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Abstract

This work treats the paradigm discovery prob-
lem (PDP)—the task of learning an inflec-
tional morphological system from unannotated
sentences. We formalize the PDP and develop
evaluation metrics for judging systems. Us-
ing currently available resources, we construct
datasets for the task. We also devise a heuris-
tic benchmark for the PDP and report empir-
ical results on five diverse languages. Our
benchmark system first makes use of word
embeddings and string similarity to cluster
forms by cell and by paradigm. Then, we
bootstrap a neural transducer on top of the
clustered data to predict words to realize the
empty paradigm slots. An error analysis of
our system suggests clustering by cell across
different inflection classes is the most press-
ing challenge for future work. Our code
and data are available at https://github.com/
alexerdmann/ParadigmDiscovery.

1 Introduction

In childhood, we induce our native language’s mor-
phological system from unannotated input. For
instance, we learn that ring and rang belong to
the same inflectional paradigm. We also learn
that rings and bangs belong to the same cell, i.e.,
they realize the same morphosyntactic properties
3.SG.PRES, but in different paradigms. Acquiring
such paradigmatic knowledge enables us to pro-
duce unseen inflectional variants of new vocabulary
items, i.e. to complete morphological paradigms.
Much work has addressed this task, which Ack-
erman et al. (2009) call the paradigm cell filling
problem (PCFP),1 but few have discussed inducing
paradigmatic knowledge from scratch, which we
call the paradigm discovery problem (PDP).2

1In the NLP literature, this task is called morphological
reinflection or morphological inflection generation (Cotterell
et al., 2016a); this is only a difference in nomenclature.

2Elsner et al. (2019) call the task the paradigm cell dis-
covery problem; we drop cell to distinguish our task from

As an unsupervised task, the PDP poses chal-
lenges for modeling and evaluation and has yet to
be attempted in its full form (Elsner et al., 2019).
However, we contend there is much to be gained
from formalizing and studying the PDP. There are
insights for cognitive modeling to be won (Pinker,
2001; Goldwater, 2007) and intuitions on combat-
ing sparse data for language generation (King and
White, 2018) to be accrued. Unsupervised lan-
guage processing also has natural applications in
the documentation of endangered languages (Za-
maraeva et al., 2019) where a lot of annotated data
is never likely to exist. Our formalization of the
PDP offers a starting point for future work on un-
supervised morphological paradigm completion.

Our paper presents a concrete formalization of
the PDP. Then, as a baseline for future work, we in-
troduce a heuristic benchmark system. Our bench-
mark system takes an unannotated text corpus and
a lexicon of words from the corpus to be analyzed.
It first clusters the lexicon by cell and then by
paradigm making use of distributional semantics
and string similarity. Finally, it uses this clustering
as silver-standard supervision to bootstrap a neu-
ral transducer (Vaswani et al., 2017) that generates
the desired target inflections. That is, the model
posits forms to realize unoccupied cell slots in each
proposed paradigm. Even though our benchmark
system models only one part of speech (POS) at
a time, our framework extends to the full PDP to
support future, more intricate systems. We propose
two separate metrics to evaluate both the clustering
of attested forms into paradigms and cells and the
prediction of unseen inflected forms. Our metrics
handle non-canonical morphological behavior dis-
cussed in theoretical literature (Corbett, 2005) and
extend to the full PDP.

For three of the five languages we consider, our
benchmark system predicts unattested inflections

one of its subtasks which Boyé and Schalchli (2019) call the
paradigm cell finding problem (see §2.2).

https://github.com/alexerdmann/ParadigmDiscovery
https://github.com/alexerdmann/ParadigmDiscovery
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of lexicon forms with accuracy within 20% of a
fully supervised system. However, our analysis
suggests clustering forms into cells consistently
across paradigms is still a very pressing challenge.

2 Previous Work in Morphology

This section couches our work on the PDP in terms
of previous trends in morphological modeling.

2.1 Unsupervised Morphology

Much work on unsupervised morphological model-
ing focuses on segmentation (Gaussier, 1999; Gold-
smith, 2001; Creutz and Lagus, 2005; Narasimhan
et al., 2015; Bergmanis and Goldwater, 2017; Xu
et al., 2018). While morphological segmenters can
distinguish real from spurious affixes (e.g., bring
6= br + ing) with high accuracy, they do not attempt
to solve the PDP. They do, however, reveal which
forms take the same affixes (e.g., walked, talked),
not which forms occupy the same cell (e.g., walked,
brought). Indeed, they explicitly struggle with ir-
regular morphology. Segmenters also cannot easily
model non-concatenative phenomena like ablaut,
vowel harmony and templatic processes.

