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Abstract

Large-scale pretrained language models are
the major driving force behind recent im-
provements in performance on the Winograd
Schema Challenge, a widely employed test
of commonsense reasoning ability. We show,
however, with a new diagnostic dataset, that
these models are sensitive to linguistic pertur-
bations of the Winograd examples that min-
imally affect human understanding. Our re-
sults highlight interesting differences between
humans and language models: language mod-
els are more sensitive to number or gender al-
ternations and synonym replacements than hu-
mans, and humans are more stable and con-
sistent in their predictions, maintain a much
higher absolute performance, and perform bet-
ter on non-associative instances than asso-
ciative ones. Overall, humans are correct
more often than out-of-the-box models, and
the models are sometimes right for the wrong
reasons. Finally, we show that fine-tuning on a
large, task-specific dataset can offer a solution
to these issues.

1 Introduction

Large-scale pre-trained language models have re-
cently led to improvements across a range of natu-
ral language understanding (NLU) tasks (Devlin
et al., 2019; Radford et al., 2019; Yang et al.,
2019), but there is some scepticism that bench-
mark leaderboards do not represent the full pic-
ture (Kaushik and Lipton, 2018; Jumelet and Hup-
kes, 2018; Poliak et al., 2018). An open question
is whether these models generalize beyond their
training data samples.

In this paper, we examine how pre-trained lan-
guage models generalize on the Winograd Schema
Challenge (WSC).

Named after Terry Winograd, the WSC, in its
current form, was proposed by Levesque et al.
(2012) as an alternative to the Turing Test. The

The	man	couldn't	lift	his	son	because	he	was	so	heavy.

The	man	couldn't	lift	his	son	because	he	was	so	weak.

The	men	couldn't	lift	their	sons	because	they	were	so	heavy.

The	men	couldn't	lift	their	sons	because	they	were	so	weak.

(a)

(b)

Figure 1: An example pair from the Winograd Schema
Challange (a) and its perturbation (b). The pronoun
resolves to one of the two referents, depending on the
choice of the discriminatory segment. The perturbation
in (b) pluralizes the referents and the antecedents.

task takes the form of a binary reading compre-
hension test where a statement with two referents
and a pronoun (or a possessive adjective) is given,
and the correct antecedent of the pronoun must be
chosen. Examples are chosen carefully to have a
preferred reading, based on semantic plausibility
rather than co-occurrence statistics. WSC exam-
ples come in pairs that are distinguished only by a
discriminatory segment that flips the correct refer-
ent, as shown in Figure 1a. Levesque et al. define
a set of qualifying criteria for instances and the
pitfalls to be avoided when constructing examples
(see §3.2). These combine to ensure an instance
functions as a test of what they refer to as ‘think-
ing’ (or common sense reasoning).

Recent work has reported significant improve-
ments on the WSC (Kocijan et al., 2019; Sak-
aguchi et al., 2019). As with many other NLU
tasks, this improvement is primarily due to large-
scale language model pre-training, followed by
fine-tuning for the target task. We believe that
further examination is warranted to determine
whether these impressive results reflect a funda-
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mental advance in reasoning ability, or whether
our models have learned to simulate this ability
in ways that do not generalize. In other words,
do models learn accidental correlations in our
datasets, or do they extract patterns that general-
ize in robust ways beyond the dataset samples?

In this paper, we conduct experiments to inves-
tigate this question. We define a set of lexical and
syntactic variations and perturbations for the WSC
examples and use altered examples (Figure 1b) to
test models that have recently reported improved
results. These variations and perturbations are de-
signed to highlight the robustness of human lin-
guistic and reasoning abilities and to test models
under these conditions.

Contributions We introduce a new Winograd
Schema dataset for evaluating generalization
across seven controlled linguistic perturbations.1

We use this dataset to compare human and lan-
guage model sensitivity to those perturbations,
finding marked differences in model performance.
We present a detailed analysis of the behaviour of
the language models and how they are affected by
the perturbations. Finally, we investigate the effect
of fine-tuning with large task-specific datasets, and
present an error analysis for all models.

2 Related Work

Probing datasets Previous studies have ex-
plored the robustness of ML models towards dif-
ferent linguistic phenomena (Belinkov and Glass,
2019), e.g., by creating challenge datasets such as
the one introduced here. When predicting subject-
verb agreement, Linzen et al. (2016) found that in-
serting a relative clause hurt the performance of
recurrent networks.2

A large body of research has since emerged on
probing pre-trained (masked) language models for
linguistic structure (Goldberg, 2019; Hewitt and
Manning, 2019; Lin et al., 2019; Clark et al., 2019)
and analysing them via comparison to psycholin-
guistic and brain imaging data (Abnar et al., 2019;
Ettinger, 2019; Abdou et al., 2019; Gauthier and

1Code and dataset can be found at: https://github.
com/mhany90/enhanced_wsc/

2This contrasts with our results with Transformer-based
architecture and is probably explained by memory loss in re-
current networks trained on short sequences. Similarly, Gu-
lordava et al. (2018) tested whether a Recurrent Neural Net-
work can predict long-distance number agreement in various
constructions comparing natural and nonsensical sentences
where RNNs cannot rely on semantic or lexical cues.

