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Abstract

Definition generation, which aims to auto-
matically generate dictionary definitions for
words, has recently been proposed to assist
the construction of dictionaries and help peo-
ple understand unfamiliar texts. However, pre-
vious works hardly consider explicitly mod-
eling the “components” of definitions, lead-
ing to under-specific generation results. In
this paper, we propose ESD, namely Explicit
Semantic Decomposition for definition gen-
eration, which explicitly decomposes mean-
ing of words into semantic components, and
models them with discrete latent variables for
definition generation. Experimental results
show that ESD achieves substantial improve-
ments on WordNet and Oxford benchmarks
over strong previous baselines.

1 Introduction

Dictionary definition, which provides explanatory
sentences for word senses, plays an important role
in natural language understanding for human. It is
a common practice for human to consult a dictio-
nary when encountering unfamiliar words (Fraser,
1999). However, it is often the case that we can-
not find satisfying definitions for words that are
rarely used or newly created. To assist dictionary
compilation and help human readers understand un-
familiar texts, generating definitions automatically
is of practical significance.

Noraset et al. (2017) first propose definition
modeling, which is the task of generating the dic-
tionary definition for a given word with its embed-
ding. Gadetsky et al. (2018) extend the work by
incorporating word sense disambiguation to gener-
ate context-aware word definitions.Both methods
adopt a variant of encoder-decoder architecture,

∗ Equal contribution
† Corresponding author

Word captain
Reference the person in charge of a ship
Generated the person who is a member of a ship

Table 1: An example of the definitions of word “cap-
tain”. Reference is from Oxford dictionary and Gener-
ated is from the method of Ishiwatari et al. (2019).

where the word to be defined is mapped to a low-
dimension semantic vector by an encoder, and the
decoder is responsible for generating the definition
given the semantic vector.

Although the existing encoder-decoder architec-
ture (Gadetsky et al., 2018; Ishiwatari et al., 2019;
Washio et al., 2019) yields reasonable generation
results, it relies heavily on the decoder to extract
thorough semantic components of the word, lead-
ing to under-specific definition generation results,
i.e. missing some semantic components. As illus-
trated in Table 1, to generate a precise definition of
the word “captain”, one needs to know that “cap-
tain” refers to a person, “captain” is related to ship,
and “captain” manages or is in charge of the ship,
where person, ship, manage are three semantic
components of word “captain”. However, due to
the lack of explicitly modeling of these semantic
components, the model misses the semantic com-
ponent “manage” for the word “captain”.

Linguists and lexicographers define a word by
decomposing its meaning into its semantic com-
ponents and expressing them in natural language
sentences (Wierzbicka, 1996). Inspired by this,
Yang et al. (2019) incorporate sememes (Bloom-
field, 1949; Dong and Dong, 2003), i.e. minimum
units of semantic meanings of human languages, in
the task of generating definition in Chinese. How-
ever, it is just as, if not more, time-consuming and
expensive to label the components of words than to
write definitions manually.

In this paper, we propose to explicitly decom-
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pose the meaning of words into semantic compo-
nents for definition generation. We introduce a
group of discrete latent variables to model the un-
derlying semantic components.Extending the estab-
lished training technique for discrete latent variable
used in representation learning (Roy et al., 2018)
and machine translation tasks (van den Oord et al.,
2017; Kaiser et al., 2018; Shu et al., 2019), we fur-
ther propose two auxiliary losses to ensure that the
introduced latent variables capture the word seman-
tics. Experimental results show that our method
achieves significant improvements over previous
methods on two definition generation datasets. We
also show that our model indeed learns meaningful
and informative latent codes, and generates more
precise and specific definitions.

2 Background

In this section, we introduce the background of the
original definition modeling task and two extensive
works to original definition modeling.

2.1 Definition Modeling

Definition generation was firstly proposed by No-
raset et al. (2017). The goal of the original task is to
generate a natural language description D = d1:T
for a given word w∗. The authors view it as a con-
ditional language modeling task:

p(D|w∗) =
T∏
t=1

p(dt|di<t, w∗) (1)

The main drawback of Noraset et al. (2017) is
that they cannot handle words with multiple differ-
ent meanings such as “spring” and “bank”, whose
meanings can only be disambiguated using their
contexts.

