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Abstract

Text generation has made significant advances

in the last few years. Yet, evaluation met-

rics have lagged behind, as the most popu-

lar choices (e.g., BLEU and ROUGE) may

correlate poorly with human judgments. We

propose BLEURT, a learned evaluation met-

ric based on BERT that can model human

judgments with a few thousand possibly bi-

ased training examples. A key aspect of our

approach is a novel pre-training scheme that

uses millions of synthetic examples to help the

model generalize. BLEURT provides state-of-

the-art results on the last three years of the

WMT Metrics shared task and the WebNLG

Competition dataset. In contrast to a vanilla

BERT-based approach, it yields superior re-

sults even when the training data is scarce and

out-of-distribution.

1 Introduction

In the last few years, research in natural text

generation (NLG) has made significant progress,

driven largely by the neural encoder-decoder

paradigm (Sutskever et al., 2014; Bahdanau et al.,

2015) which can tackle a wide array of tasks

including translation (Koehn, 2009), summariza-

tion (Mani, 1999; Chopra et al., 2016), structured-

data-to-text generation (McKeown, 1992; Kukich,

1983; Wiseman et al., 2017) dialog (Smith and

Hipp, 1994; Vinyals and Le, 2015) and image cap-

tioning (Fang et al., 2015). However, progress is

increasingly impeded by the shortcomings of ex-

isting metrics (Wiseman et al., 2017; Ma et al.,

2019; Tian et al., 2019).

Human evaluation is often the best indicator

of the quality of a system. However, design-

ing crowd sourcing experiments is an expensive

and high-latency process, which does not easily

fit in a daily model development pipeline. There-

fore, NLG researchers commonly use automatic

evaluation metrics, which provide an acceptable

proxy for quality and are very cheap to compute.

This paper investigates sentence-level, reference-

based metrics, which describe the extent to which

a candidate sentence is similar to a reference one.

The exact definition of similarity may range from

string overlap to logical entailment.

The first generation of metrics relied on hand-

crafted rules that measure the surface similarity

between the sentences. To illustrate, BLEU (Pa-

pineni et al., 2002) and ROUGE (Lin, 2004), two

popular metrics, rely on N-gram overlap. Because

those metrics are only sensitive to lexical vari-

ation, they cannot appropriately reward seman-

tic or syntactic variations of a given reference.

Thus, they have been repeatedly shown to cor-

relate poorly with human judgment, in particular

when all the systems to compare have a similar

level of accuracy (Liu et al., 2016; Novikova et al.,

2017; Chaganty et al., 2018).

Increasingly, NLG researchers have addressed

those problems by injecting learned components

in their metrics. To illustrate, consider the WMT

Metrics Shared Task, an annual benchmark in

which translation metrics are compared on their

ability to imitate human assessments. The last two

years of the competition were largely dominated

by neural net-based approaches, RUSE, YiSi and

ESIM (Ma et al., 2018, 2019). Current approaches

largely fall into two categories. Fully learned met-

rics, such as BEER, RUSE, and ESIM are trained

end-to-end, and they typically rely on handcrafted

features and/or learned embeddings. Conversely,

hybrid metrics, such as YiSi and BERTscore com-

bine trained elements, e.g., contextual embed-

dings, with handwritten logic, e.g., as token align-

ment rules. The first category typically offers great

expressivity: if a training set of human ratings data

is available, the metrics may take full advantage

of it and fit the ratings distribution tightly. Fur-
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thermore, learned metrics can be tuned to measure

task-specific properties, such as fluency, faithful-

ness, grammar, or style. On the other hand, hybrid

metrics offer robustness. They may provide better

results when there is little to no training data, and

they do not rely on the assumption that training

and test data are identically distributed.

And indeed, the IID assumption is particularly

problematic in NLG evaluation because of domain

drifts, that have been the main target of the metrics

literature, but also because of quality drifts: NLG

systems tend to get better over time, and therefore

a model trained on ratings data from 2015 may fail

to distinguish top performing systems in 2019, es-

pecially for newer research tasks. An ideal learned

metric would be able to both take full advantage of

available ratings data for training, and be robust to

distribution drifts, i.e., it should be able to extrap-

olate.

Our insight is that it is possible to combine ex-

pressivity and robustness by pre-training a fully

learned metric on large amounts of synthetic data,

before fine-tuning it on human ratings. To this end,

we introduce BLEURT,1 a text generation metric

based on BERT (Devlin et al., 2019). A key ingre-

dient of BLEURT is a novel pre-training scheme,

which uses random perturbations of Wikipedia

sentences augmented with a diverse set of lexical

and semantic-level supervision signals.

To demonstrate our approach, we train BLEURT

for English and evaluate it under different gen-

eralization regimes. We first verify that it pro-

vides state-of-the-art results on all recent years

of the WMT Metrics Shared task (2017 to 2019,

to-English language pairs). We then stress-test

its ability to cope with quality drifts with a syn-

thetic benchmark based on WMT 2017. Finally,

we show that it can easily adapt to a different do-

main with three tasks from a data-to-text dataset,

WebNLG 2017 (Gardent et al., 2017). Ablations

show that our synthetic pretraining scheme in-

creases performance in the IID setting, and is crit-

ical to ensure robustness when the training data is

scarce, skewed, or out-of-domain.

The code and pre-trained models are available

online2.

