datasets when word2vec is employed
for the pre-trained word embeddings in Table 1.
The first observation from the table is that the deep
structured-based models (e.g., C-GCN, DRPC) are
generally better than the deep sequence-based mod-
els (e.g., CNN, Bi-GRU) and the feature base mod-
els with large performance gaps. This demonstrates
the benefits of the syntactic structures that can pro-
vide useful information to improve the performance
for the deep learning models for RE. We will thus
focus on these deep structure-based models in the
following experiments. Among all the models, we
see that the proposed model CEON-LSTM is signif-
icantly better than all the baseline models over dif-
ferent test domains/datasets. In particular, CEON-
LSTM is 1.38% and 3.1% better than DRPC and
SACNN (respectively) on the average F1 scores
over different test datasets. These performance
improvements are significant with p < 0.01 and
clearly demonstrate the effectiveness of the pro-
posed CEON-LSTM model for RE.

In order to further compare CEON-LSTM with
the baselines, Table 2 presents the performance
of the models when the words are represented by
the contextualized word embeddings (i.e., BERT).
For this case, we also report the performance of
the recent BERT-based model (i.e., Entity-Aware
BERT (EA-BERT)) in (Wang et al., 2019) for RE

System bc cts wl Avg.
C-GCN (2018) 67.02 64.4 58.92 63.44
AGGCN (2019) 65.29 63.65 60.35 63.09
SACNN (2019) 68.52 64.21 62.19 64.97
DRPC (2019) 69.41 65.82 61.65 65.62
EA-BERT (2019) 69.25 61.70 58.48 63.14
CEON-LSTM (ours) 71.58 66.92 65.17 67.89

Table 2: F1 scores of the models on the ACE 2005 test
datasets using the BERT word embeddings.

System SPOUSE SciERC
C-GCN (word2vec) (2018) 73.52 65.30
AGGCN (word2vec) (2019) 73.51 67.91
SACNN (word2vec) (2019) 72.88 67.54
DRPC (word2vec) (2019) 74.66 68.18
CEON-LSTM (word2vec) (ours) 76.43 69.92
C-GCN (BERT) (2018) 75.18 74.11
AGGCN (BERT) (2019) 76.91 75.77
SACNN (BERT) (2019) 77.98 76.42
DRPC (BERT) (2019) 78.93 77.21
CEON-LSTM (BERT) (ours) 81.01 78.24

Table 3: F1 scores of the models on the SPOUSE and Sci-
ERC datasets.

on the ACE 2005 dataset. Comparing the models
in Table 2 with the counterparts in 1, it is clear
that the contextualized word embeddings can sig-
nificantly improve the deep structure-based mod-
els for RE. More importantly, similar to the case
with word2vec, we see that the proposed model
CEON-LSTM still significantly outperforms all the
baselines models with large performance gaps and
p < 0.01, further testifying to the benefits of the
CEON-LSTM model in this work.

Finally, in order to demonstrate the generaliza-
tion of the proposed model over the other datasets,
we show the performance of the models on the
two other datasets in this work (i.e., SPOUSE and
SciERC) using either word2vec or BERT as the
word embeddings in Table 3. The results clearly
confirm the effectiveness of CEON-LSTM as it is
significantly better than all the other models over
different datasets and word embedding settings.

4.3 Ablation Study
The Effect of the Model Components: There

are three major components in the proposed model:
(1) the introduction of the overall sentence repre-
sentation x′t into the ON-LSTM cells (called SCG
– Sentence Context for Gates), (2) the consistency
constraint for the syntax-based and model-based
importance scores (called SMC – Syntax-Semantic
Consistency), and (3) the similarity constraint for
the representation vectors of the overall sentence
and the shortest dependency path (called SDPS –
Sentence-Dependency Path Similarity). In order to
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System P R F1
CEON-LSTM (Full) 74.51 67.29 71.08
- SCG 74.00 66.98 70.45
- SMC 72.87 66.85 69.89
- SDPS 73.02 66.00 69.18
- SCG - SMC 71.52 64.62 68.08
- SCG - SDPS 70.33 64.22 67.17
- SMC - SDPS 71.02 63.95 67.58
- SCG - SMC - SDPS 70.51 63.01 66.98

Table 4: Ablation study on the development set of ACE
2005. The components listed in each row are removed from
the overall model.

evaluate the contribution of these components for
the overall model CEON-LSTM, we incrementally
remove these components from CEON-LSTM and
evaluate the performance of the remaining model.
Table 4 reports the performance of the models on
the ACE 2005 development dataset.

It is clear from the table that all the components
are necessary for the proposed model as excluding
any of them would hurt the performance signifi-
cantly. It is also evident that removing more com-
ponents results in more performance drop, thus
demonstrating the complementary nature of the
three proposed components in this work.