2.2 Word Context for Definition Modeling

To tackle the polysemous problem in the
definition generation task, Gadetsky et al.
(2018) introduce the task of Context-
aware Definition Generation (CDG), in which a
usage example C = c1:|C| of the target word is
given to help disambiguate the meaning of the
word.

For example, given the word “bank” and its con-
text “a bank account”, the goal of the task is to
generate a definition like “an organization that pro-
vides financial services”. However, if the input
context has been changed to “He jumped into the

river and swam to the opposite bank.”, then the ap-
propriate definition would be “the side of a river”.

They extend Eqn. 1 to make use of the given
context as follows:

p(D|w∗, C) =
T∏
t=1

p(dt|di<t, w∗, C) (2)

2.3 Decomposed Semantic for Definition
Modeling

Linguists consider the process of defining a word
is to decompose its meaning into constituent
components and describe them in natural lan-
guage sentences (Goddard and Wierzbicka, 1994;
Wierzbicka, 1996). Previously, Yang et al. (2019)
take sememes as one kind of such semantic compo-
nents, and leverage external sememe annotations
HowNet (Dong and Dong, 2003) to help definition
generation. They formalize the task of definition
generation given a word w∗ and its sememes s as
follows:

p(D|w∗, s) =
T∏
t=1

p(dt|di<t, w∗, s) (3)

Although it is shown their method can generate
definitions more accurately, they assume that an-
notations of sememes are available for each word,
which can be unrealistic in real-world scenarios.

3 Approach

In this section, we present ESD, namely Explicit
Semantic Decomposition for context-aware defini-
tion generation.

3.1 Modeling Semantic Components with
Discrete Latent Variables

It is linguistically motivated that to define a word
is to decompose its meaning into constituent
components and describe them in natural lan-
guage sentences (Goddard and Wierzbicka, 1994;
Wierzbicka, 1996). We assume that there exists a
set of discrete latent variables z = z1:M that model
the semantic components ofw∗, whereM is the hy-
perparameter denoting the number of decomposed
components. Then the marginal likelihood of a
definition D that we would like to maximize given
a target word w∗ and its context C can be written
as follows:

pθ(D|w∗, C) =
∑
z

pθ(z|w∗, C)pθ(D|w∗, C, z)
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Figure 1: Neural architecture of ESD, including the
word encoder, context encoder, the decoder and the def-
inition encoder for the posterior networks.

However, it is generally computationally in-
tractable to sum over all the configurations of latent
variables. In order to address this issue, we instead
introduce a approximate posterior qφ(z|w∗, C,D)
and optimize the evidence lower bound (ELBO) of
the log likelihood log pθ(D|w∗, C) for training:

JELBO = E
qφ(z|w∗,C,D)

[
log pθ(D|z, w∗, C)

]
−KL(qφ(z|w∗, C,D)||pθ(z|w∗, C))
≤ log pθ(D|w∗, C)

(4)

At the training phase, both posterior distribution
qφ(z|w∗, C,D) and prior distribution pθ(z|w∗, C)
are computed and z is sampled from the posterior
distribution.

At the testing phase, due to the lack of D, we
only compute the prior distribution pθ(z|w∗, C)
and obtain z by applying argmax to it.

Note that for the simplicity of notions, we denote
qφ(zi|w∗, C,D) and pθ(zi|w∗, C) as qi and pi in
the following sections, respectively.

3.2 Model Architecture

As shown in Figure 1, ESD is composed of three
modules: the encoder stack, a decoder, and a se-
mantic components predictor. Before detailing
each component of ESD, we overview the architec-
ture for a brief understanding.