1Bilingual Evaluation Understudy with Representations
from Transformers. We refer the intrigued reader to Papineni
et al. 2002 for a justification of the term understudy.

2http://github.com/google-research/

bleurt

2 Preliminaries

Define x = (x1, .., xr) to be the reference sen-

tence of length r where each xi is a token and let

x̃ = (x̃1, .., x̃p) be a prediction sentence of length

p. Let {(xi, x̃i, yi)}
N
n=1 be a training dataset of

size N where yi ∈ R is the human rating that in-

dicates how good x̃i is with respect to xi. Given

the training data, our goal is to learn a function

f : (x, x̃) → y that predicts the human rating.

3 Fine-Tuning BERT for Quality

Evaluation

Given the small amounts of rating data available, it

is natural to leverage unsupervised representations

for this task. In our model, we use BERT (Bidirec-

tional Encoder Representations from Transform-

ers) (Devlin et al., 2019), which is an unsuper-

vised technique that learns contextualized repre-

sentations of sequences of text. Given x and x̃,

BERT is a Transformer (Vaswani et al., 2017) that

returns a sequence of contextualized vectors:

v[CLS],vx1
, ...,vxr ,v1, ...,vx̃p = BERT(x, x̃)

where v[CLS] is the representation for the special

[CLS] token. As described by Devlin et al. (2019),

we add a linear layer on top of the [CLS] vector to

predict the rating:

ŷ = f(x, x̃) = Wṽ[CLS] + b

where W and b are the weight matrix and bias

vector respectively. Both the above linear layer

as well as the BERT parameters are trained (i.e.

fine-tuned) on the supervised data which typically

numbers in a few thousand examples. We use the

regression loss ℓsupervised = 1
N

∑N
n=1 ‖yi − ŷ‖2.

Although this approach is quite straightforward,

we will show in Section 5 that it gives state-of-the-

art results on WMT Metrics Shared Task 17-19,

which makes it a high-performing evaluation met-

ric. However, fine-tuning BERT requires a sizable

amount of IID data, which is less than ideal for a

metric that should generalize to a variety of tasks

and model drift.

4 Pre-Training on Synthetic Data

The key aspect of our approach is a pre-training

technique that we use to “warm up” BERT before

fine-tuning on rating data.3 We generate a large

3To clarify, our pre-training scheme is an addition, not a
replacement to BERT’s initial training (Devlin et al., 2019)
and happens after it.
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number of of synthetic reference-candidate pairs

(z, z̃), and we train BERT on several lexical- and

semantic-level supervision signals with a multi-

task loss. As our experiments will show, BLEURT

generalizes much better after this phase, especially

with incomplete training data.

Any pre-training approach requires a dataset

and a set of pre-training tasks. Ideally, the setup

should resemble the final NLG evaluation task,

i.e., the sentence pairs should be distributed sim-

ilarly and the pre-training signals should corre-

late with human ratings. Unfortunately, we cannot

have access to the NLG models that we will eval-

uate in the future. Therefore, we optimized our

scheme for generality, with three requirements.

(1) The set of reference sentences should be large

and diverse, so that BLEURT can cope with a wide

range of NLG domains and tasks. (2) The sen-

tence pairs should contain a wide variety of lex-

ical, syntactic, and semantic dissimilarities. The

aim here is to anticipate all variations that an

NLG system may produce, e.g., phrase substitu-

tion, paraphrases, noise, or omissions. (3) The

pre-training objectives should effectively capture

those phenomena, so that BLEURT can learn to

identify them. The following sections present our

approach.

4.1 Generating Sentence Pairs

One way to expose BLEURT to a wide variety of

sentence differences is to use existing sentence

pairs datasets (Bowman et al., 2015; Williams

et al., 2018; Wang et al., 2019). These sets are

a rich source of related sentences, but they may

fail to capture the errors and alterations that NLG

systems produce (e.g., omissions, repetitions, non-

sensical substitutions). We opted for an automatic

approach instead, that can be scaled arbitrarily and

at little cost: we generate synthetic sentence pairs

(z, z̃) by randomly perturbing 1.8 million seg-

ments z from Wikipedia. We use three techniques:

mask-filling with BERT, backtranslation, and ran-

domly dropping out words. We obtain about 6.5

million perturbations z̃. Let us describe those

techniques.

Mask-filling with BERT: BERT’s initial train-

ing task is to fill gaps (i.e., masked tokens) in to-

kenized sentences. We leverage this functional-

ity by inserting masks at random positions in the

Wikipedia sentences, and fill them with the lan-

guage model. Thus, we introduce lexical alter-

ations while maintaining the fluency of the sen-

tence. We use two masking strategies—we either

introduce the masks at random positions in the

sentences, or we create contiguous sequences of

masked tokens. More details are provided in the

Appendix.

Backtranslation: We generate paraphrases and

perturbations with backtranslation, that is, round

trips from English to another language and then

back to English with a translation model (Bannard

and Callison-Burch, 2005; Ganitkevitch et al.,

2013; Sennrich et al., 2016). Our primary aim is to

create variants of the reference sentence that pre-

serves semantics. Additionally, we use the mispre-

dictions of the backtranslation models as a source

of realistic alterations.

Dropping words: We found it useful in our ex-

periments to randomly drop words from the syn-

thetic examples above to create other examples.