Two works have proposed tasks which can be
considered alternative formulations of the PDP, us-
ing either minimal or indirect supervision to boot-
strap their models. We discuss each in turn. First,
Dreyer and Eisner (2011) use a generative model
to cluster forms into paradigms and cells with
a Bayesian non-parametric mixture of weighted
finite-state transducers. They present a PDP frame-
work which, in principle, could be fully unsuper-
vised, but their model requires a small seed of la-
beled data to get key information like the num-
ber of cells distinguished, making it less relevant
cognitively. In contrast, our task is not directly
supervised and focuses on distributional context.
Second, contemporaneous to our work, Jin et al.
(2020) propose a similar framework for SIGMOR-
PHON 2020’s shared task on unsupervised morpho-
logical paradigm completion. Given only a small
corpus and lexicon of verbal lemmata, participat-
ing systems must propose full paradigms for each
lemma. By contrast, our framework does not re-
veal how many paradigms should be generated, nor
do we privilege a specific form as the lemma, but
we do use a larger lexicon of exclusively verbal or
nominal forms. Their proposed baseline uses distri-
butional context for POS tagging and features, but
does not train embeddings as the corpus is small.

2.2 Subtasks of Paradigm Discovery

A few works address subtasks of the PDP. Erdmann
and Habash (2018) learn paradigm membership
from raw text, but do not sort paradigms into cells.
Boyé and Schalchli (2019) discuss the paradigm
cell finding problem, identifying the cell (but not
paradigm) realized by a given form. Lee (2015)
clusters forms into cells across inflection classes.
Beniamine et al. (2018) group paradigms into in-
flection classes, and Eskander et al. (2013) induce
inflection classes and lemmata from cell labels.

2.3 The Paradigm Cell Filling Problem

The PCFP is the task of predicting unseen inflected
forms given morphologically labeled input. PCFP
models can guess a word’s plural having only seen
its singular, but the child must bootstrap morpho-
logical knowledge from scratch, first learning that
singular–plural is a relevant distinction. Thus, the
PDP must be at least partially solved before the
PCFP can be attempted. Yet, as a supervised task,
the PCFP is more easily studied, and has received
much attention on its own, especially from the
word-and-paradigm camp of morphological theory.

Some cognitive works suggest the PCFP can-
not be too difficult for any language (Dale et al.,
1998; Ackerman and Malouf, 2013, 2015; Blevins
et al., 2017; Cotterell et al., 2019). Neural mod-
els can test and extend such proposals (Cotterell
et al., 2018a; Silfverberg and Hulden, 2018). A
related vein of work discusses how speakers in-
flect nonce words (Berko, 1958; Plunkett and Juola,
1999; Yang, 2015), e.g., is the past tense of sping,
spinged or spung? There is a long tradition of mod-
eling past-tense generation with neural networks
(Rumelhart and McClelland, 1986; Kirov and Cot-
terell, 2018; Corkery et al., 2019).

On the engineering side, Durrett and DeNero
(2013) inspired much recent work, which has since
benefited from large inflectional datasets (Kirov
et al., 2018) and advances in neural sequence mod-
eling (Bahdanau et al., 2015). Shared tasks have
drawn extra attention to the PCFP (Cotterell et al.,
2016a, 2017, 2018c; McCarthy et al., 2019).

3 The Paradigm Discovery Problem

Paradigm discovery is a natural next step in compu-
tational morphology, building on related minimally
or indirectly supervised works (§2.2) to bridge the
gap between unsupervised traditions (§2.1) and su-
pervised work on the PCFP (§2.3). In the PCFP,

https://sigmorphon.github.io/sharedtasks/2020/task2
https://sigmorphon.github.io/sharedtasks/2020/task2
https://sigmorphon.github.io/sharedtasks/2020/task2
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Corpus
The cat watched me watching it .

I followed the show but she had n’t seen it .
Let ’s see who follows your logic .

Lexicon watching, seen, follows, watched, followed, see

Gold Grid cell 1 cell 2 cell 3 cell 4 cell 5
paradigm 1 «watch» «watches» watching watched watched
paradigm 2 «follow» follows «following» followed followed
paradigm 3 see «sees» «seeing» «saw» seen

Table 1: An example corpus, lexicon, and gold analyses. All lexicon entries appear in the corpus and, for our
experiments, they will all share a POS, here, verb. The grid reflects all possible analyses of syncretic forms (e.g.,
walked, followed), even though these only occur in the corpus as PST realizations, like saw in Cell 4, not as
PST.PTCP, like seen in Cell 5. Bracketed «forms» are paradigm mates of attested forms, not attested in the lexicon.

each input form is labeled with its morphosyntactic
property set, i.e., the cell in the paradigm which
it realizes, and its lexeme, i.e., the paradigm of
related forms to which it belongs. By contrast,
to solve the PDP, unlabeled input forms must be
assigned cells and paradigms. This task requires
learning what syntactic and semantic factors dis-
tinguish cells, what combinations of cells can co-
occur in a paradigm, and what aspects of a surface
form reflect its paradigm and its cell, respectively.