Following the common practice of context-aware
definition models (Gadetsky et al., 2018; Ishiwatari
et al., 2019), we first encode the source word w∗

into its representation r∗ and context C=c1:|C| into
its contextual representation H=h1:|C|. The seman-
tic component predictor is responsible for predict-
ing the semantic components z=z1:M . Finally, the
decoder generates the target definition from the se-
mantic components z, the word representation r∗
and the context representation H .

3.2.1 Encoder

Same as Ishiwatari et al. (2019), our encoder con-
sists of two parts, namely word encoder and context
encoder.

Word Encoder The word encoder is responsi-
ble for mapping the word w∗ to a low-dimensional
vector r∗, and consists of a word embedding and
a character level encoder. The word embedding
is initialized by large-scale pretrained word em-
beddings such as GloVe (Pennington et al., 2014)
or FastText (Bojanowski et al., 2017), and is kept
fixed at the training time. Previous works (No-
raset et al., 2017; Ishiwatari et al., 2019) also show
that morphological information can be helpful for
definition generation. We employ a convolutional
neural network (Krizhevsky et al., 2012) to encode
the character sequence of the word. We concatenate
the word embedding and the character encoding to
get the word representation r∗.

Context Encoder We adopt a standard bi-
directional LSTM network (Sundermeyer et al.,
2012) to encode the context, which takes word
embedding sequence of the context C=c1:|C| and
outputs a hidden state sequence H=h1:|C|.

3.2.2 Semantic Components Predictor

For the proposed ESD, we need to model both the
semantic components posterior qφ(z|w∗, C,D) and
the prior pθ(z|w∗, C).

Semantic Components Posterior Approximator
Exactly modeling the true posterior qφ(z|w∗, C,D)
is usually intractable. Therefore, we adopt an ap-
proximation method to simplify the posterior in-
ference (Zhang et al., 2016) Following the spirit
of VAE (Bowman et al., 2016), we use neural net-
works for better approximation in this paper.

Specifically, we first compute the representation
HD=h

′
1:T of the definition D = d1:T with a bi-

directional LSTM network. We then obtain the
representation of definition D and context C with
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max-pooling operation.

hD = max-pooling(h
′
1:T ) (5)

hC = max-pooling(h1:|C|) (6)

With these representations, as well the word
representation r∗, we compute the posterior
approximation qi of zi as follows:

qi = softmax(W q
i [r∗, hC , hD] + bqi )

where the W q
i and bqi are the parameters of the

semantic components posterior approximator.

Semantic Components Prior Model Similar
to the posterior, we model the prior pi of zi
by a neural network with the representation
hC (computed by Eqn 6) and r∗ as follows:

pi = softmax(W p
i [r∗, hC ] + bpi )

where the W p
i and bpi are the parameters of the

semantic components prior.

3.2.3 Definition Decoder
Given the word w∗, the context C and the semantic
component latent variables z, our decoder adopt a
LSTM to model the probability of generating defi-
nition D given word w∗, context C, and semantic
components z:

p(D|w∗, C, z) =
T∏
t=1

p(dt|d<t, w∗, C, z) (7)

At each decoding time step, we first obtain the
context vector ct as follows:

αti =
exp(sTt hi)∑|C|
j=1 exp(sTt hj)

ct =

|C|∑
i

αtihi

Moreover, it is intuitive that at different time
steps the decoder is describing different seman-
tic perspectives of the word, thus needing differ-
ent semantic components (Yang et al., 2019). We
embed each zi using a latent embedding matrix
Ei ∈ RK×D and get M semantic component vec-
tors {E1(z1), E2(z2), · · · , EM (zM )}. We then ap-
ply an attention mechanism over the semantic com-
ponent vectors and obtain a semantic context vector
ot :

βti =
exp(sTt Ei(zi))∑M
j=1 exp(sTt Ei(zi))

ot =

M∑
i

βtiEi(zi)

Finally, we adopt a GRU-like (Cho et al., 2014)
gate mechanism to allow the decoder to dynami-
cally fuse information from the word representation
r∗, context vector ct, and semantic context vector
ot, which can be calculated as follows:

ft = [r∗; ct;ot]

ut = σ(Wu[ft; st] + bu)

vt = σ(Wr[ft; st] + br)

ŝt = tanh(Ws[(vt � ft]; st] + bs)

s
′
t = (1− ut)� st + ut � ŝt

where, W∗ and b∗ are weight matrices and bias
terms, respectively.