Levy, 2019). Other recent work has attempted to
probe these models for what is referred to as com-
mon sense or factual knowledge (Petroni et al.,
2019; Feldman et al., 2019). Their findings show
that these models do indeed encode such knowl-
edge and can be used for knowledge base comple-
tion or common sense mining from Wikipedia.

Clever Hans A considerable amount of work
has also been devoted to what might be described
as the Clever Hans effect. This work has aimed to
quantify the extent to which models are learning
what we expect them to as opposed to leveraging
statistical artifacts. This line of work has to date
revealed significant problems (and some possible
solutions to those problem) with reading compre-
hension datasets (Chen et al., 2016; Kaushik and
Lipton, 2018), natural language inference datasets
(Tsuchiya, 2018; Gururangan et al., 2018; Poliak
et al., 2018; Belinkov et al., 2019a; McCoy et al.,
2019), and the story cloze challenge (Schwartz
et al., 2017), among others.

Winograd Schema Challenge Trinh and Le
(2018) first proposed using neural language mod-
els for the WSC, achieving an accuracy of 63.7%
using an ensemble of 14 language models. Ruan
et al. (2019) and Kocijan et al. (2019) fine-tune
BERT (Devlin et al., 2019) on the PDP (Rah-
man and Ng, 2012) and an automatically gen-
erated MaskedWiki dataset, reaching an accu-
racy of 71.1% and 72.5% respectively. Mean-
while, Radford et al. (2019) report an accuracy of
70.7% without fine-tuning using the GPT-2 lan-
guage model. Most recently, Sakaguchi et al.
(2019) present an adversarial filtering algorithm
which they use for crowd-sourcing a large cor-
pus of WSC-like examples. Fine-tuning RoBERTa
(Liu et al., 2019) on this, they achieve an accuracy
of 90.1%.

In an orthogonal direction, Trichelair et al.
(2018) presented a timely critical treatment of the
WSC. They classified the dataset examples into
associative and non-associative subsets, showing
that the success of the LM ensemble of Trinh and
Le (2018) mainly resulted from improvements on
the associative subset. Moreover, they suggested
switching the candidate referents (where possible)
to test whether systems make predictions by rea-
soning about the “entirety of a schema” or by ex-
ploiting “statistical quirks of individual entities”.

In a similar spirit, our work is a controlled

https://github.com/mhany90/enhanced_wsc/
https://github.com/mhany90/enhanced_wsc/
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study of robustness along different axes of linguis-
tic variation. This type of study is rarely possi-
ble in NLP due to the large size of datasets used
and the focus on obtaining improved results on
said datasets. Like a carefully constructed dataset
which is thought to require true natural language
understanding, the WSC presents an ideal testbed
for this investigation.

3 Perturbations

We define a suite of seven perturbations that can
be applied to the 285 WSC examples, which we
refer to as the original examples. These perturba-
tions are designed to test the robustness of an an-
swer to semantic, syntactic, and lexical variation.
Each of the perturbations is applied to every ex-
ample in the WSC (where possible), resulting in
a dataset of 2330 examples, an example of each
type is shown in Table 1. Crucially, the correct
referent in each of the perturbed examples is not
altered by the perturbation. The perturbations are
manually constructed, except for the sampling of
names and synonyms. Further details can be found
in Appendix E.

Tense switch (TEN) Most WSC instances are
written in the past tense and thus are changed
to the present continuous tense (247 examples).
The remaining 34 examples are changed from the
present to the past tense.

Number switch (NUM) Referents have their
numbers altered: singular referents (and the rele-
vant pronouns) are pluralised (223 examples), and
plural referents are modified to the singular (30
examples). Sentences with names have an extra
name added via conjunction; eg. “Carol” is re-
placed with “Carol and Susan”. Possessives only
mark possession on the second conjunct (“John
and Steve’s uncle” rather than “John’s and Steve’s
uncle”).

Gender switch (GEN) Each of the referents in
the sentence has their gender switched by replac-
ing their names with other randomly drawn fre-
quent English names of the opposite gender.3 92%
of the generated data involved a gender switch for
a name. Though humans may be biased towards
gender (Collins, 2011; Desmond and Danilewicz,
2010; Hoyle et al., 2019), the perturbations do not

3Names sourced from https://github.com/
AlessandroMinoccheri/human-names/tree/
master/data

introduce ambiguity concerning gender, only the
entity. 101 examples were switched from male to
female, and 55 examples the other way around.