3.1 Task Setup
Table 1 provides an overview of our PDP setup.
The first two rows show input data: an unannotated
corpus and a lexicon of forms attested in that cor-
pus. Given only these data, the task is to output
a grid such that (i) all lexicon forms and all their
(potentially unseen) inflectional variants appear in
the grid, (ii) all forms appearing in the same col-
umn realize the same morphosyntactic cell, and
(iii) all forms appearing in the same row belong
to the same paradigm. Unattested «forms» to be
generated are depicted in brackets in Table 1’s gold
grid, which shows the ideal output of the system.

Our setup permits multiple forms realizing the
same slot, i.e., a specific cell in a specific paradigm,
a single form realizing multiple slots, and un-
realizable empty slots. This supports overabun-
dance (Thornton, 2010, 2011), defectiveness (Sims,
2015), and syncretism (Blevins, 1995; Cotterell
et al., 2018b). See Corbett (2005) for more on
these phenomena. Experimentally, we constrain
the PDP by limiting the lexicon to forms from one
POS, but our formalization is more general.

3.2 Data for the PDP
For a given language and POS, we create a corpus,
lexicon, and gold grid based on a Universal Depen-

dencies (UD) corpus (Nivre et al., 2016). At a high
level, the corpus includes raw, non-UD sentences,
and UD sentences stripped of annotations. The
lexicon includes all forms occurring in the UD
sentences with the specified POS (potentially
including variant spellings and typographical
errors). The gold grid consists of full paradigms
for every word which co-occurs in UD and the
UniMorph lexicon (Kirov et al., 2018) with a
matching lemma–cell analysis; this is similar to
the corpus created by Vylomova et al. (2019). As
a system does not know which lexicon forms will
be evaluated in the gold grid, it must model the
entire lexicon, which should contain a realistic
distribution over rare words and inflection classes
having been directly extracted from distributional
data (Bybee, 2003; Lignos and Yang, 2018).

To ensure the gold grid is reasonably clean, we
take all word–lemma–feature tuples from the UD
portion of the corpus matching the specified POS
and convert the features to a morphosyntactic cell
identifier compatible with UniMorph representa-
tion as in McCarthy et al. (2018).3 Then we check
which word–lemma–cell tuples also occur in Uni-
Morph. For each unique lemma in this intersection,
the full paradigm is added as a row to the gold grid.
To filter typos and annotation discrepancies, we
identify any overabundant slots, i.e., slots realized
by multiple forms, and remove all but the most
frequently attested realization in UD. While some
languages permit overabundance (Thornton, 2010),
it often indicates typographical or annotation errors

3Aligning UniMorph and UD requires removing diacritics
in (Latin and Arabic) UniMorph corpora to match UD. This
can obscure some morphosyntactic distinctions but is more
consistent with natural orthography in distributional data. The
use of orthographic data for morphological tasks is problem-
atic, but standard in the field, due to scarcity of phonologically
transcribed data (Malouf et al., 2020).
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Predictions cell 1 cell 2 cell 3 cell 4
paradigm 1 watched watching «watches» «watch»
paradigm 2 followed «following» follows «follow»
paradigm 3 «seed» «seeing» «sees» see
paradigm 4 «seened» «seening» «seens» seen

Table 2: Toy predictions made from the corpus and lexicon in Table 1, to be evaluated against the toy gold grid.
Again, bracketed «forms» are those not occurring in the lexicon.

in UD and UniMorph (Gorman et al., 2019; Malouf
et al., 2020). Unlike the gold grid, the lexicon re-
tains overabundant realizations, requiring systems
to handle such phenomena.

For each language, the raw sentences used to
augment the corpus add over 1 million additional
words. For German and Russian, we sample sen-
tences from OpenSubtitles (Lison and Tiedemann,
2016), for Latin, the Latin Library (Johnson et al.,
2016), and for English and Arabic, Gigaword
(Parker et al., 2011a,b). Supplementary sentences
are preprocessed via Moses (Koehn et al., 2007)
to split punctuation, and, for supported languages,
clitics. Table 3 shows corpus and lexicon sizes.

3.3 Metrics
A system attemping the PDP is expected to output
a morphologically organized grid in which rows
and columns are arbitrarily ordered, but ideally,
each row corresponds to a gold paradigm and each
column to a gold cell. Aligning rows to paradigms
and columns to cells is non-trivial, making it dif-
ficult to simply compute accuracy over gold grid
slots. Furthermore, cluster-based metrics (Rosen-
berg and Hirschberg, 2007) are difficult to apply
as forms can appear in multiple columns or rows.
Thus, we propose novel metrics that are lexical,
based on analogical relationships between forms.
We propose a set of PDP metrics, to measure how
well organized lexicon forms are in the grid, and
a set of PCFP metrics, to measure how well the
system anticipates unattested inflectional variants.
All metrics support non-canonical phenomena such
as defective paradigms and overabundant slots.

