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Abstract

We introduce a new neural network architec-
ture, Multimodal Neural Graph Memory Net-
works (MN-GMN), for visual question answer-
ing. The MN-GMN uses graph structure with
different region features as node attributes and
applies a recently proposed powerful graph
neural network model, Graph Network (GN),
to reason about objects and their interactions in
an image. The input module of the MN-GMN
generates a set of visual features plus a set
of encoded region-grounded captions (RGCs)
for the image. The RGCs capture object at-
tributes and their relationships. Two GNs are
constructed from the input module using the
visual features and encoded RGCs. Each node
of the GNs iteratively computes a question-
guided contextualized representation of the vi-
sual/textual information assigned to it. Then,
to combine the information from both GNs,
the nodes write the updated representations to
an external spatial memory. The final states of
the memory cells are fed into an answer mod-
ule to predict an answer. Experiments show
MN-GMN rivals the state-of-the-art models on
Visual7W, VQA-v2.0, and CLEVR datasets.

1 Introduction

Visual question answering (VQA) has been recently
introduced as a grand challenge for AI. Given an
image and a free-form question about it, the VQA
task is to produce an accurate natural language
answer. VQA has many applications, such as image
retrieval and search. This paper proposes a new
neural network architecture for VQA based on the
recent Graph Network (GN) (Battaglia et al., 2018).

The pairwise interactions between various re-
gions of an image and spatial context in both hori-
zontal and vertical directions are important to an-
swer questions about objects and their interactions
in the scene context. For example, to answer How
many cats are in the picture? (see Figure 1), a

Figure 1: An example from Visual Genome (https:
//visualgenome.org/). The region-grounded cap-
tions provide useful clues to answer questions. For
example, to answer Where are the cats?, orange and
white cat laying on a wooden bench is informative.

model needs to aggregate information from mul-
tiple, possibly distant, regions; hence applying
a convolutional neural network may not be suf-
ficient to perform reasoning over the regions. Our
new architecture (see Figure 2), Multimodal Neu-
ral Graph Memory Network (MN-GMN), uses a

https://visualgenome.org/
https://visualgenome.org/
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graph structure to represent pairwise interactions
between visual/textual features (nodes) from differ-
ent regions of an image. GNs provide a context-
aware neural mechanism for computing a feature
for each node that represents complex interactions
with other nodes. This enables our MN-GMN to an-
swer questions that need reasoning about complex
arrangements of objects in a scene.

Previous approaches such as Memory Networks
(MN) (Sukhbaatar et al., 2015) and Dynamic Mem-
ory Networks (DMN) (Kumar et al., 2015) com-
bined a memory component and an attention mech-
anism to reason about a set of inputs. The DMN
was first proposed for text QA. The text QA task
is composed of a question, and a set of statements,
called facts, in the order that describes a short story.
Only a subset of the facts is required to answer
a question. DMN includes four modules: input,
question, episodic memory, and answer. The input
and question modules encode the question and the
facts. Then, the episodic memory takes as input
the question and aggregates the facts to produce a
vector representation of the relevant information.
This vector is passed to the answer module to pre-
dict an answer. Previous applications of the MN
and DMN for VQA either represent each image
region independently as a single visual fact (Xu
and Saenko, 2015) or represent the regions of an
image like facts of a story with a linear sequential
structure (Xiong et al., 2016). But, whereas a linear
order may be sufficient for text QA, it is insufficient
to represent the 2D context of an image.

The major novel aspect of our approach is that
we exploit the flexibility of GNs to combine infor-
mation from two different sources: visual features
from different image regions and textual features
based on region-grounded captions (RGCs). An
RGC detector is learned by transfer learning from a
dataset with region-grounded captions. Like visual
features, an RGC is specified with a bounding-box.
The RGCs capture object attributes and relation-
ships that are often useful to answer visual ques-
tions. For example, in Figure 2, to answer Is the
water calm?, a wave in the ocean is informative;
the water is blue specifies an attribute of water;
surfer riding a wave describe interactions between
objects. Captions also incorporate commonsense
knowledge. Our multimodal graph memory net-
work comprises a visual GN and a textual GN, one
for each information source. Each node of the
two GNs iteratively computes a question-guided