The Variants for CEON-LSTM: We study sev-
eral variants of SCG, SMC, and SDPS in CEON-
LSTM to demonstrate the effectiveness of the de-
signed mechanisms. In particular, we consider the
following alternatives for CEON-LSTM:

(i) Bi-ON-LSTM: Instead of employing the
attention-based representation vectors x′t to cap-
ture the context of the entire input sentence for the
model-based importance scores in SCG, we run
two unidirectional ON-LSTM models (i.e., the for-
ward and backward ON-LSTM) to compute the
forward and backward importance scores for each
word in W . The final model-based importance
score for each word is then the average of the cor-
responding forward and backward scores.

(ii) SA-ON-LSTM: In this method, instead of
using the hidden vector ht−1 as the query vector to
compute the attention weight αti in Equation 3 for
SCG, we utilize the input representation vector xt
for wt as the query vector (i.e., replace ht−1 with
xt in Equation 3). Consequently, SA-ON-LSTM
is basically a composed model where we first run
the self-attention (SA) model (Vaswani et al., 2017)
over X . The results are then fed into ON-LSTM to
obtain the model-based importance scores modt.

(iii) CE-LSTM: This aims to explore the effec-

System P R F1
CEON-LSTM (proposed) 74.51 67.29 71.08
Bi-ON-LSTM 72.65 67.17 69.28
SA-ON-LSTM 73.21 67.31 70.13
CE-LSTM 71.58 64.19 67.92
EP-ON-LSTM 71.03 65.16 68.45
SP-CEON-LSTM (RW in V ) 73.58 66.92 70.13
SP-CEON-LSTM (RW not in V ) 72.94 65.21 69.51

Table 5: Models’ performance on the development dataset
of ACE 2005.

tiveness of ON-LSTM for our model. In CE-LSTM,
we replace the ON-LSTM network with the usual
LSTM model in CEON-LSTM. The SMC compo-
nent is not included in this case as the LSTM model
cannot infer the importance scores.

(iv) EP-ON-LSTM: Before this work, the
DRPC model in (Veyseh et al., 2019) has the state-
of-the-art on ACE 2005. Both DRPC and CEON-
LSTM apply a more general representation of the
dependency trees in a deep learning model (i.e.,
avoid directly using the original trees to improve
the generalization). To illustrate the benefit of the
importance score representation for SMC, EP-ON-
LSTM replaces the importance score representation
for the dependency trees in CEON-LSTM with the
dependency edge representation in DRPC. In par-
ticular, we replace the term Limport in the overall
loss function (i.e., Equation 6) with the dependency
edge prediction loss (using the ON-LSTM hidden
vectors) in DRPC for EP-ON-LSTM.

(v) SP-CEON-LSTM: This model removes the
SDPS component and includes the representation
vector of the dependency path DP (i.e., RDP ) in
the final representation V for relation prediction.
We consider both retaining and excluding the sen-
tence representation RW in V in this case. This
model seeks to show that the use of RDP for the
similarity encouragement with RW is more effec-
tive than employing RDP directly in V .

Table 5 reports the performance of these CEON-
LSTM variations on the ACE 2005 development
dataset. As we can see from the table, all the consid-
ered variants have significantly worse performance
than CEON-LSTM (with p < 0.005). This clearly
helps to justify the designs of the components SCG,
SMC and SDPS for CEON-LSTM in this work.

Baseline for the Model-Based Importance
Scores: One of the contributions in our work is to
employ the gates in the cells of ON-LSTM to obtain
the model-based importance scores that are then
used to promote the consistency with the syntax-
based importance scores (i.e., in the SMC compo-



8029

System P R F1
CEON-LSTM (proposed) 74.51 67.29 71.08
HIS-CEON-LSTM 72.02 63.97 68.29

Table 6: Models’ performance on the development dataset
of ACE 2005.

nent). In order to demonstrate the effectiveness
of the master cell gates to obtain the model-based
importance scores, we evaluate a typical baseline
where the model-based importance score modi for
wi ∈W is computed directly from the hidden vec-
tor hi of CEON-LSTM (i.e., by feeding hi into
a feed-forward neural network with sigmoid ac-
tivation function in the end). The model-based
importance scores obtained in this way then re-
place the importance scores from the cell gates and
are used in the SMC component of CEON-LSTM
in the usual way (i.e., via the KL divergence in
Limport) (note that we tried the alternatives for the
KL divergence in Limport (i.e., the mean square
error and the cosine similarity between the syntax-
based and model-based importance scores), but the
KL divergence produced the best results for both
CEON-LSTM and HIS-CEON-LSTM on the devel-
opment data). The resulting model is called HIS-
CEON-LSTM. Table 6 reports the performance of
HIS-CEON-LSTM and the proposed model CEON-
LSTM on the ACE 2005 development dataset. It
is clear from this table that the proposed model
CEON-LSTM achieves significantly better perfor-
mance than HIS-CEON-LSTM (with large perfor-
mance gap), thus testifying to the importance of the
master gates to obtain the model-based importance
scores for CEON-LSTM.