3.3.1 PDP Metrics
A form f ’s paradigm mates are all those forms
that co-occur in at least one paradigm with f . f ’s
paradigm F-score is the harmonic mean of pre-
cision and recall of how well we predicted its
paradigm mates when viewed as an information re-
trieval problem (Manning et al., 2008). We macro-
average all forms’ paradigm F-scores to compute
Fpar. Qualitatively, Fpar tells us how well we clus-

ter words that belong to the same paradigm. A
form f ’s cell mates are all those forms that co-
occur in at least one cell with f . f ’s cell F-score
is the harmonic mean of precision and recall of
how well we predicted its cell mates. As before,
we macro-average all forms’ cell F-scores to com-
pute Fcell. Qualitatively, Fcell tells us how well we
cluster words that belong to the same cell. Finally,
we propose the Fgrid metric as the harmonic mean
of Fpar and Fcell. Fgrid is a single number that re-
flects a system’s ability to cluster forms into both
paradigms and cells. Because we designate sepa-
rate PCFP metrics to evaluate gold grid forms not
in the lexicon, we restrict f ’s mates to only include
forms that occur in the lexicon.

Consider the proposed grid in Table 2. There
are 6 lexicon forms in the gold grid. Starting
with watched, we correctly propose its only at-
tested paradigm mate, watching. Thus, watched’s
paradigm F-score is 100%. For see, we propose
no attested paradigm mates, but we should have
proposed seen. 0 correct out of 1 true paradigm
mate from 0 predictions results in an F-score of 0%
for seen. We continue like this for all 6 attested
forms in the gold grid and average their scores to
get Fpar. As for Fcell, we correctly predict that
watched’s only cell mate is followed, yielding an
F-score of 100%. However, we incorrectly predict
that see has a cell mate, seen, yielding an F-score
of 0%; we average each word’s F-score to get Fcell;
the harmonic mean of Fpar and Fcell gives us Fgrid.

While Fgrid handles syncretism, overabundance,
defectiveness and mismatched grid dimensions, it
is exploitable by focusing exclusively on the best
attested cells realized by the most unique forms,
since attested cells tend to exhibit a Zipfian distribu-
tion (Blevins et al., 2017; Lignos and Yang, 2018).
Exploiting Fgrid in this manner propagates errors
when bootstrapping to predict unattested forms and,
thus, will be punished by PCFP metrics.

3.3.2 PCFP Metrics
We cannot evaluate the PCFP as in supervised set-
tings (Cotterell et al., 2016a) because proposed
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Lexicon Corpus UD

Types Tokens Tokens
Arabic 8,732 1,050,336 223,881

German 19,481 1,270,650 263,804
English 3,330 1,212,986 204,608

Latin 6,903 1,218,377 171,928
Russian 36,321 1,885,302 871,548

Table 3: Statistics regarding the input corpus and lexi-
con. UD tokens refers to tokens in the corpus originally
extracted from UD sentences.

cells and paradigms cannot be trivially aligned to
gold cells and paradigms. Instead, we create a test
set by sampling 2,000 four-way analogies from the
gold grid. The first and second forms must share
a row, as must the third and fourth; the first three
forms must be attested and the fourth unattested,
e.g., watched : watching :: seen : «seeing».

From this test set and a proposed grid, we com-
pute a strict analogy accuracy (An) metric and
a more lenient lexicon expansion accuracy (LE)
metric. An counts predictions as correct if all
analogy directions hold in the proposed grid (i.e.,
watched, watching and seen, «seeing» share rows
and watched, seen and watching, «seeing» share
columns). LE counts predictions as correct if the
unattested fourth form appears anywhere in the
grid. That is, LE asks, for each gold form, if it was
predicted in any slot in any paradigm.

Like the PDP metrics, our PCFP metrics sup-
port syncretism, overabundance, defectiveness, etc.
One can, however, exploit them by proposing a
gratuitous number of cells, paradigms, and syn-
cretisms, increasing the likelihood of completing
analogies by chance, though this will reduce Fgrid.
As both PDP and PCFP metrics can be exploited
independently but not jointly, we argue that both
types of metrics should be considered when evalu-
ating an unsupervised system.

4 Building a Benchmark

This section presents a benchmark system for
proposing a morphologically organized grid given a
corpus and lexicon. First, we cluster lexicon forms
into cells. Then we cluster forms into paradigms
given their fixed cell membership. To maintain
tractability, clustering assumes a one-to-one map-
ping of forms to slots. Following cell and paradigm
clustering, we predict forms to realize empty slots
given one of the lexicon forms assigned to a cell in

the same paradigm. This allows forms to appear in
multiple slots, but does not support overabundance,
defectiveness, or multi-word inflections.