Figure 2: Multimodal Neural Graph Memory Networks
for VQA. The visual features/captions are extracted
from white/black bounding-boxes and are used as node
features to construct the visual/textual Graph Network.

contextualized representation of the visual/textual
information at the bounding-box assigned to it. The
third component in our multimodal graph memory
module is an external spatial memory, which is
designed to combine information across the modal-
ities. Each node writes the updated representations
to the external spatial memory, which is composed
of memory cells arranged in a 2D grid. The fi-
nal state of the memory cells is then fed into the
answer module to predict an answer. The external
spatial memory resolves the redundancy introduced
by overlapping bounding-boxes, which causes dif-
ficulties, for example, with counting questions.
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To summarize, our main contributions are:

• We introduce a new memory network architec-
ture, based on graph neural networks, which
can reason about complex arrangements of
objects in a scene to answer visual questions.

• To the best of our knowledge, this is the first
work that explicitly incorporates local textual
information (RGCs) of the image via a trans-
fer learning technique into a multimodal mem-
ory network to answer visual questions.

• Our architecture, which can be seen as a mul-
timodal relational extension to DMN, rivals
the state-of-the-art on three VQA datasets.

2 Related Work

An important part of the VQA task is to understand
the given question. Most approaches utilize a neu-
ral network architecture that can handle sequences
of flexible length and learn complex temporal dy-
namics using a sequence of hidden states. Such
architectures include Recurrent Neural Networks
(RNNs), Long Short-Term Memory (LSTM), and
the Gated Recurrent Unit (GRU). To encode a given
image, most VQA approaches employ a Convolu-
tional Neural Network (CNN) pre-trained on Im-
ageNet, such as VGGNet and ResNet, to extract
visual information from an image. These two re-
cent trends of applying CNNs and RNNs have been
successfully applied to image captioning and visual
grounding (Johnson et al., 2015) tasks. Grounding
connects words to their visual meaning. Our ap-
proach sees VQA as first grounding the question in
the image and then predicting an answer.

Most early deep neural-based VQA models pro-
duce an answer conditioned on a global visual
feature vector and the embedded question. How-
ever, since many questions and answers relate to a
specific region in an image, these models often
cannot predict a precise answer. To overcome
this issue, many attention-based models are pro-
posed. The attention-based models compute an at-
tention weight of spatially localized CNN features
based on the question to predict an answer (Xu
and Saenko, 2015; Xiong et al., 2016). Teney et al.
(2018) used the Bottom-Up Attention model (An-
derson et al., 2018) to obtain a set of features at dif-
ferent regions of the image and computed an atten-
tion weight for each region based on the encoded
question to predict an answer. In Lu et al. (2016),

the authors proposed a hierarchical co-attention
model that jointly implements both image-guided
question attention and question-guided visual atten-
tion. Fukui et al. (2016) proposed a VQA model
based on multimodal compact bilinear (MCB) pool-
ing to get a joint representation for image and
question. Similarly, Yu et al. (2018); Kim et al.
(2018) utilized higher-order fusion techniques to
combine the question with visual features more ef-
ficiently. Cadene et al. (2019) proposed a bilinear
fusion algorithm to represent interactions between
question and image regions.

In Jabri et al. (2016), the authors introduced a
model called Relation Networks, which uses mul-
tilayer perceptron models to reason over all pairs
of local image features extracted from a grid of
image regions. Dynamic tree structures have been
used in VQA to capture the visual context of im-
age objects (Tang et al., 2019). Yi et al. (2018)
proposed a model called neural-symbolic visual
question answering (NS-VQA). The NS-VQA uses
symbolic structure as prior knowledge to answer
questions that need complex reasoning. This model
first extracts a structural scene representation from
the scene and a program trace from the given ques-
tion. Then, it applies the program to the scene
representation to predict an answer.

Recently, a few models are proposed which can
learn the interactions between image regions. The
graph learner model (Norcliffe-Brown et al., 2018)
merges a graph representation of the image based
on the question with a graph convolutional network,
to learn visual features that can represent question
specific interactions. Yang et al. (2018) proposed
to reason over a visual representation of the image
called scene graph which represents objects and
their relationships explicitly. Li et al. (2019) intro-
duced a VQA model called Relation-aware Graph
Attention Network (ReGAT). Guided by the ques-
tion, ReGAT encodes an image into a graph that
represents relations among visual objects. The Re-
GAT is trained on Visual Genome dataset (Krishna
et al., 2016).