This method prepares BLEURT for “pathological”

behaviors or NLG systems, e.g., void predictions,

or sentence truncation.

4.2 Pre-Training Signals

The next step is to augment each sentence pair

(z, z̃) with a set of pre-training signals {τk},

where τk is the target vector of pre-training task k.

Good pre-training signals should capture a wide

variety of lexical and semantic differences. They

should also be cheap to obtain, so that the ap-

proach can scale to large amounts of synthetic

data. The following section presents our 9 pre-

training tasks, summarized in Table 1. Additional

implementation details are in the Appendix.

Automatic Metrics: We create three signals

τBLEU, τROUGE, and τBERTscore with sentence

BLEU (Papineni et al., 2002), ROUGE (Lin,

2004), and BERTscore (Zhang et al., 2020) re-

spectively (we use precision, recall and F-score for

the latter two).

Backtranslation Likelihood: The idea behind

this signal is to leverage existing translation mod-

els to measure semantic equivalence. Given a pair

(z, z̃), this training signal measures the probabil-

ity that z̃ is a backtranslation of z, P (z̃|z), nor-

malized by the length of z̃. Let Pen→fr(zfr|z)
be a translation model that assigns probabilities

to French sentences zfr conditioned on English

sentences z and let Pfr→en(z|zfr) be a trans-

lation model that assigns probabilities to English
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Task Type Pre-training Signals Loss Type

BLEU τBLEU Regression
ROUGE τROUGE = (τROUGE-P, τROUGE-R, τROUGE-F) Regression
BERTscore τBERTscore = (τBERTscore-P, τBERTscore-R, τBERTscore-F) Regression
Backtrans. likelihood τen-fr,z|z̃ , τen-fr,z̃|z , τen-de,z|z̃ , τen-de,z̃|z Regression
Entailment τentail = (τEntail, τContradict, τNeutral) Multiclass
Backtrans. flag τbacktran flag Multiclass

Table 1: Our pre-training signals.

sentences given french sentences. If |z̃| is the

number of tokens in z̃, we define our score as

τen-fr,z̃|z = logP (z̃|z)
|z̃| , with:

P (z̃|z) =
∑

zfr

Pfr→en(z̃|zfr)Pen→fr(zfr|z)

Because computing the summation over

all possible French sentences is in-

tractable, we approximate the sum using

z∗
fr = argmaxPen→fr(zfr|z) and we as-

sume that Pen→fr(z
∗
fr|z) ≈ 1:

P (z̃|z) ≈ Pfr→en(z̃|z
∗
fr)

We can trivially reverse the procedure to com-

pute P (z|z̃), thus we create 4 pre-training signals

τen-fr,z|z̃ , τen-fr,z̃|z , τen-de,z|z̃ , τen-de,z̃|z with two

pairs of languages (en ↔ de and en ↔ fr) in

both directions.

Textual Entailment: The signal τentail expresses

whether z entails or contradicts z̃ using a clas-

sifier. We report the probability of three labels:

Entail, Contradict, and Neutral, using BERT fine-

tuned on an entailment dataset, MNLI (Devlin

et al., 2019; Williams et al., 2018).

Backtranslation flag: The signal τbacktran flag is

a Boolean that indicates whether the perturbation

was generated with backtranslation or with mask-

filling.

4.3 Modeling

For each pre-training task, our model uses either a

regression or a classification loss. We then aggre-

gate the task-level losses with a weighted sum.

Let τk describe the target vector for each task,

e.g., the probabilities for the classes Entail, Con-

tradict, Neutral, or the precision, recall, and F-

score for ROUGE. If τk is a regression task, then

the loss used is the ℓ2 loss i.e. ℓk = ‖τk −
τ̂k‖

2
2/|τk| where |τk| is the dimension of τk and

τ̂k is computed by using a task-specific linear

layer on top of the [CLS] embedding: τ̂k =

Wτk ṽ[CLS] + bτk . If τk is a classification task,

we use a separate linear layer to predict a logit for

each class c: τ̂kc = Wτkc ṽ[CLS]+bτkc , and we use

the multiclass cross-entropy loss. We define our

aggregate pre-training loss function as follows:

ℓpre-training =
1

M

M∑

m=1

K∑

k=1

γkℓk(τ
m
k , τ̂m

k ) (1)

where τm
k is the target vector for example m, M

is number of synthetic examples, and γk are hy-

perparameter weights obtained with grid search

(more details in the Appendix).

5 Experiments

In this section, we report our experimental results

for two tasks, translation and data-to-text. First,

we benchmark BLEURT against existing text gen-

eration metrics on the last 3 years of the WMT

Metrics Shared Task (Bojar et al., 2017). We then

evaluate its robustness to quality drifts with a se-

ries of synthetic datasets based on WMT17. We

test BLEURT’s ability to adapt to different tasks

with the WebNLG 2017 Challenge Dataset (Gar-

dent et al., 2017). Finally, we measure the contri-

bution of each pre-training task with ablation ex-

periments.

Our Models: Unless specified otherwise, all

BLEURT models are trained in three steps: reg-

ular BERT pre-training (Devlin et al., 2019),

pre-training on synthetic data (as explained in

Section 4), and fine-tuning on task-specific rat-

ings (translation and/or data-to-text). We exper-

iment with two versions of BLEURT, BLEURT

and BLEURTbase, respectively based on BERT-

Large (24 layers, 1024 hidden units, 16 heads)

and BERT-Base (12 layers, 768 hidden units, 12

heads) (Devlin et al., 2019), both uncased. We

use batch size 32, learning rate 1e-5, and 800,000

steps for pre-training and 40,000 steps for fine-

tuning. We provide the full detail of our training

setup in the Appendix.