4.1 Clustering into Cells

We use a heuristic method to determine the num-
ber of cells and what lexicon forms to assign to
each. Inspired by work on inductive biases in word
embeddings (Pennington et al., 2014; Trask et al.,
2015; Goldberg, 2016; Avraham and Goldberg,
2017; Tu et al., 2017), we train morphosyntacti-
cally biased embeddings on the corpus and use
them to k-means cluster lexicon forms into cells.
Following Erdmann et al. (2018), we emphasize
morphosyntactically salient dimensions in embed-
ding space by manipulating hyperparameters in
fastText (Bojanowski et al., 2017). Specifically,
to encourage grouping of morphologically related
words, fastText computes a word’s embedding as
the sum of its subword embeddings for all sub-
word sequences between 3 and 6 characters long
(Schütze, 1993). We shorten this range to 2 to 4 to
bias the grouping toward shared affixes rather than
(usually longer) shared stems. This helps recognize
that the same affix is likely to realize the same cell,
e.g., watch +ed and follow +ed. We limit the con-
text window size to 1; small windows encourage a
morphosyntactic bias in embeddings (Erk, 2016).

We determine the number of cells to cluster lex-
icon forms into, k, via the elbow method, which
progressively considers adding clusters until the
reduction in dispersion levels off (Kodinariya and
Makwana, 2013; Bholowalia and Kumar, 2014).4

Since Tibshirani et al. (2001)’s popular formalism
of the method does not converge on our data, we im-
plement a simpler technique that works in our case.
We incrementally increase k, each time recording
clustering dispersion, dk (for consistency, we aver-
age dk over 25 iterations). Starting at k = 2, we
calculate dispersion deceleration as the difference
between the current and previous dispersions:

decel(k) = dk−1 − 2(dk) + dk+1 (1)

Once decel(k) decreases below
√
decel(2), we

take the kth clustering: the (k+1)th cluster did not
explain enough variation in the embedding space to
justify an additional morphosyntactic distinction.

4Clustering dispersion is the squared distance of a point
from its cluster’s centroid, summed over all points clustered.
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4.2 Clustering into Paradigms

Given a clustering of lexicon forms into k cells, de-
noted as C1, . . . , Ck, we heuristically cluster each
form f into a paradigm, π, as a function of f ’s cell,
c. For tractability, we assume paradigms are pair-
wise disjoint and no paradigm contains multiple
forms from the same cell. Our algorithm greedily
builds paradigms cell by cell. To gauge the quality
of a candidate paradigm, we first identify its base
and exponents. Following Beniamine et al. (2018),
we define π’s base, bπ, as the longest common sub-
sequence shared by all forms in π.56 For each form
f in π, we define the exponent xf as the subse-
quences of f that remain after removing bπ, i.e.,
xf is a tuple of affixes. For example, if π contains
words wxyxz and axx, bπ is xx and the exponents
are (<w, y, z>) and (<a), respectively.7 Inspired
by unsupervised maximum matching in greedy to-
kenization (Guo, 1997; Erdmann et al., 2019), we
define the following paradigm score function:

score(π) =
∑
〈c,f〉∈π

(
|bπ| − |xf |

)
(2)

which scores a candidate paradigm according to
the number of base characters minus the number of
exponent characters; it can be negative.

Algorithm 1 then details our heuristic cluster-
ing approach. We greedily select one or zero
forms from each cell to add (via the list concate-
nation operator ◦) to each paradigm such that the
paradigm’s score is maximized.8 After performing
a first pass of paradigm clustering with Algorithm 1,
we estimate an unsmoothed probability distribution
p(x | c) as follows: we take the number of times
each exponent (tuple of affixes) realizes a cell in
the output of Algorithm 1 and divide by the number
of occurrences of that cell. We use this distribution
p(x | c) to construct an exponent penalty:

5The fact that we use a subsequence, instead of a substring,
means that we can handle non-concatenative morphology.

6We note that the longest common subsequence may be
found with a polynomial-time dynamic program; however,
there will not exist an algorithm whose runtime is polynomial
in the number of strings unless P = NP (Maier, 1978).

7We use word start (<) and end (>) tokens to distinguish
exponents; they do not count as exponent characters in eq. (2).

8Algorithm 1 has complexity O(|L|2) where |L| is lexicon
size. In practice, to make Algorithm 1 tractable, we limit the
candidates for f ′

j (line 8) to the n = 250 forms from cell
j nearest to fi in pre-trained embedding space (trained via
FastText with default parameters). This achieves a complexity
upper bounded by O(|L|nk).