3.3 Learning
The loss function in Eqn. 4 serves as our primary
training objective. Besides, since the latent vari-
ables are designed to model the semantic compo-
nents, we propose two auxiliary losses to ensure
that these latent variables can learn informative
codes and capture the decomposed semantics.

Semantic Completeness Objective In order to
generate accurate definitions, the introduces latent
variables must capture all perspectives of the word
semantics. For example, it is impossible to pre-
cisely define the word “captain” in the context “The
captain gave the order to abandon the ship” with-
out knowing that (1) a captain is a person, (2) a
captain works in a ship, and (3) a captain usually
is in charge of a ship. Therefore, an ideal z should
contain sufficient information for predicting the
definition.

We first propose to leverage sememe annotations
of HowNet (Dong and Dong, 2003) as an exter-
nal signal to guide the learning of latent variables.
As we mentioned in Section 2.3, sememes are also
known to be helpful for definition generation (Yang
et al., 2019). Previously, Xie et al. (2017) show
that it is possible to predict sememes of words
from large scale pretrained distributional represen-
tations.

Suppose the set of sememes in HowNet are de-
noted by S = {s1, s2, · · · , sn}, and each word w
in HowNet is annotated by a small subset of S,
denoted by Sw = {si|si ∈ S}. Inspired by Weng
et al. (2017), we adopt a bag-of-word loss to ensure
that z is informative enough to be predictive about
sememe annotations Sw:

L(sem)
com = −log

∑
si∈Sw

p(si|z) (8)
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Our next motivation is that the sememes anno-
tation is still expensive, while definitions of words
are off-the-shelf when training. Inspired by Bao
et al. (2019) and John et al. (2019), we enforce the
model to predict every words in the target defini-
tionD=d1:T to ensure that z is informative enough:

L(def)
com = −log

T∑
i=1

p(di|z) (9)

Semantic Diversity Objective To achieve the
goal of decomposing semantics, it is crucial that
there are several different latent variables that sep-
arately model different semantic components. In
order to prevent that multiple latent variables de-
generate to one, we encourage the semantic vectors
to be dissimilar from each other by introducing a
disagreement loss:

Ldiv = −
∑

1≤i<j≤M
dist(Ei(zi), Ej(zj)) (10)

where, dist(·, ·) is a distance function between two
distributions. We adopt cosine distance as the dis-
tance function in this paper.

Overall Objectives With the different overall
training loss used, there are two variants of ESD.
The original loss of ESD is

Lbase = −JELBO

The first variant of ESD (denoted by ESD-def) in-
cludes the optimization of semantic completeness
and semantic diversity, which is optimized with:

LESD-def = Lbase + αL(def)
com + βLdiv

Grounding on the annotated sememes, the second
variant of ESD (denoted by ESD-sem) is optimized
with:

LESD-sem = Lbase + αL(sem)
com + βLdiv

4 Experiments

4.1 Experimental Setting
Datasets To demonstrate the effectiveness of our
method, we conduct experiments on two datasets
used in previous work (Ishiwatari et al., 2019):
WordNet 1 and Oxford 2. Each entry in the datasets
is a triple of a word, a piece of its usage example,
and its corresponding dictionary definition.

1https://wordnet.princeton.edu/
2https://en.oxforddictionaries.com/

Sememe Annotation Resources Following pre-
vious work (Yang et al., 2019), we take HowNet as
the sememe annotation resource, which is an on-
tology that contains annotations for over 100,000
words with sememes. Each word in HowNet may
have several senses, and each sense is annotated
with several sememes explaining the meaning of it.