Voice switch (VC) All WSC examples, except
for 210 and 211, are originally in the active voice
and are therefore passivized. 210 and 211 are
changed to the active voice. 65 examples could
not be changed. Passive voice is known to be more
difficult to process for humans (Olson and Filby,
1972; Feng et al., 2015).

Relative clause insertion (RC) A relative clause
is inserted after the first referent. For each ex-
ample, an appropriate clause was constructed by
first choosing a template such as “who we had
discussed” or “that is known for” from a pre-
selected set of 19 such templates. An appro-
priate ending, such as “who we had discussed
with the politicians” is then appended to the tem-
plate depending on the semantics of the particular
instance. Relative clauses impose an increased de-
mand on working memory capacity, thereby mak-
ing processing more difficult for humans (Just and
Carpenter, 1992; Gibson, 1998).

Adverbial qualification (ADV) An adverb is in-
serted to qualify the main verb of each instance.
When a conjunction is present both verbs are mod-
ified. For instances with multiple sentences, all
main verbs are modified.

Synonym/Name substitution (SYN/NA) Each
of the two referents in an example is substituted
with an appropriate synonym, or if it is a name, is
replaced with a random name of the same gender
from the same list of names used for the gender
perturbation.

3.1 Human Judgments

We expect that humans are robust to these pertur-
bations because they represent naturally occurring
phenomena in language; we test this hypothesis
by collecting human judgements for the perturbed
examples. We collect the judgments for the per-
turbed examples using Amazon Mechanical Turk.
The annotators are presented with each instance
where the pronoun of interest is boldfaced and in
red font. They are also presented with two options,
one for each of the possible referents. They are
then instructed to choose the most likely option,
in exchange for $0.12. Following Sakaguchi et al.
(2019), each instance is annotated by three anno-

https://github.com/AlessandroMinoccheri/human-names/tree/master/data
https://github.com/AlessandroMinoccheri/human-names/tree/master/data
https://github.com/AlessandroMinoccheri/human-names/tree/master/data
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Instance / Perturbed Instance Count

Original Sid explained his theory to Mark but he couldn’t convince him. 285

Tense Sid is explaining his theory to Mark but he can’t convince him. 281

Number Sid and Johnny explained their theory to Mark and Andrew but they couldn’t convince them. 253

Gender Lucy explained her theory to Emma but she couldn’t convince her. 155

Voice The theory was explained by Sid to Mark but he couldn’t convince him. 220

Relative clause Sid, which we had seen on the discussion panel with Chris, explained his theory to Mark but
he couldn’t convince him.

283

Adverb Sid diligently explained his theory to Mark but he couldn’t convince him. 283

Synonyms/Names John explained his theory to Jad but he couldn’t convince him. 285

Table 1: Examples from our dataset of the different perturbations applied to a WSC instance.

tators and majority vote results are reported. Re-
sults are reported later in §5. All three annotators
agreed on the most likely option in 82-83% of the
instances, except for gender, where a full agree-
ment was obtained for only 78% of the instances.
See Appendix B for further annotation statistics,
a sample of the template presented to annotators,
and restrictions applied to pool of annotators. We
did not require an initial qualification task to select
participants.

3.2 Confounds and Pitfalls

Constructing WSC problems is known to be dif-
ficult. Indeed, the original dataset was care-
fully crafted by domain experts and subsequent
attempts at creating WSC-like datasets by non-
experts such as in Rahman and Ng (2012) have
produced examples which were found to be less
challenging than the original dataset. Two likely
pitfalls listed in Levesque et al. (2012) concern
A) statistical preferences which make one answer
more readily associated with the special discrim-
inatory segment or other components of an ex-
ample4 (this is termed as Associativity, and it is
described as non-Google-proofness in Levesque
et al. (2012)); and B) inherent ambiguity which
makes the examples open to other plausible inter-
pretations. In what follows, we discuss these pit-
falls, demonstrating that the perturbed examples
remain resilient to both.

Quantifying Associativity To verify that the
perturbations have not affected the correctness of

4Trichelair et al. (2018) find that 13.5% of examples from
the original WSC might still be considered to be associative.

TEN NUM GEN VC RC ADV SYN/NA
Perturbation
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Figure 2: PMI divergence from the original WSC ex-
amples in average ∆ for each perturbation. Values be-
low 0 indicate that the difference in PMI between the
correct candidate and the incorrect one decreased.

the original problems with regards to pitfall A,
we employ pointwise mutual information (PMI)
to test the associativity of both the original and
perturbed examples. PMI is known to be a reason-
able measure of associativity (Church and Hanks,
1990) and, among a variety of measures, has been
shown to correlate best with association scores
from human judgements of contextual word asso-
ciation (Frassinelli, 2015). We compute unigram
PMI on the two corpora used to train BERT (see
Appendix C for details). Figure 2 shows the diver-
gence of the perturbed examples from the original
WSC dataset. We estimate divergence as the av-
erage difference in PMI between the correct (C)
and incorrect (I) candidates: ∆ = pmi(cj , xj) −
pmi(ij , xj) where X is either: i) the discrimina-
tory segments or ii) the full text of the example,
and pmi(·, ·) is average unigram PMI. ∆ can be
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seen as a measure of whether the correct or in-
correct candidate is a better ‘associative fit’ for ei-
ther the discriminatory segment or the full context,
making the examples trivial to resolve. Observe
that this difference in PMI declines for the per-
turbed examples, showing that these the perturbed
example do not increase in associativity.