Algorithm 1 Paradigm Clustering Algorithm

1: input C1, . . . , Ck
2: π ← [ ]
3: for Ci ∈ {C1, . . . , Ck} do
4: for fi ∈ Ci do
5: π ← [〈i, fi〉]
6: s← score(π)
7: for Cj ∈ {Ci+1, . . . , Ck} do
8: fj ← argmax

f ′j∈Cj

score(π ◦ [〈j, f ′j〉])

9: sfj ← score(π ◦ [〈j, fj〉])
10: if sfj > s then
11: π ← π ◦ [〈j, fj〉]
12: s← sfj
13: Cj .remove(fj)

14: π ← π ◦ [π]
15: return π

ω(xf , c) (3)

=

0 if argmax
x

p(x | c) = xf

2− p(xf |c)
maxx p(x|c) otherwise

Intuitively, if an exponent is the most likely expo-
nent in the cell to which it belongs, the penalty
weight is zero and its characters are not subtracted
from the score. Otherwise, the weight is in the
interval [1, 2] such that each exponent character is
penalized at least as harshly but no more than twice
as harshly than in the first pass, according to the ex-
ponent’s likelihood. We use this exponent penalty
weight to define a penalized score function:

scoreω(π) =
∑
〈c,f〉∈π

(
|bπ| − |xf |ω(xf , c)

)
(4)

We then re-run Algorithm 1, swapping out
score(·) for scoreω(·), to re-cluster forms into
paradigms. Empirically, we find that harsher
exponent penalties—i.e., forcing weights to be
greater than 1 for suboptimal exponents—lead
to higher paradigm precision in this second pass.
For an example, consider candidate paradigm
[«», watched, «», «», «»]. If we add nothing, each
character of watched can be analyzed as part of the
base, yielding a score of 7. What if we attempt
to add watching—pre-determined to belong to col-
umn 5 during cell clustering? Candidate paradigm
[«», watched, «», «», watching] increases the num-
ber of base characters to 10 (watch shared by 2
words), but yields a score of 5 after subtracting
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the characters from both exponents, (ed>) and
(ing>). Hence, we do not get this paradigm right
on our first pass, as 5 < 7. Yet, after the first
pass, should (ed>) and (ing>) be the most frequent
exponents in the second and fifth cells, the sec-
ond pass will be different. Candidate paradigm
[«», watched, «», «», watching] is not penalized
for either exponent, yielding a score of 10, thereby
allowing watching to be added to the paradigm.

4.3 Reinflection

We now use the output of the clustering by cell and
paradigm to bootstrap the PCFP. We use a Trans-
former (Vaswani et al., 2017) to predict the forms
that realize empty slots. Transformer-based neural
transducers constitute the state of the art for the
PCFP. 9 In Cotterell et al. (2016b)’s terms, we rein-
flect the target from one of the non-empty source
cells in the same paradigm. We select the source
from which we can most reliably reinflect the target.
We quantify this reliability by calculating the accu-
racy with which each target cell’s realizations were
predicted from each source cell’s realizations in
our development set. For each target cell, we rank
our preferred source cells according to accuracy.

To generate train and development sets, we cre-
ate instances for every possible pair of realizations
occurring in the same paradigm (90% train, 10%
development). We pass these instances into the
Transformer, flattening cells and characters into a
single sequence. Neural models for reinflection of-
ten perform poorly when the training data are noisy.
We mitigate this via the harsh exponent penalty
weights (eq. (3)) which encourage high paradigm
precision during clustering.

5 Results and Discussion

Table 4 shows results for two versions of our bench-
mark system: BENCH, as described in §4, and
GOLD k, with the number of cells oracularly set to
the ground truth. For reference, we also report a
supervised benchmark, SUP, which assumes a gold
grid as input, then solves the PCFP exactly as the
benchmark does. In terms of the PDP, clustering
assigns lexicon forms to paradigms (46–82%) more
accurately than to cells (26–80%). Results are high
for English, which has the fewest gold cells, and

9We use the following hyperparameters: N = 4, dmodel =
128, dff = 512. Remaining hyperparameters retain their de-
fault values as specified in Vaswani et al. (2017). Our models
are trained for 100 epochs in batches of 64. We stop early
after 20 epochs without improvement on the development set.

PDP PCFP
Cells Paradigms Fcell Fpar Fgrid An LE

Arabic nouns – 8,732 forms
SUP 27 4,283 85.9 87.0

BENCH 12.8 5,279.3 39.9 48.5 43.7 16.8 49.5
GOLD k 27 4,930.3 25.9 46.4 33.1 16.1 57.2

German nouns – 19,481 forms
SUP 8 17,018 72.2 74.9

BENCH 7.3 17,073.3 35.2 59.4 43.3 14.2 56.7
GOLD k 8 16,836.0 29.4 66.6 40.8 14.8 60.4

English verbs – 3,330 forms
SUP 5 1,801 80.4 80.7

BENCH 7.5 1,949.5 64.0 80.1 71.1 52.0 67.5
GOLD k 5 1,977.3 79.6 82.1 80.8 54.7 69.4

Latin nouns – 6,903 forms
SUP 12 3,013 80.0 88.0

BENCH 13.0 3,746.5 38.8 73.2 50.6 17.2 72.9
GOLD k 12 3,749.0 39.9 71.6 51.3 17.5 72.6

Russian nouns – 36,321 forms
SUP 14 14,502 94.7 96.8

BENCH 16.5 19,792.0 44.5 72.2 55.0 31.9 86.2
GOLD k 14 20,944.0 45.7 69.1 55.0 31.6 84.3

Table 4: PDP and PCFP results for all languages and
models, averaged over 4 runs. Metrics are defined in
§3.3. An refers to analogy accuracy and LE to the lexi-
con expansion accuracy.