7885

model cs-en de-en fi-en lv-en ru-en tr-en zh-en avg

τ / r τ / r τ / r τ / r τ / r τ / r τ / r τ / r

sentBLEU 29.6 / 43.2 28.9 / 42.2 38.6 / 56.0 23.9 / 38.2 34.3 / 47.7 34.3 / 54.0 37.4 / 51.3 32.4 / 47.5

MoverScore 47.6 / 67.0 51.2 / 70.8 NA NA 53.4 / 73.8 56.1 / 76.2 53.1 / 74.4 52.3 / 72.4

BERTscore w/ BERT 48.0 / 66.6 50.3 / 70.1 61.4 / 81.4 51.6 / 72.3 53.7 / 73.0 55.6 / 76.0 52.2 / 73.1 53.3 / 73.2

BERTscore w/ roBERTa 54.2 / 72.6 56.9 / 76.0 64.8 / 83.2 56.2 / 75.7 57.2 / 75.2 57.9 / 76.1 58.8 / 78.9 58.0 / 76.8

chrF++ 35.0 / 52.3 36.5 / 53.4 47.5 / 67.8 33.3 / 52.0 41.5 / 58.8 43.2 / 61.4 40.5 / 59.3 39.6 / 57.9

BEER 34.0 / 51.1 36.1 / 53.0 48.3 / 68.1 32.8 / 51.5 40.2 / 57.7 42.8 / 60.0 39.5 / 58.2 39.1 / 57.1

BLEURTbase -pre 51.5 / 68.2 52.0 / 70.7 66.6 / 85.1 60.8 / 80.5 57.5 / 77.7 56.9 / 76.0 52.1 / 72.1 56.8 / 75.8

BLEURTbase 55.7 / 73.4 56.3 / 75.7 68.0 / 86.8 64.7 / 83.3 60.1 / 80.1 62.4 / 81.7 59.5 / 80.5 61.0 / 80.2

BLEURT -pre 56.0 / 74.7 57.1 / 75.7 67.2 / 86.1 62.3 / 81.7 58.4 / 78.3 61.6 / 81.4 55.9 / 76.5 59.8 / 79.2

BLEURT 59.3 / 77.3 59.9 / 79.2 69.5 / 87.8 64.4 / 83.5 61.3 / 81.1 62.9 / 82.4 60.2 / 81.4 62.5 / 81.8

Table 2: Agreement with human ratings on the WMT17 Metrics Shared Task. The metrics are Kendall Tau (τ ) and

the Pearson correlation (r, the official metric of the shared task), divided by 100.

model cs-en de-en et-en fi-en ru-en tr-en zh-en avg

τ / DA τ / DA τ / DA τ / DA τ / DA τ / DA τ / DA τ / DA

sentBLEU 20.0 / 22.5 31.6 / 41.5 26.0 / 28.2 17.1 / 15.6 20.5 / 22.4 22.9 / 13.6 21.6 / 17.6 22.8 / 23.2

BERTscore w/ BERT 29.5 / 40.0 39.9 / 53.8 34.7 / 39.0 26.0 / 29.7 27.8 / 34.7 31.7 / 27.5 27.5 / 25.2 31.0 / 35.7

BERTscore w/ roBERTa 31.2 / 41.1 42.2 / 55.5 37.0 / 40.3 27.8 / 30.8 30.2 / 35.4 32.8 / 30.2 29.2 / 26.3 32.9 / 37.1

Meteor++ 22.4 / 26.8 34.7 / 45.7 29.7 / 32.9 21.6 / 20.6 22.8 / 25.3 27.3 / 20.4 23.6 / 17.5* 26.0 / 27.0

RUSE 27.0 / 34.5 36.1 / 49.8 32.9 / 36.8 25.5 / 27.5 25.0 / 31.1 29.1 / 25.9 24.6 / 21.5* 28.6 / 32.4

YiSi1 23.5 / 31.7 35.5 / 48.8 30.2 / 35.1 21.5 / 23.1 23.3 / 30.0 26.8 / 23.4 23.1 / 20.9 26.3 / 30.4

YiSi1 SRL 18 23.3 / 31.5 34.3 / 48.3 29.8 / 34.5 21.2 / 23.7 22.6 / 30.6 26.1 / 23.3 22.9 / 20.7 25.7 / 30.4

BLEURTbase -pre 33.0 / 39.0 41.5 / 54.6 38.2 / 39.6 30.7 / 31.1 30.7 / 34.9 32.9 / 29.8 28.3 / 25.6 33.6 / 36.4

BLEURTbase 34.5 / 42.9 43.5 / 55.6 39.2 / 40.5 31.5 / 30.9 31.0 / 35.7 35.0 / 29.4 29.6 / 26.9 34.9 / 37.4

BLEURT -pre 34.5 / 42.1 42.7 / 55.4 39.2 / 40.6 31.4 / 31.6 31.4 / 34.2 33.4 / 29.3 28.9 / 25.6 34.5 / 37.0

BLEURT 35.6 / 42.3 44.2 / 56.7 40.0 / 41.4 32.1 / 32.5 31.9 / 36.0 35.5 / 31.5 29.7 / 26.0 35.6 / 38.1

Table 3: Agreement with human ratings on the WMT18 Metrics Shared Task. The metrics are Kendall Tau (τ ) and

WMT’s Direct Assessment metrics divided by 100. The star * indicates results that are more than 0.2 percentage

points away from the official WMT results (up to 0.4 percentage points away).
.