Confirming Solvability Three expert annota-
tors5 are asked to solve the small subset of ex-
amples (99 in total across perturbations) which
were annotated incorrectly by the majority vote
of Mechanical Turk workers. To address pitfall
B, the expert annotators are asked to both attempt
to solve the instances and indicate if they believe
them to be too ambiguous to be solved. The major-
ity vote of the annotators determines the preferred
referent or whether an instance is ambiguous. Out
of a total of 99 examples, 10 were found to be am-
biguous. Of the remaining 89 examples, 67 were
answered correctly by the majority vote. See Ap-
pendix D for more details.

4 Experimental Protocol

Our experiments are designed to test the robust-
ness of language models to the Winograd Schema
perturbations described in the previous section.

Evaluation Models are evaluated using two
types of measures. The first is accuracy. For
each of the perturbations, we report (a) the ac-
curacy on the perturbed set (Perturbation accu-
racy), (b) the difference in accuracy on the per-
turbed set and on the equivalent subset of origi-
nal dataset:6 ∆Acc. = Perturbation accuracy −
Original subset accuracy, and (c) Pair accu-
racy, defined as the number of pairs for which
both examples in the pair are correctly answered
divided by the total number of pairs.

The second measure is stability, S. This is the
proportion of perturbed examples P ′ for which the
predicted referent is the same as the original pre-
diction P:

S =
| {(p′i, pi) | p′i ∈ P ′ ∧ pi ∈ P ∧ p′i = pi} |

| P |

Since the perturbations do not alter the correct ref-
erent, this provides a strong indication of robust-
ness towards them.

5Graduate students of linguistics.
6Recall that is was not possible to perturb all examples.

Baseline We take the unigram PMI between
candidates and discriminatory segments (see §3.2)
as a baseline. We expect that this simple baseline
will perform well for instances with a high level of
associativity but not otherwise.

Language Models Our analysis is applied to
three out-of-the-box language models (LMs):
BERT (Devlin et al., 2019), ROBERTA (Liu et al.,
2019), and XLNET (Yang et al., 2019). These
models are considered to be the state-of-the-art for
the wide variety of natural language understanding
tasks found in the GLUE (Wang et al., 2018) and
SuperGLUE (Wang et al., 2019) benchmarks. We
use the large pre-trained publicly available models
(Wolf et al., 2019).7

Fine-tuned Language Models We also ex-
amine the effect of fine-tuning language mod-
els. BERT+WW uses BERT fine-tuned on the
MaskedWiki and WscR datasets which consist of
2.4M and 1322 examples (Kocijan et al., 2019),
and RoBERTa+WG is fine-tuned on WinoGrande
XL, which consists of 40,938 adversarially filtered
examples (Sakaguchi et al., 2019). Both fine-
tuned models have been reported by recent work
to achieve significant improvements on the WSC.

Scoring To score the two candidate referents in
each WSC instance we employ one of two mecha-
nisms. The first, proposed in Trinh and Le (2018)
and adapted to masked LMs by Kocijan et al.
(2019) involves computing the probability of the
two candidates c1 and c2, given the rest of the text
in the instance s. To accomplish this, the pronoun
of interest is replaced with a number of MASK
tokens corresponding to the number of tokens in
each of c1 and c2. The probability of a candidate,
p(c|s) is then computed as the average of the prob-
abilities assigned by the model to the candidate’s
tokens and the maximum probability candidate is
taken as the answer. This scoring method is used
for all models, except ROBERTA+WG. For that,
we follow the scoring strategy employed in Sak-
aguchi et al. (2019) where an instance is split into
context and option using the candidate answer as
a delimiter.8

7https://github.com/huggingface/
pytorch-transformers

8[CLS] context [SEP] option [SEP], e.g.
[CLS] The sculpture rolled off the shelf because [SEP]
wasn’t anchored [SEP]. The blank is filled with either option
1 (the sculpture) or 2 (the trophy).

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
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5 Results and Analysis

Following the experimental protocol, we evaluate
the three out-of-the-box language models and the
two fine-tuned models on the original WSC and
each of the perturbed sets. Table 2 shows Pertur-
bation accuracy results for all models9 and con-
trasts them with human judgements and the PMI
baseline.