lower elsewhere. In German, Latin, and Russian,
our benchmark proposes nearly as many cells as
GOLD k, thus performing similarly. For English, it
overestimates the true number and performs worse.
For Arabic, it severely underestimates k but per-
forms better, likely due to the orthography: without
diacritics, the three case distinctions become ob-
scured in almost all instances. In general, fixing the
true number of cells can be unhelpful because syn-
cretism and the Zipfian distribution of cells creates
situations where certain gold cells are too difficult
to detect. Allowing the system to choose its own
number of cells lets it focus on distinctions for
which there is sufficient distributional evidence.

As for the PCFP, our benchmark system does
well on lexicon expansion accuracy and poorly
on the analogy task. While lexicon expansion ac-
curacy (50–86% compared to 72–97% for SUP)
shows that the benchmark captures meaningful in-
flectional trends, analogy accuracy demonstrates
vast room for improvement in terms of consistently
organizing cell-realizations across paradigms. En-
glish is the only language where analogy accuracy
is within half of SUP’s upper bound. A major rea-
son for low analogy accuracy is that forms, despite
being clustered into paradigms well, get assigned
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SG PL

NOM GEN DAT ACC ABL NOM GEN DAT ACC ABL Gloss
serv-us i o um o i orum is os is “slave.M”
serv-a ae ae am a ae arum is as is “slave.F”
frat-er ris ri rem re res rum ribus res ribus “brother”

Table 5: Suffixal exponents for each cell in the paradigm of three Latin nouns from different inflection classes.

Cell Interpretations Suffix

0 ACC.SG (.51), GEN.PL (.45) um
1 ACC.PL (.71), NOM.PL (.27) s
2 ACC.SG (.99) m
3 ABL.PL (.52), GEN.SG (.40) is
4 NOM.SG (.39), ABL.SG (.36) a
5 ABL.SG (.62), NOM.SG (.36) o
6 GEN.SG (.46), DAT.SG (.30) i
7 ABL.PL (.77), DAT.PL (.25) s
8 NOM.SG (.67), ABL.SG (.22) ∅
9 ABL.SG (.936) e
10 ABL.SG (.5), GEN.SG (.28) e
11 NOM.SG (.87), ACC.PL (.16) us

Table 6: System clustering of Latin nouns.

to the wrong cell, or the same gold cell gets mis-
aligned across paradigms from different inflection
classes. We discuss this phenomenon in more detail
below.

5.1 Latin Noun Error Analysis
A detailed analysis of Latin nouns (also analyzed
by Stump and Finkel (2015) and Beniamine et al.
(2018)) reveals challenges for our system. Table 5
shows the inflectional paradigms for three Latin
nouns exemplifying different inflection classes,
which are mentioned throughout the analysis. In
keeping with the UD standard, there are no diacrit-
ics for long vowels in the table.

One major challenge for our system is that simi-
lar affixes can mark different cells in different in-
flection classes, e.g. the ACC.SG of servus “slave.M”
ends in um, as does the GEN.PL of frater “brother”.
Table 6 shows system-posited cells, the gold cells
they best match to, and the longest suffix shared
by 90% of their members. The system is often
misled by shared affixes, e.g., cell 0 is evenly split
between ACC.SG and GEN.PL, driven by the suf-
fix um (cells 3 (is) and 4 (a) suffer from this as
well). This kind of confusion could be resolved
with better context modeling, as each distinct un-
derlying cell, despite sharing a surface affix, occurs
in distinct distributional contexts. We observe that

the current system often fails to make use of con-
text to handle some misleading suffixes. However,
Cell 7 correctly groups ABL.PL forms marked with
both is and ibus, excluding other suffixes ending
in s. Similarly, cell 8 contains NOM.SG forms with
heterogeneous endings, e.g., r, ix and ns.

In some cases, the system misinterprets deriva-
tional processes as inflectional, combining gold
paradigms. Derivational relatives servus and serva,
male and female variants of “slave”, are grouped
into one paradigm, as are philosophos “philoso-
pher” and philosophia “philosophy.” In other cases,
cell clustering errors due to shared suffixes create
spurious paradigms. After falsely clustering gold
paradigm mates servum (ACC.SG) and servorum
(GEN.PL) into the same cell, we must assign each
to separate paradigms during paradigm clustering.
This suggests clustering cells and paradigms jointly
might avoid error propagation in future work.

We also find that clustering errors lead to PCFP
errors. For servus/a, the neural reinflector predicts
servibus in cell 8 with a suffix from the wrong
inflection class, yet the slot should not be empty in
the first place. The correct form, servis, is attested,
but was mistakenly clustered into cell 3.