5.1 WMT Metrics Shared Task

Datasets and Metrics: We use years 2017 to

2019 of the WMT Metrics Shared Task, to-English

language pairs. For each year, we used the of-

ficial WMT test set, which include several thou-

sand pairs of sentences with human ratings from

the news domain. The training sets contain 5,360,

9,492, and 147,691 records for each year. The test

sets for years 2018 and 2019 are noisier, as re-

ported by the organizers and shown by the overall

lower correlations.

We evaluate the agreement between the auto-

matic metrics and the human ratings. For each

year, we report two metrics: Kendall’s Tau τ (for

consistency across experiments), and the official

WMT metric for that year (for completeness). The

official WMT metric is either Pearson’s correla-

tion or a robust variant of Kendall’s Tau called

DARR, described in the Appendix. All the num-

bers come from our own implementation of the

benchmark.4 Our results are globally consistent

with the official results but we report small differ-

ences in 2018 and 2019, marked in the tables.

4The official scripts are public but they suffer from docu-
mentation and dependency issues, as shown by a README file
in the 2019 edition which explicitly discourages using them.

Models: We experiment with four versions of

BLEURT: BLEURT, BLEURTbase, BLEURT

-pre and BLEURTbase -pre. The first two

models are based on BERT-large and BERT-base.

In the latter two versions, we skip the pre-training

phase and fine-tune directly on the WMT ratings.

For each year of the WMT shared task, we use the

test set from the previous years for training and

validation. We describe our setup in further detail

in the Appendix. We compare BLEURT to partici-

pant data from the shared task and automatic met-

rics that we ran ourselves. In the former case, we

use the the best-performing contestants for each

year, that is, chrF++, BEER, Meteor++, RUSE,

Yisi1, ESIM and Yisi1-SRL (Mathur et al.,

2019). All the contestants use the same WMT

training data, in addition to existing sentence or to-

ken embeddings. In the latter case, we use Moses

sentenceBLEU, BERTscore (Zhang et al.,

2020), and MoverScore (Zhao et al., 2019).

For BERTscore, we use BERT-large uncased

for fairness, and roBERTa (the recommended ver-

sion) for completeness (Liu et al., 2019). We run

MoverScore on WMT 2017 using the scripts

published by the authors.

Results: Tables 2, 3, 4 show the results. For

years 2017 and 2018, a BLEURT-based metric
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model de-en fi-en gu-en kk-en lt-en ru-en zh-en avg

τ / DA τ / DA τ / DA τ / DA τ / DA τ / DA τ / DA τ / DA

sentBLEU 19.4 / 5.4 20.6 / 23.3 17.3 / 18.9 30.0 / 37.6 23.8 / 26.2 19.4 / 12.4 28.7 / 32.2 22.7 / 22.3

BERTscore w/ BERT 26.2 / 17.3 27.6 / 34.7 25.8 / 29.3 36.9 / 44.0 30.8 / 37.4 25.2 / 20.6 37.5 / 41.4 30.0 / 32.1

BERTscore w/ roBERTa 29.1 / 19.3 29.7 / 35.3 27.7 / 32.4 37.1 / 43.1 32.6 / 38.2 26.3 / 22.7 41.4 / 43.8 32.0 / 33.6

ESIM 28.4 / 16.6 28.9 / 33.7 27.1 / 30.4 38.4 / 43.3 33.2 / 35.9 26.6 / 19.9 38.7 / 39.6 31.6 / 31.3

YiSi1 SRL 19 26.3 / 19.8 27.8 / 34.6 26.6 / 30.6 36.9 / 44.1 30.9 / 38.0 25.3 / 22.0 38.9 / 43.1 30.4 / 33.2

BLEURTbase -pre 30.1 / 15.8 30.4 / 35.4 26.8 / 29.7 37.8 / 41.8 34.2 / 39.0 27.0 / 20.7 40.1 / 39.8 32.3 / 31.7

BLEURTbase 31.0 / 16.6 31.3 / 36.2 27.9 / 30.6 39.5 / 44.6 35.2 / 39.4 28.5 / 21.5 41.7 / 41.6 33.6 / 32.9

BLEURT -pre 31.1 / 16.9 31.3 / 36.5 27.6 / 31.3 38.4 / 42.8 35.0 / 40.0 27.5 / 21.4 41.6 / 41.4 33.2 / 32.9

BLEURT 31.2 / 16.9 31.7 / 36.3 28.3 / 31.9 39.5 / 44.6 35.2 / 40.6 28.3 / 22.3 42.7 / 42.4 33.8 / 33.6

Table 4: Agreement with human ratings on the WMT19 Metrics Shared Task. The metrics are Kendall Tau (τ ) and

WMT’s Direct Assessment metrics divided by 100. All the values reported for Yisi1 SRL and ESIM fall within

0.2 percentage of the official WMT results.
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Figure 1: Distribution of the human ratings in the

train/validation and test datasets for different skew fac-

tors.

dominates the benchmark for each language pair

(Tables 2 and 3). BLEURT and BLEURTbase are

also competitive for year 2019: they yield the best

results for all language pairs on Kendall’s Tau, and

they come first for 3 out of 7 pairs on DARR. As

expected, BLEURT dominates BLEURTbase in

the majority of cases. Pre-training consistently im-

proves the results of BLEURT and BLEURTbase.