5.1 Language Models
Humans maintain a much higher performance
compared to out-of-the-box LMs across perturba-
tions. The difference in accuracy between the per-
turbed and original examples, ∆Acc., as defined in
Section 4 is shown in Figure 4. A general trend of
decrease can be observed for both models and hu-
mans across the perturbations. This decline in ac-
curacy is on average comparable between models
and humans — with a handful of exceptions. Tak-
ing the large gap in absolute accuracy into account,
this result might be interpreted in two ways. If a
comparison is made relative to the upper bound
of performance, human performance has suffered
from a larger error increase. Alternately, if we
compare relative to the lower bound of perfor-
mance, then the decline in the already low per-
formance of language models is more meaningful,
since ’there is not much more to lose’.

A more transparent view can be gleaned from
the stability results shown in Table 3. Here it
can be seen that the three out-of-the-box LMs
are substantially more likely to switch predictions
due to the perturbations than humans. Further-
more, we observe that the LMs are least stable
for word-level perturbations like gender (GEN),
number (NUM), and synonym or name replace-
ment (SYN/NA), while humans appear to be most
affected by sentence-level ones, such as relative
clause insertion (RC) and voice perturbation (VC).

Understanding Language Model Performance
To better understand the biases acquired through
pre-training which are pertinent to this task, we
consider a) a case of essential feature omission and
b) the marginal cases where LMs answer very cor-
rectly or incorrectly, in both the original and per-
turbed datasets. We present analysis for BERT,
but similar findings hold for the other LMs.

9It is interesting to note that XLNet is trained on Com-
monCrawl which indexes an online version of the original
WSC found here: https://cs.nyu.edu/faculty/
davise/papers/WinogradSchemas/WS.html.

Masking discriminatory segments result in iden-
tical sentence pairs because these segments are the
only part of a sentence that sets WSC pairs apart
(see Figure 1a). To determine whether there is a
bias in the selectional preference for one of the
candidates over the other, we test BERT on ex-
amples where these discriminatory segments have
been replaced with the MASK token. An unbiased
model should be close to random selection but
BERT consistently prefers (by a margin of ∼25-
30%) the candidate which appears second in the
text to the one appearing first, for all perturbations
except voice, where it prefers the first. This obser-
vation holds even when the two referents are in-
verted, which is possible for the ’switchable’ sub-
set of the examples as shown in Trichelair et al.
(2018). This indicates that the selections are not
purely semantic but also syntactic or structural and
it points towards BERT having a preference refer-
ents in the object role. Detailed results are pre-
sented in Appendix F.

Marginal examples are found where the model
assigns a much higher probability to one refer-
ent over the other. We extract the top 15% ex-
amples where the correct candidate is preferred by
the largest margin (Pcorrect � Pincorrect) and the
bottom 15% where the incorrect one is preferred
(Pincorrect � Pcorrect). Surprisingly, we find
that there is a large overlap (50%–60%) between
these two sets of examples, both in the original and
the perturbed datasets.10 For the examples which
are both the most correct and incorrect, BERT
strongly prefers one of the candidates without con-
sidering the special discriminatory segment which
flips the correct referent. Indeed we find that the
correlation between the probability assigned by
BERT to a referent when it is the correct refer-
ent and when it is not is very strong and signifi-
cant, with Spearman’s ρ ≈ 0.75 across perturba-
tions (see Appendix G for details).

10To clarify, consider the following original WSC pair:

(i) Alice looked for her friend Jade in the crowd. Since
she always has good luck, Alice spotted her quickly.

(ii) Alice looked for her friend Jade in the crowd. Since
she always wears a red turban, Alice spotted her
quickly.

The first example gives Pcorrect � Pincorrect by the largest
margin, and its counterpart gives Pincorrect � Pcorrect by the
largest margin. In other words, the model assigns a much
higher probability for Alice in both cases.

https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html.
https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html.
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ORIG TEN NUM GEN VC RC ADV SYN/NA Avg Avg ∆Acc.

PMI 54.38 54.09 52.96 57.42 54.09 54.41 54.41 51.92 54.24 −2.13

BERT 61.75 61.92 57.31 57.42 63.64 62.19 61.48 58.59 60.41 −1.26

XLNET 64.56 60.14 62.45 62.58 57.73 62.9 64.31 61.05 61.59 −2.78

ROBERTA 69.82 69.40 64.43 53.55 66.82 68.55 69.61 57.54 64.27 −5.16

BERT+WW 72.28 70.46 71.15 74.84 65.91 64.31 72.44 70.88 70.00 −2.82

ROBERTA+WG 88.42 89.32 88.53 86.45 83.63 86.93 88.7 89.05 87.62 −1.06

HUMANS 97.89 96.79 94.46 92.25 92.27 91.16 95.40 96.14 94.41 −3.83

Table 2: Original dataset accuracy (ORIG) and Perturbation accuracy results for all models and humans. The
penultimate column shows the average Perturbation accuracy results. The rightmost column shows the ∆Acc.
results, averaged over all perturbations.