Hyperparameters We adopt a two-layer LSTM
network as our context encoder and definition de-
coder. We set the hidden dim to 300. Following
Ishiwatari et al. (2019), we set the CNN kernel for
character encoder of length 2, 3, 4, 5, 6 and size
10, 30, 40, 40, 40 respectively with a stride of 1.
The dimension of the final character level encod-
ing is 160. We set the number of latent variables
M and the number of categories K to 8 and 256,
respectively.

Optimization We adopt Adam (Kingma and Ba,
2014) to optimize our model. The learning rate is
set to 0.001. The α and β we used in the overall
objective are set to 1.0 and 0.1, respectively. All
hyperparameters are chosen based on the perfor-
mance on the validation set and are used across all
the experiments.

Competitors We compare our model with sev-
eral baseline models:

1. I-Attention (Gadetsky et al., 2018) uses the
context to disambiguate the word embedding
and cannot utilize context information at the
decoding time.

2. LOG-CaD (Ishiwatari et al., 2019) is simi-
lar to our architecture, without modeling the
semantic component.

3. Pip-sem is our intuitive pipeline that con-
sists of a sememe predictor and a definition
generator. The sememe predictor is trained
on HowNet and is responsible for annotating
words in definition generation datasets. The
definition generator is used to generate defi-
nitions given the word, context, and pseudo
annotations of sememes.

Metrics We adopt two several automatic metrics
that are often used in generation tasks: BLEU (Pa-
pineni et al., 2002) and Meteor (Denkowski and
Lavie, 2014). BLEU considers the exact match be-
tween generation results and references and is the
most common metric used to evaluate generation
systems. Following previous work, we compute
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Model
WordNet Oxford

BLEU METEOR BLEU METEOR
I-Attention (Gadetsky et al., 2018) 23.77 / 17.25 /
LOG-CaD (Ishiwatari et al., 2019) 24.79 / 18.53 /
*LOG-CaD 24.70 8.66 18.24 8.43
†Pip-sem 25.52 11.33 19.89 11.10
ESD-def 25.75 11.52 19.98 10.79
†ESD-sem 26.48 12.45 20.86 11.86

Table 2: BLEU and Meteor scores on WordNet and Oxford dataset. ‘†’ indicates models that incorporate external
sememe annotations while training. ‘*’ denotes our reimplementation of previous model.

Model Fluency Semantic Completeness
LOG-CaD 3.53 3.01
ESD-def 3.55 3.45

Table 3: Human annotated scores on Oxford dataset.

the sentence level BLEU score. We also consider
Meteor (Denkowski and Lavie, 2014), a metric that
takes synonyms, stemming, and paraphrases into
consideration while calculating the score. Meteor
score is said to favor word choices than word or-
ders and favor recall over precision (Denkowski
and Lavie, 2014). We use the recommended hyper-
parameters to compute Meteor scores.

4.2 Automatic Evaluation

The results, as measured by the automatic evalua-
tion metrics, i.e. BLEU and Meteor, are presented
in Table2.

ESD significantly improves the quality of defi-
nition generation with a large margin. On all
the benchmark datasets, our ESD that incorporates
sememes achieves the best generation performance,
both in BLEU and Meteor scores. It is worth not-
ing that the improvement of the Meteor score is
more significant than the BLEU score, i.e. 3.79
vs. 1.78 on WordNet, and 3.43 vs. 2.62 on Oxford,
indicating that our model is better at recalling se-
mantically correct words, which is consistent with
our motivation to address the under-specific prob-
lem.

Decomposing semantics is indeed helpful to def-
inition modeling. The models that generate defi-
nition with the explicit decomposed semantics (Pip-
sem, ESD-def and ESD-sem) leads to remarkable
improvements over the competitor without decom-
posed component modeling (I-Attention and LOG-
CaD). The comparison between the ESD-def, I-
Attention and LOG-CaD is fair because all of them

do not have the external sememe annotation during
training and testing. Notably, ESD-sem also im-
proves over Pip-sem by a large margin. This shows
that the way our method leverages the sememe
annotations, i.e. using them as external signals
of word semantics, is more effective than simple
annotate-then-generate pipeline methods.