We observe the largest effect on year 2017,

where it adds up to 7.4 Kendall Tau points for

BLEURTbase (zh-en). The effect is milder on

years 2018 and 2019, up to 2.1 points (tr-en,

2018). We explain the difference by the fact

that the training data used for 2017 is smaller

than the datasets used for the following years, so

pre-training is likelier to help. In general pre-

training yields higher returns for BERT-base than

for BERT-large—in fact, BLEURTbase with pre-

training is often better than BLEURT without.

Takeaways: Pre-training delivers consis-

tent improvements, especially for BLEURT-base.

BLEURT yields state-of-the art performance for all

years of the WMT Metrics Shared task.

5.2 Robustness to Quality Drift

We assess our claim that pre-training makes

BLEURT robust to quality drifts, by constructing
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Figure 2: Agreement between BLEURT and human

ratings for different skew factors in train and test.

a series of tasks for which it is increasingly pres-

sured to extrapolate. All the experiments that fol-

low are based on the WMT Metrics Shared Task

2017, because the ratings for this edition are par-

ticularly reliable.5

Methodology: We create increasingly challeng-

ing datasets by sub-sampling the records from

the WMT Metrics shared task, keeping low-rated

translations for training and high-rated translations

for test. The key parameter is the skew factor α,

that measures how much the training data is left-

skewed and the test data is right-skewed. Figure 1

demonstrates the ratings distribution that we used

in our experiments. The training data shrinks as

α increases: in the most extreme case (α = 3.0),

we use only 11.9% of the original 5,344 training

records. We give the full detail of our sampling

methodology in the Appendix.

We use BLEURT with and without pre-training

and we compare to Moses sentBLEU and

BERTscore. We use BERT-large uncased for

both BLEURT and BERTscore.

5The organizers managed to collect 15 adequacy scores
for each translation, and thus the ratings are almost perfectly
repeatable (Bojar et al., 2017)
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varying the size of the data used for training and validation.

Results: Figure 2 presents BLEURT’s perfor-

mance as we vary the train and test skew inde-

pendently. Our first observation is that the agree-

ments fall for all metrics as we increase the test

skew. This effect was already described is the

2019 WMT Metrics report (Ma et al., 2019). A

common explanation is that the task gets more dif-

ficult as the ratings get closer—it is easier to dis-

criminate between “good” and “bad” systems than

to rank “good” systems.

Training skew has a disastrous effect on

BLEURT without pre-training: it is below

BERTscore for α = 1.0, and it falls under

sentBLEU for α ≥ 1.5. Pre-trained BLEURT is

much more robust: the only case in which it falls

under the baselines is α = 3.0, the most extreme

drift, for which incorrect translations are used for

train while excellent ones for test.

Takeaways: Pre-training makes BLEURT sig-

nificantly more robust to quality drifts.

5.3 WebNLG Experiments

In this section, we evaluate BLEURT’s perfor-

mance on three tasks from a data-to-text dataset,

the WebNLG Challenge 2017 (Shimorina et al.,

2019). The aim is to assess BLEURT’s capacity

to adapt to new tasks with limited training data.

Dataset and Evaluation Tasks: The WebNLG

challenge benchmarks systems that produce natu-

ral language description of entities (e.g., buildings,

cities, artists) from sets of 1 to 5 RDF triples. The

organizers released the human assessments for 9

systems over 223 inputs, that is, 4,677 sentence

pairs in total (we removed null values). Each in-

put comes with 1 to 3 reference descriptions. The

submissions are evaluated on 3 aspects: semantics,

grammar, and fluency. We treat each type of rat-

ing as a separate modeling task. The data has no

natural split between train and test, therefore we

experiment with several schemes. We allocate 0%

to about 50% of the data to training, and we split

on both the evaluated systems or the RDF inputs

in order to test different generalization regimes.

Systems and Baselines: BLEURT -pre

-wmt, is a public BERT-large uncased checkpoint

directly trained on the WebNLG ratings. BLEURT

-wmtwas first pre-trained on synthetic data,

then fine-tuned on WebNLG data. BLEURT

was trained in three steps: first on synthetic

data, then on WMT data (16-18), and finally on

WebNLG data. When a record comes with several

references, we run BLEURT on each reference

and report the highest value (Zhang et al., 2020).

We report four baselines: BLEU, TER,

Meteor, and BERTscore. The first three were

computed by the WebNLG competition organiz-

ers. We ran the latter one ourselves, using BERT-

large uncased for a fair comparison.

Results: Figure 3 presents the correlation of the

metrics with human assessments as we vary the

share of data allocated to training. The more pre-

trained BLEURT is, the quicker it adapts. The

vanilla BERT approach BLEURT -pre -wmt

requires about a third of the WebNLG data to dom-

inate the baselines on the majority of tasks, and it

still lags behind on semantics (split by system). In
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Figure 4: Improvement in Kendall Tau on WMT 17

varying the pre-training tasks.

contrast, BLEURT -wmt is competitive with as

little as 836 records, and BLEURT is comparable

with BERTscore with zero fine-tuning.