TEN NUM GEN VC RC ADV SYN/NA Avg

PMI 100 100 73.91 100 100 100 100 96.27

BERT 89.32 69.17 88.39 79.55 83.75 91.87 68.42 81.40

XLNET 82.21 69.17 66.45 69.55 78.45 84.81 70.53 75.02

ROBERTA 91.46 77.47 61.29 79.09 83.75 89.75 68.77 79.26

BERT+WW 90.04 83.00 89.68 80.45 81.98 92.93 85.96 85.14

ROBERTA+WG 96.08 94.07 97.41 91.36 92.22 94.69 96.11 95.24

HUMANS 96.70 94.9 92.9 91.18 91.11 96.11 96.1 94.31

Table 3: Stability results for all models and humans.

5.2 The effect of fine-tuning

The accuracy and stability results (Tables 2
and 3) indicate that fine-tuning makes lan-
guage models more robust to the perturbations.
ROBERTA+WG, in particular, is the most accu-
rate and most stable model. While impressive,
this is not entirely surprising: fine-tuning on task-
specific datasets is a well-tested recipe for bias
correction (Belinkov et al., 2019b). Indeed, these
results provide evidence that it is possible to con-
struct larger fine-tuning datasets whose distribu-
tion is correct for the WSC. We note that both
fine-tuned models perform worst on the VC and
RC perturbations, which may not frequently oc-
cur in the crowd-sourced datasets used for fine-
tuning. To test this intuition, we apply a depen-
dency parser (UDPipe (Straka et al., 2016)) to
the WinoGrande XL examples, finding that only
∼ 5% of the examples are in the passive voice and
∼ 6.5% contain relative clauses.

How much fine-tuning data is needed? To
quantify the amount of fine-tuning data needed to

achieve robustness, we fine-tune ROBERTA on
the five WinoGrande training set splits defined by
Sakaguchi et al. (2019): XS (160)11, S (640), M
(2558), L (10234), and XL (40398). Figure 3
shows the average accuracy and stability scores
for the models fine-tuned on each of the train-
ing splits12. We observe that the two smallest
splits do not have a sufficient number of examples
to adequately bias the classification head, lead-
ing to near-random performance. The model fine-
tuned on the M split—with just 2558 examples—
is, however, already able to vastly outperform the
non-fine-tuned ROBERTA. Increasing the num-
ber of examples five-fold and twenty-fold leads to
significant but fast diminishing improvements.

11No. of examples in set.
12Note that the stability score for the model fine-tuned on

XL in Figure 3 is different from that reported in Table 3.
In the latter we reported results from the model provided
by Sakaguchi et al. (2019), rather than the model we fine-
tuned ourselves. Since we utilise identical hyperparameters
to theirs for fine-tuning, this anomalous difference in score
may perhaps be explained by a difference in initialization as
suggested in Dodge et al. (2020).
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Figure 3: Accuracy and stability scores (averaged
across perturbations) for ROBERTA when fine-tuned
on five increasing training split sizes.

How do perturbations affect token probability
distributions? To obtain a holistic view of the
effect the perturbations have on LMs and fine-
tuned LMs, we analyze of the shift in the probabil-
ity distribution (over the entire vocabulary) which
a model assigns to a MASK token inserted in place
of the pronoun of interest. We apply probability
distribution truncation with a threshold of p = 0.9
as proposed in Holtzman et al. (2019) to filter
out the uninformative tail of the distribution. Fol-
lowing this, we compute the Jensen–Shannon dis-
tance between this dynamically truncated distribu-
tion for an original example and each of its per-
turbed counterparts. Figure 5 shows the average of
this measure over the subset of the 128 examples
which are common to all perturbations. Overall,
we observe that large shifts in the distribution cor-
respond to lower stability and accuracy scores and
that fine-tuned models exhibit lower shifts than
their non-fine-tuned counterparts. The difference
in shifts between out-of-the-box models and their
fine-tuned counterparts is lower for the VC, RC
and ADV perturbations, meaning that when fine-
tuned, the models’ probability distributions are
roughly just as divergent for these perturbations as
they were before fine-tuning. We hypothesize the
same reasons we did in 5.2, which is that these
examples are just under-represented in our fine-
tuning corpus; indeed, these results roughly cor-
respond to the differences in ∆Acc. from Figure 4.

Further details about the number of examples
excluded via the probability distribution trunca-
tion and other measures of the perturbations’ ef-
fect can be found in Appendix G.
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Figure 4: ∆Acc. results for all models across perturba-
tions. Values below the x-axis indicate a decline in ac-
curacy compared to the original dataset.