4.3 Human Evaluation

In order to further compare the proposed methods
and the strongest previous method (i.e., the Log-
CaD model), we performed a human evaluation of
the generated definitions. We randomly selected
100 samples from the test set of Oxford dataset, and
invited four people with at least CET6 level English
skills to rate the output definitions in terms of flu-
ency and semantic completeness from 1 to 5 points.
The averaged scores are presented in Table3. As
can be seen from the table, definitions generated by
our methods are rated higher in terms of semantic
completeness while achieving comparable fluency.

4.4 Ablation Study

We also perform an ablation study to quantify the
effect of different model components.

Semantic completeness objective We can see
that the semantic completeness objective, i.e. L(∗)com
leads to a substantial improvement in terms of Me-
teor score (Line 3 and Line 4 vs. Line 1), which
indicates that the gain obtained by our model is not
by trivially adopting the conditional VAE frame-
work to definition generation task.

Semantic diversity objective The experimental
results show that although independently using the
semantic diversity objective leads to no gains (Line
2 vs. Line 1), regularizing the model to learn di-
verse latent codes when using semantic complete-
ness objective can improve the generation perfor-
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Lbase Ldiv L(def)
com L(sem)

com Meteor
1 X 8.99
2 X X 9.15
3 X X 11.09
4 X X 11.88
5 X X X 11.56
6 X X X 12.43
7 X X X X 12.87

Table 4: Ablation study on the development set of Ox-
ford dataset.
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Figure 2: The Meteor scores of ESD on Oxford test
dataset with different M and K, where M is the number
of discrete latent variables used in ESD, and K is the
number of categories.

mance of the model (Line 5 vs. Line 3 and Line 6
vs. Line 4).

5 Analysis

To gain more insight into the improvement pro-
vided by the proposed method, we perform several
analyses in this section.

5.1 Influence of the number of components

To validate that explicit decomposition of word
semantics is beneficial for definition generation,
we compare the performances of several models
with different number of latent variables, and plot
the result in Figure 2.

Overall, setting multiple latent variables given
the same categories achieves noticeable improve-
ments over M=1, i.e. encoder-decoder model with
word prediction mechanism. However, it is not the
case we should adopt as many latent variables as
possible. The reason for it is that generally a word
has a limited number of semantic components (3-10
in HowNet), and having too many components in
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parameter 

6

8

10

12

14

16

18

M
et

eo
r S

co
re

LOG-CaD
ESD-def
ESD-sem

Figure 3: Comparison between LOG-CaD and ESD-
def with different parameter δ. δ controls how much
we prefer content words over function words. Larger δ
implies we prefer content words more.

the latent models would damage the performance.

It is interesting to see that when we set the num-
ber of components M to 8, the optimal number
of categories K is 256. As the total number of
semantic units we are modeling is M × K, this
approximately equals to the number of sememes in
HowNet.

5.2 Improvements on different word types

The goal of definition generation task is to acceler-
ate dictionary compilation or to help humans with
unfamiliar text. In both application scenarios, it
is more important to generate content words that
describe the semantic of the given word, rather
than function words or phrases such as “refer to”
and “of or relating to”. To understand which kind
of word our model achieves the largest improve-
ments on, we evaluate Meteor scores of the baseline
model and our model under different values of δ,
where δ is a hyperparameter used by Meteor that
controls how much we prefer content words over
function words. Figure 3 shows the results. We
can see that as our preference over content words
increases, both the performances of baseline model
and our model decreases, indicating that it is more
difficult for current definition generation models to
generate useful content words than function words.
However, the gap between the baseline model and
our model becomes larger when δ increases, which
shows that the gain of our model is mainly from
the content words instead of function words.
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Word militia

Context
The militia repelled attacks from without and denied the executive the means to
oppress from within.