5.2 Benchmark Analysis

Table 7 evaluates variants of the benchmark to de-
termine the contribution of several system–task
components in Arabic and Latin. We consider
augmenting and shrinking the corpus. We also
reset the fastText hyperparameters used to achieve
a morphosyntactic inductive bias to their default
values (no affix or window bias) and consider two
constant exponent penalty weights (ω(xf , c) = 1
and ω(xf , c) = 0) instead of our heuristic weight
defined in eq. (3). Finally, we consider selecting
random sources for PCFP reinflection instead of
identifying reliable sources. For all variants, the
number of cells is fixed to the ground truth.

Corpus Size We consider either using a smaller
corpus containing only the UD subset, or using a
larger corpus containing 15 (Latin) or 100 (Ara-



7786

PDP PCFP
Paradigms Fcell Fpar Fgrid An LE
Arabic nouns – 27 cells

GOLD k 4,930.3 25.9 46.4 33.1 16.1 57.2
larger corpus 5,039.5 29.1 37.5 32.8 20.4 49.2

smaller corpus 5,004.0 18.8 37.7 24.9 9.5 42.1
no affix bias 4,860.3 21.5 47.7 29.7 16.3 43.5

no window bias 4,978.5 24.0 47.5 31.8 17.6 55.8
ω(x, c) = 1 3,685.0 34.4 28.8 5.2 35.5
ω(x, c) = 0 1,310.5 10.0 13.9 0.1 5.8

random sources 16.3 55.9
Latin nouns – 12 cells

GOLD k 3,749.0 39.9 71.6 51.3 17.5 72.6
larger corpus 3,529.5 42.8 79.1 55.5 16.2 69.9

smaller corpus 4,381.5 30.7 49.1 37.8 14.6 51.1
no affix bias 3,906.8 37.1 68.2 48.1 22.7 66.6

no window bias 3,756.5 42.0 71.2 52.8 17.9 70.9
ω(x, c) = 1 3,262.5 67.1 49.6 11.0 52.9
ω(x, c) = 0 1,333.3 26.3 31.7 0.7 7.1

random sources 16.5 72.3

Table 7: Benchmark variations demonstrating the ef-
fects of various factors, averaged over 4 runs.

bic) million words from additional supplementary
sentences. As expected, performance decreases for
smaller corpora, but it does not always increase for
larger ones, potentially due to domain differences
between UD and the supplemental sentences. Inter-
estingly, Fcell always increases with larger corpora,
yet this can lead to worse Fpar scores, more evi-
dence of error propagation that might be avoided
with joint cell–paradigm clustering.

Embedding Morphosyntactic Biases Targeting
affix embeddings by shrinking the default fastText
character n-gram sizes seems to yield a much more
significant effect than shrinking the context win-
dow. In Latin, small context windows can even hurt
performance slightly, likely due to extremely flexi-
ble word order, where agreement is often realized
over non-adjacent words.

Exponent Penalties When clustering paradigms
with the penalty weight ω(x, c) = 1, (which is
equivalent to just running the first pass of paradigm
clustering), we see a steep decline in performance
as opposed to the proposed heuristic weighting. It
is even more detrimental to not penalize exponents
at all (i.e., ω(x, c) = 0), but maximize the base
characters in paradigms without concern for size
or likelihoods of exponents. Given allomorphic
variation and multiple inflection classes, we ideally
want a penalty weight which is lenient to more than
just the single most likely exponent, but without

supervised data, it is difficult to determine when
to stop being lenient and start being harsh in a
language agnostic manner. Our choice to be harsh
by default proposes fewer false paradigm mates,
yielding less noisy input to train the reinflection
model. In a post-hoc study, we calculated GOLD

k PCFP scores on pure analogies only, where the
first three attested forms were assigned correctly
during clustering. Pure analogy PCFP scores were
still closer to GOLD k’s performance than SUP’s
for all languages. This suggests most of the gap
between GOLD k and SUP is due to noisy training
on bad clustering assignments, not impossible test
instances created by bad clustering assignments.
This supports our choice of harsh penalties and
suggests future work might reconsider clustering
decisions given the reinflection model’s confidence.

Reinflection Source Selection During reinflec-
tion, feeding the Transformer random sources in-
stead of learning the most reliable source cell for
each target cell slightly hurts performance. The
margin is small, though, as most paradigms have
only one attested form. In preliminary experiments,
we also tried jointly encoding all available sources
instead of just the most reliable, but this drastically
lowers performance.

6 Conclusion

We present a framework for the paradigm discovery
problem, in which words attested in an unannotated
corpus are analyzed according to the morphosyn-
tactic property set they realize and the paradigm
to which they belong. Additionally, unseen inflec-
tional variants of seen forms are to be predicted.
We discuss the data required to undertake this task,
a benchmark for solving it, and multiple evaluation
metrics. We believe our benchmark system repre-
sents a reasonable approach to solving the problem
based on past work and highlights many directions
for improvement, e.g. joint modeling and making
better use of distributional semantic information.
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