5.3 Error Analysis
Pair Accuracy Here we consider a more chal-
lenging evaluation setting where each WSC pair is
treated as a single instance. Since the WSC ex-
amples are constructed as minimally contrastive
pairs (Levesque et al., 2012), we argue that this
is an appropriate standard of evaluation. Consider
again the example in Figure 1a. It is reasonable
to suppose that for an answerer which truly ‘un-
derstands’ (Levesque et al., 2012), being able to
link the concepts heavy and son in one of the res-
olutions is closely related and complementary to
linking the concepts weak and man in the other.13

The results for this evaluation are shown in Fig-
ure 6. They show that human resolution of the
problems exhibits greater complementarity com-
pared to the language models; human pair accu-
racy (pair) is closer to perturbation accuracy (sin-
gle) than is the case for the LMs. Furthermore,
human performance on pair accuracy is more ro-
bust to perturbations when compared to the mod-
els. Indeed, the large gap between pair accu-
racy and perturbation accuracy raises some doubts
about the performance of these models. However,
ROBERTA-WG is a notable exception, showing
near-human robustness to pair complementarity.

Associativity Next, we examine the effect of as-
sociativity on performance. Figure 7 shows ac-
curacy results14 for all perturbations on the asso-
ciative and non-associative subsets of the WSC as
labelled by Trichelair et al. (2018). We observe
that the difference between associative and non-

13As a sanity check, consider random pairings of WSC ex-
amples. There is no such complement.

14Note that the large variance in results on the associative
subset of gender is due to it consisting of only two examples.
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Figure 5: Jensen-Shannon distance between the origi-
nal and perturbed examples when masking the pronoun
of interest.

associative is much smaller for humans and that
unlike all language models, humans do better on
the former than the latter. As expected, the PMI
baseline does almost as well as the LMs on the as-
sociative subset but it performs at chance level for
the non-associative subset.

6 Conclusion

We presented a detailed investigation of the ef-
fect of linguistic perturbations on how language
models and humans perform on the Winograd
Schema Challenge. We found that compared to
out-of-the-box models, humans are significantly
more stable to the perturbations and that they an-
swer non-associative examples with higher accu-
racy than associative ones, show sensitivity to
WSC pair complementarity, and are more sen-
sitive to sentence-level (as opposed to word-
level) perturbations. In an analysis of the be-
haviour of language models, we observe that there
is a preference for referents in the object role
and that the models do not always consider the
discriminatory segments of examples. Finally, we
find that fine-tuning language models can lead
to much-improved accuracy and stability. It re-
mains an open question whether this task-specific
approach to generalisation constitutes a true ad-
vancement in “reasoning”. Fine-tuning a model
on a rather large number of examples similar to the
WSC leads to increased robustness, but this stands
in stark contrast to humans, who are robust to the
perturbations without having been exposed to sim-
ilar examples in the past.
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Figure 6: Pair accuracy and Perturbation accuracy
results. The latter are labeled as single.
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Figure 7: Perturbation accuracy on the Associative (A)
and Non-Associative (N) subsets of the data.
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Pert. Full Agreement Avg. Time

ORG 82.45 15.32
TEN 82.91 16.39
NUM 83.00 19.56
GEN 78.06 19.24
VC 82.72 17.02
RC 82.68 17.83
ADV 82.68 17.69
SYN/NA 82.45 15.26

Table 4: Annotation statistics: Proportion of examples
with full agreement and average time required for an-
swering in seconds.

A Observations on original dataset

1. A few of the original examples were of un-
orthodox design: for instance, consider the
pair:

(1) a. Look! There is a minnow swimming
right below that duck! It had better
get away to safety fast!

b. Look! There is a shark swimming
right below that duck! It had better
get away to safety fast!

Here, instead of having a discriminatory seg-
ment select which of the two nouns could be
the antecedent, one of the nouns is switched
out with another.

2. Example 90 has a typo in the question where
Kamchatka is spelled as ‘Kamtchatka’.

B Human Judgements

Table 4 shows the proportion of instances for
which all three annotators agreed and the average
time required by annotators for the original exam-
ples and each of the perturbed datasets. Figure
8 shows the Amazon Mechanical Turk template
used. The annotator pool was restricted to native
speakers of English located in the United States
who were classified by Mturk as ‘masters’ and had
a HITs approval rate above 99%.

C Pointwise Mutual Information

We compute unigram Pointwise Mutual Informa-
tion statistics using the Hyperwords15 package
(Levy et al., 2015). If a corpus is split into a col-
lection D of words W and their contexts C, we

15https://bitbucket.org/omerlevy/hyperwords/
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Figure 8: Sample of Mturk template shown to annotators.

can compute co-occurrence counts for each pair of
w ∈W and c ∈ C. PMI is then defined as the log-
ratio between the joint probability of w with c and
the product of their marginal probabilities. Refer
to Levy et al. (2015) for further details. For gener-
ating a collection D of word-context pairs, we use
the following hyperparameter settings: a minimal
word count of 200 for being in the vocabulary, a
context window size of 6, dynamic context win-
dows, positional contexts (where each context is a
conjunction of a word and its relative position to
the target word).

D Confirming Solvability

Table 5 shows the breakdown by perturbation type
of the expert annotations which were gathered for
examples that were annotated incorrectly by the
Mechanical Turk workers.