Takeaways: Thanks to pre-training, BLEURT

can quickly adapt to the new tasks. BLEURT fine-

tuned twice (first on synthetic data, then on WMT

data) provides acceptable results on all tasks with-

out training data.

5.4 Ablation Experiments

Figure 4 presents our ablation experiments on

WMT 2017, which highlight the relative impor-

tance of each pre-training task. On the left side,

we compare BLEURT pre-trained on a single task

to BLEURT without pre-training. On the right

side, we compare full BLEURT to BLEURT pre-

trained on all tasks except one. Pre-training on

BERTscore, entailment, and the backtranslation

scores yield improvements (symmetrically, ablat-

ing them degrades BLEURT). Oppositely, BLEU

and ROUGE have a negative impact. We con-

clude that pre-training on high quality signals

helps BLEURT, but that metrics that correlate less

well with human judgment may in fact harm the

model.6

6 Related Work

The WMT shared metrics competition (Bojar

et al., 2016; Ma et al., 2018, 2019) has inspired

6Do those results imply that BLEU and ROUGE should
be removed from future versions of BLEURT? Doing so may
indeed yield slight improvements on the WMT Metrics 2017
shared task. On the other hand the removal may hurt future
tasks in which BLEU or ROUGE actually correlate with hu-
man assessments. We therefore leave the question open.

the creation of many learned metrics, some of

which use regression or deep learning (Stanojevic

and Sima’an, 2014; Ma et al., 2017; Shimanaka

et al., 2018; Chen et al., 2017; Mathur et al., 2019).

Other metrics have been introduced, such as the

recent MoverScore (Zhao et al., 2019) which com-

bines contextual embeddings and Earth Mover’s

Distance. We provide a head-to-head compari-

son with the best performing of those in our ex-

periments. Other approaches do not attempt to

estimate quality directly, but use information ex-

traction or question answering as a proxy (Wise-

man et al., 2017; Goodrich et al., 2019; Eyal et al.,

2019). Those are complementary to our work.

There has been recent work that uses BERT for

evaluation. BERTScore (Zhang et al., 2020) pro-

poses replacing the hard n-gram overlap of BLEU

with a soft-overlap using BERT embeddings. We

use it in all our experiments. Bertr (Mathur et al.,

2019) and YiSi (Mathur et al., 2019) also make use

of BERT embeddings to capture similarity. Sum-

QE (Xenouleas et al., 2019) fine-tunes BERT for

quality estimation as we describe in Section 3.

Our focus is different—we train metrics that are

not only state-of-the-art in conventional IID ex-

perimental setups, but also robust in the presence

of scarce and out-of-distribution training data. To

our knowledge no existing work has explored pre-

training and extrapolation in the context of NLG.

Previous studies have used noising for refer-

enceless evaluation (Dušek et al., 2019). Noisy

pre-training has also been proposed before for

other tasks such as paraphrasing (Wieting et al.,

2016; Tomar et al., 2017) but generally not with

synthetic data. Generating synthetic data via para-

phrases and perturbations has been commonly

used for generating adversarial examples (Jia and

Liang, 2017; Iyyer et al., 2018; Belinkov and Bisk,

2018; Ribeiro et al., 2018), an orthogonal line of

research.

7 Conclusion

We presented BLEURT, a reference-based text

generation metric for English. Because the metric

is trained end-to-end, BLEURT can model human

assessment with superior accuracy. Furthermore,

pre-training makes the metrics robust particularly

robust to both domain and quality drifts. Future re-

search directions include multilingual NLG evalu-

ation, and hybrid methods involving both humans

and classifiers.
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A Implementation Details of the

Pre-Training Phase

This section provides implementation details for

some of the pre-training techniques described in

the main paper.

A.1 Data Generation

Random Masking: We use two masking strate-

gies. The first strategy samples random words

in the sentence and it replaces them with masks

(one for each token). Thus, the masks are scat-

tered across the sentence. The second strategy cre-

ates contiguous sequences: it samples a start po-

sition s, a length l (uniformly distributed), and it

masks all the tokens spanned by words between

positions s and s + l. In both cases, we use up

to 15 masks per sentence. Instead of running the

language model once and picking the most likely

token at each position, we use beam search (the

beam size 8 by default). This enforces consistency

and avoids repeated sequences, e.g., “,,,”.
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Backtranslation: Consider English and

French. Given a forward translation model

Pen→fr(zfr|zen) and backward translation model

Pfr→en(zen|zfr), we generate z̃ as follows:

z̃ = argmax
zen

(Pfr→en(zen|z
∗
fr))

where z∗fr = argmaxzfr (Pfr→en(zfr|z)).
For the translations, we use a Transformer

model (Vaswani et al., 2017), trained on English-

German with the tensor2tensor framework.7

Word dropping: Given a synthetic example

(z, z̃) we generate a pair (z, z̃′), by randomly

dropping words from z̃. We draw the number

of words to drop uniformly, up to the length of

the sentence. We apply this transformation on

about 30% of the data generated with the previous

method.

A.2 Pre-Training Tasks

We now provide additional details on the signals

we used for pre-training.