5 Conclusion

We introduce a new deep learning model for RE
(i.e., CEON-LSTM) that features three major pro-
posals. First, we represent the dependency trees via
the syntax-based importance scores for the words
in the input sentences for RE. Second, we propose
to incorporate the overall sentence representation
vectors into the cells of ON-LSTM, allowing it to
compute the model-based importance scores more
effectively. We also devise a novel mechanism to
project the syntactic information into the computa-
tion of ON-LSTM via promoting the consistency
between the syntax-based and model-based impor-
tance scores. Finally, we present a novel induc-
tive bias for the deep learning models that exploits
the similarity of the representation vectors for the

whole input sentences and the shortest dependency
paths between the two entity mentions for RE. Ex-
tensive experiments are conducted to demonstrate
the benefits of the proposed model. We achieve the
state-of-the-art performance on three datasets for
RE. In the future, we plan to apply CEON-LSTM
to other related NLP tasks (e.g., Event Extraction,
Semantic Role Labeling) (Nguyen et al., 2016a;
Nguyen and Grishman, 2018a).
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A Analysis

In order to provide more insights into the perfor-
mance of the proposed model, we analyze exam-
ples in the test data that can be predicted correctly
with the proposed model and incorrectly with the
baselines. For a baseline model M (e.g., GCN,
DRPC), we call the test examples that cannot be
recognized by M but can be successfully predicted
by the proposed model the M -failure examples.
Based on our analysis, the GCN-failure examples
tend to involve the syntactic/dependency structures
that does not appear or are not well represented
in the training data. Some examples for the GCN-
failure examples are shown in Table 7. On the one
hand, as GCN is directly dependent on the syntac-
tic structures of the input sentences, it would not
be able to learn effective representations for the
sentences with new structures in the GCN-failure
examples for RE. On the other hand, as CEON-
LSTM only exploits a relaxed general form of the
tree structures (i.e., the importance scores of the
words), it will be able to generalize better to the
new structures in the GCN-failure examples where
the general tree form is still helpful to induce effec-
tive representations for RE.

For the DRPC-failure examples (their examples
are presented in Table 8), we find that these ex-
amples often involve the two entity mentions of
interest with long distance from each other in the
input sentences. For these examples, the depen-
dency paths between the two entity mentions tend
to be very helpful or crucial for RE as they can
capture the important context words (thus eliminat-
ing the irrelevant ones). This allows the models to
learn effective representations to correctly predict
the relations in the sentences for RE. As DRPC
only retains the dependency edges in the depen-
dency trees separately (i.e., the local tree represen-
tations), it cannot directly capture such dependency
paths, thereby failing to predict the relations for
the DRPC-failure examples with long distances
between the entities. This is in contrast to CEON-
LSTM that exploits the global representations of
the trees with the importance scores based on the
distances of the words to the dependency paths. As
the dependency paths can be still inferred in this
global representation, CEON-LSTM can benefit
from this information to successfully perform RE
for the sentences in the DRPC-failure examples.

Sentence Relation
Some Arab countries also want to play a role
in the stability operation in Iraq but are reluc-
tant to send troops because of political, reli-
gious and ethnic considerations, the official
said.

ORG-
AFF

Some suggested that Russian President
Vladimir Putin will now be scrambling to
contain the damage to his once -budding
friendship with US President George W. Bush
because he was poorly advised by his intelli-
gence and defense aides.

PER-
SOC

Other countries including the Philippines,
South Korea, Qatar and Australia agreed to
send other help such as field hospitals, engi-
neers, explosive ordnance disposal teams or
nuclear, biological and chemical weapons ex-
perts.

PART-
WHOLE

Table 7: The GCN-failure examples. The two entity
mentions of interest are shown in bold in the sentences.

Sentence Relation
US diplomats have hinted in recent weeks
that Washington ’s anger with European re-
sistance to the campaign was focused more on
Paris –and to a lesser extent Berlin– than it
was with Moscow.

PART-
WHOLE

In Montreal, “Stop the War” a coalition of
more than 190 groups, said as many as 200,000
people turned out, though police refused to
give a figure.

PHYS

Although the crossing has, in principle, been
open for movement between the two territo-
ries –while being frequently closed by Israeli
for reasons rarely explained– the Palestinian
section has been manned by Israel for more
than two years.

ART

Table 8: The DRPC-failure examples. The two entity
mentions of interest are shown in bold in the sentences.