E Notes on construction of perturbed
dataset

Tense switch (TEN) Examples 168–172 could
not be changed while maintaining the semantics
of the instance intact.

Relative clause insertion (RC) The pre-selected
set of 19 templates is shown below:

Counts All Ambig. Non-Ambig. Correct

TEN 9 0 9 8
NUM 14 2 12 9
GEN 12 2 10 10
VC 17 3 14 12
RC 25 1 24 13
ADV 13 0 13 11
SYN/NA 9 2 7 4

Table 5: Breakdown of solvability annotation counts by
perturbation. Ambig. indicates the count of examples
labeled as Ambiguous, Non-Ambig. is the number of
remaining examples. Correct indicates the number of
those which is solved correctly.
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• “who we had discussed ”

• “who he had discussed ”

• “who she had discussed ”

• “who you had discussed ”

• “which we had seen ”

• “which he had seen ”

• “which she had seen ”

• “which you had seen ”

• “who we know from ”

• “who he knows from ”

• “who she knows from ”

• “who you know from ”

• “that is mentioned in ”

• “that is located at ”

• “that is close to ”

• “that is known for ”

• “which had been ”,

• “who you met ”

• “that is ”

• “which was put there ”

Synonym/Name substitution (SYN/NA) No ap-
propriate synonyms were found for tide and wind
in examples 130 and 131.

Adverbial qualification (ADV) Two instances
(95 and 96) in which the main verb was already
modified were excluded.

F Referent preferences

Table 6 shows the percentage of examples in the
switchable subset of the datasets where the second
referent in the text was assigned a higher probabil-
ity than the first, for both the original and reversed
referent order.

G Effect of perturbations

Nucleus Sampling Table 7 shows the average
number of vocabulary items kept after Nucleus
sampling with p = 0.9 is applied.

Pert. Original Reversed

ORG 66.90 70.42

TEN 62.38 65.14
NUM 60.16 56.10
GEN 72.17 75.65
VC 38.14 39.83
RC 63.57 68.57
ADV 68.08 70.92
SYN/NA 59.12 64.23

Table 6: Percentage of examples in switchable subset
with probabilities assigned to the second referent in the
text rather than the first, for both the original and re-
versed referent order.

Probability shift is defined as the difference in
the probability of a candidate before and after a
perturbation is applied. Figure 9 shows the dif-
ference in average probability shift between the
correct candidates and the incorrect candidates for
each of the models per perturbation type. This pro-
vides a view that is meaningfully different from
accuracy, as the probability of a candidate can
shift without exceeding the threshold required to
change a model’s prediction. We find that there is
a general trend of the incorrect candidates becom-
ing more likely relative to the correct ones. This
can be seen as confirming that, on average, nearly
all perturbations make the problems more difficult
for all models.

Hidden state representation distance is used
to provide a more holistic view of the correspon-
dence between the representations derived for the
different perturbations. The analysis is conducted
on the 128 examples which are common between
all datasets. A representation is derived for each
example by taking the max-pool of hidden-state
representations of a model’s final layer. For each
of the seven perturbations p, we compute pairwise
correlation distance16 between each pair of origi-
nal and perturbed example representations yield-
ing a vector ~Dp ∈ R128. The mean of ~Dp is then
computed as an aggregate measure of the distance
between the representations derived from a pertur-
bation p and the original o. Figure 10 shows a plot
of this for all perturbations for each of the models.

16This is preferable to other distance measures as it nor-
malizes both the mean and variance of activity patterns over
experimental conditions.
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Perturbation BERT ROBERTA XLNET BERT+WW ROBERTA+WG

ORG 19.81 203 1.26 1.07 1021.44
TEN 23.88 165.84 1.26 1.09 947.53
NUM 90.35 341.05 1.57 1.30 1087.78
GEN 18.11 128.37 1.44 1.19 1039.84
VC 41.88 154.21 1.28 1.09 961.04
RC 21.02 97.35 1.35 1.14 952.09
ADV 17.01 145.35 1.23 1.10 1004.14
SYN/NA 31.50 199.26 1.39 1.11 1055.71

VOCAB. SIZE 30522 50265 32000 30522 50265

Table 7: Average number of vocabulary items left after probability distribution truncation with p = 0.9 is applied.
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Figure 9: The difference between average probability
shift for the correct and the incorrect referents per per-
turbation. Y-axis values above zero mean the correct
referent became more likely on average after a pertur-
bation and vice versa.

H Candidate probability correlations

Figure 11 shows the average correlation between
a candidate’s probability when it is the correct ref-
erent and when it is not.
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Figure 10: The correlation of pronoun hidden state rep-
resentation distance from the original for each pertur-
bation.
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Figure 11: Correlation (Spearman’s ρ) between the
probability of a candidate when it is the correct can-
didate and when it is the incorrect one. Candidates A
and B are the first and second candidates in a WSC in-
stance.