Reference
a group of people who are not professional soldiers but who have had military training
and can act as an army

LOG-CaD a group of people engaged in a military force
ESD-def a group of people engaged in a military force and not very skillful

Word captain
Context The captain gave the order to abandon ship

Reference the person in charge of a ship
LOG-CaD a person who is a member of ship
ESD-def a person who is the leader of a ship

Table 5: Examples from LOG-CaD and ESD-def. We highlight the different part between two models in red.

word z1 z2 z3 z4 z5 z6 z7 z8
red 54 7B 9C 60 A1 A7 F5 C7

yellow 54 92 7F 22 A1 A7 F5 55
blue 6A E5 7F 22 A1 A7 F5 C7
cat 7A E3 C4 22 A1 A7 F5 3B
dog 7A 43 C4 60 A1 A7 F5 3B

penguin 7A C3 C4 60 A1 BE F5 3B

Table 6: Examples of the learned latent codes. Each
line is a word with the hexadecimal identifier of its cor-
responding latent codes. Color words like “red”, “yel-
low”, “blue” share most parts of latent codes with each
other, while words from different groups like “red” and
“cat” share fewer parts of latent codes.

5.3 Case Studies

Examples of learned latent codes In Table 6,
we show some examples of learned latent codes on
WordNet dataset. We can see that our model does
learn informative codes, i.e. words with similar
meanings are assigned with similar latent codes,
and codes of words with different meanings tend
to differ.

Examples of generated definitions We also list
several generation samples in Table 5. We can see
that the definitions generated by our method are
more semantically complete than those by previ-
ous works, and they indeed capture fine-grained
semantic components that the baseline model ig-
nores. For example, it is necessary to know that
militia has unprofessional military skills, which
distinguishes the meaning of militia and army. The
definition generated by the baseline model ignores
this perspective. However, our model does describe
the unprofessional nature of militia by generating
“not very skillful”, thanks to the ability of modeling

fine-grained semantic components.

6 Related Work

Definition Generation Definition modeling was
firstly proposed by Noraset et al. (2017). They
take a word embedding as input and generate a
definition of the word. An obvious drawback is
that their model cannot handle polysemous words.
Recently several works (Ni and Wang, 2017; Gadet-
sky et al., 2018; Ishiwatari et al., 2019) consider
the context-aware definition generation task, where
the context is introduced to disambiguate senses
of words. They all adopt a encoder-decoder archi-
tecture, and rely heavily on the decoder to extract
semantic components of the word semantic, thus
leading to under-specific definitions. In contrast,
we introduce a group of discrete latent variables to
model these semantic components explicitly.

Semantic decomposition and Decomposed Se-
mantics It is recognized by linguists that human
beings understand complex meaning by decom-
posing it into components that are latent in the
meaning. Wierzbicka (1996) propose that differ-
ent languages share a set of atomic concepts that
cannot be further decomposed i.e. semantic prim-
itives, and all complex concepts can be semanti-
cally composed by semantic primitives. Dong and
Dong (2003) introduce a similar idea. They call
the atomic concepts as sememes, and present a
knowledge base HowNet in which senses of words
are annotated with sememes. HowNet is shown
to be helpful for many NLP tasks, such as word
representation learning (Niu et al., 2017), relation
extraction (Li et al., 2019), aspect extraction (Luo



716

et al., 2019). Previously Yang et al. (2019) propose
to use sememe annotations as a direct input when
generating definitions, which can suffer from the
data sparsity problem. In this paper, we instead
leverage HowNet as the external supervising sig-
nals for latent variables when training and try to
learn the knowledge into the model itself.

7 Conclusion

We proposed ESD, a context-aware definition gen-
eration model that explicitly models the decom-
posed semantics of words. Specifically, we model
the decomposed semantics as discrete latent vari-
ables, and training with auxiliary losses to ensure
that the model learns informative latent codes for
definition modeling. As a result, ESD leads to
significant improvements over the previous strong
baselines on two established definition datasets.
Quantitative and qualitative analysis showed that
our model could generate more meaningful, spe-
cific and accurate definitions.

In future work, we plan to seek better ways to
guide the learning of latent variables, such as using
dynamic routing (Sabour et al., 2017) method to
align the latent variables and sememes, and learn
more explainable latent codes.
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