Automatic Metrics: As shown in the table, we

use three types of signals: BLEU, ROUGE, and

BERTscore. For BLEU, we used the original

Moses SENTENCEBLEU8 implementation, using

the Moses tokenizer and the default parameters.

For ROUGE, we used the seq2seq implemen-

tation of ROUGE-N.9 We used a custom imple-

mentation of BERTSCORE, based on BERT-large

uncased. ROUGE and BERTscore return three

scores: precision, recall, and F-score. We use all

three quantities.

Backtranslation Likelihood: We compute

all the losses using custom Transformer

model (Vaswani et al., 2017), trained on two

language pairs (English-French and English-

German) with the tensor2tensor framework.

Normalization: All the regression labels are

normalized before training.

A.3 Modeling

Setting the weights of the pre-training tasks:

We set the weights γk with grid search, opti-

mizing BLEURT’s performance on WMT 17’s

7https://github.com/tensorflow/

tensor2tensor
8https://github.com/moses-smt/

mosesdecoder/blob/master/mert/

sentence-bleu.cpp
9https://github.com/google/seq2seq/

blob/master/seq2seq/metrics/rouge.py

validation set. To reduce the size of the grid,

we make groups of pre-training tasks that share

the same weights: (τBLEU, τROUGE, τBERTscore),
(τen-fr,z|z̃, τen-fr,z̃|z, τen-de,z|z̃, τen-de,z̃|z), and

(τentail, τbacktran flag).

B Experiments–Supplementary Material

B.1 Training Setup for All Experiments

We user BERT’s public checkpoints10 with Adam

(the default optimizer), learning rate 1e-5, and

batch size 32. Unless specified otherwise, we use

800,00 training steps for pre-training and 40,000

steps for fine-tuning. We run training and evalua-

tion in parallel: we run the evaluation every 1,500

steps and store the checkpoint that performs best

on a held-out validation set (more details on the

data splits and our choice of metrics in the follow-

ing sections). We use Google Cloud TPUs v2 for

learning, and Nvidia Tesla V100 accelerators for

evaluation and test. Our code uses Tensorflow 1.15

and Python 2.7.

B.2 WMT Metric Shared Task

Metrics. The metrics used to compare the eval-

uation systems vary across the years. The organiz-

ers use Pearson’s correlation on standardized hu-

man judgments across all segments in 2017, and a

custom variant of Kendall’s Tau named “DARR”

on raw human judgments in 2018 and 2019. The

latter metrics operates as follows. The organiz-

ers gather all the translations for the same ref-

erence segment, they enumerate all the possible

pairs (translation1, translation2), and they discard

all the pairs which have a “similar” score (less than

25 points away on a 100 points scale). For each

remaining pair, they then determine which trans-

lation is the best according both human judgment

and the candidate metric. Let |Concordant| be the

number of pairs on which the NLG metrics agree

and |Discordant| be those on which they disagree,

then the score is computed as follows:

|Concordant| − |Discordant|

|Concordant|+ |Discordant|

The idea behind the 25 points filter is to make

the evaluation more robust, since the judgments

collected for WMT 2018 and 2019 are noisy.

Kendall’s Tau is identical, but it does not use the

filter.

10https://github.com/google-research/

bert
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Figure 5: Improvement in Kendall Tau accuracy on all

language pairs of the WMT Metrics Shared Task 2017,

varying the number of pre-training steps. 0 steps cor-

responds to 0.555 Kendall Tau for BLEURTbase and

0.580 for BLEURT.

Training setup. To separate training and vali-

dation data, we set aside a fixed ratio of records

in such a way that there is no “leak” between

the datasets (i.e., train and validation records that

share the same source). We use 10% of the data

for validation for years 2017 and 2018, and 5% for

year 2019. We report results for the models that

yield the highest Kendall Tau across all records on

validation data. The weights associated to each

pretraining task (see our Modeling section) are set

with grid search, using the train/validation setup

of WMT 2017.

Baselines. we use three metrics: the Moses

implementation of sentenceBLEU,11

BERTscore,12 and MoverScore,13 which

are all available online. We run the Moses

tokenizer on the reference and candidate segments

before computing sentenceBLEU.

B.3 Robustness to Quality Drift

Data Re-sampling Methodology: We sample

the training and test separately, as follows. We

split the data in 10 bins of equal size. We then

sample each record in the dataset with probabili-

ties 1
Bα and 1

(11−B)α for train and test respectively,

where B is the bin index of the record between 1

and 10, and α is a predefined skew factor. The

skew factor α controls the drift: a value of 0 has

no effect (the ratings are centered around 0), and

value of 3.0 yields extreme differences. Note that

11https://github.com/moses-smt/

mosesdecoder/blob/master/mert/

sentence-bleu.cpp
12https://github.com/Tiiiger/bert_score
13https://github.com/AIPHES/

emnlp19-moverscore

the sizes of the datasets decrease as α increases:

we use 50.7%, 30.3%, 20.4%, and 11.9% of the

original 5,344 training records for α = 0.5, 1.0,

1.5, and 3.0 respectively.

B.4 Ablation Experiment–How Much

Pre-Training Time is Necessary?

To understand the relationship between pre-

training time and downstream accuracy, we pre-

train several versions of BLEURT and we fine-tune

them on WMT17 data, varying the number of pre-

training steps. Figure 5 presents the results. Most

gains are obtained during the first 400,000 steps,

that is, after about 2 epochs over our synthetic

dataset.