Most of the above models need datasets with an-
notated object relationship triplets for training. Be-
cause annotating triplets is difficult, such datasets
are relatively small. Instead, our VQA architecture
exploits the rich textual information of an image via
incorporating the RGCs to learn the attributes of an
image region and the interactions between a set of
image regions enclosed by an RGC bounding-box.
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This information is much easier to obtain because
large caption datasets are available.

More recently, Hudson and Manning (2019a)
proposed a model called Neural State Machine
(NSM) for the visual questions that need composi-
tionality and multi-step inference. Given an image,
the NSM first predicts a probabilistic graph as a
structured semantic representation of the image.
Then, NSM executes sequential reasoning guided
by the input question over the predicted graph, by
iteratively traversing the nodes of the graph. The
authors show that the proposed model can achieve
state-of-the-art results on VQA-CP (Agrawal et al.,
2018) and GQA (Hudson and Manning, 2019b)
datasets. Shrestha et al. (2019) introduced a VQA
model called Recurrent Aggregation of Multimodal
Embeddings Network (RAMEN), which is suitable
for both natural image understanding and the syn-
thetic datasets that need compositional reasoning.
The RAMEN processes visual and question fea-
tures in three steps: early fusion of spatially local-
ized image features with question features, learning
bimodal embeddings, and aggregating them across
the image by applying a bidirectional GRU to cap-
ture the interactions between bimodal embeddings.

3 Graph Networks

In this section, we briefly explain the graph net-
works (GN) framework (Battaglia et al., 2018). The
GN extends several other graph neural networks
such as message-passing neural networks (Gilmer
et al., 2017), and non-local neural networks (Wang
et al., 2018). In a GN framework, a graph is rep-
resented by a 3-tuple G = (u,V, E), where u is
a graph-level attribute. The V = {vi}i=1:N is a
set of node attributes, where vi is a node attribute
of node i, and N is the number of nodes. The
E = {(ek, rk, sk)}k=1:M is a set of edges, where
ek is an edge attribute for the edge going from node
sk to node rk, and M is the number of edges.

A GN block has three update functions φ and
three aggregation functions ρ. Given an input
graph, a GN block updates the graph using the
update and aggregation functions. The computa-
tional steps in a GN are represented in Algorithm 1.
The function φe is mapped over entire edges to cal-
culate per-edge updates, φv is mapped over entire
nodes to calculate per-node updates, and φu is used
to update the global attribute. The ρ’s should be
unvarying to permutations of their inputs and must
be flexible to a varying number of arguments, such

as maximum, summation, etc.

Algorithm 1: Computational steps in a
Graph Network block.

Input :A graph G = (u,V, E)
Output :Updated graph G′ = (u′,V ′, E ′)

(1) Function GraphNetwork(E , V,u)
(2) for k ← 1 to M do
(3) e′k ← φe(ek,vrk ,vsk ,u) . Compute

new edge attributes
(4) end
(5) for i← 1 to N do
(6) E ′i ← {(e′k, rk, sk)}rk=i,k=1:M

(7) ē′i ← ρe→v(E ′i) . Aggregate edge
attributes for each node

(8) v′i ← φv(ē′i,vi,u) . Compute new
node attributes

(9) end
(10) V ′ ← {v′i}i=1:N

(11) E ′ ← {(e′k, rk, sk)}k=1:M

(12) ē′ ← ρe→u(E ′) . Aggregate edge
attributes for the whole graph

(13) v̄′ ← ρv→u(V ′) . Aggregate node
attributes for the whole graph

(14) u′ ← φu(ē′, v̄′,u) . Compute new global
attribute

(15) return (u′,V ′, E ′)

4 Our Proposed Architecture

Figure 2 shows our MN-GMN architecture, which
is composed of four modules: input, question, mul-
timodal graph memory network, and answer. We
now describe these modules.

4.1 Input Module

The input module has two components: A deep
CNN, e.g., Bottom-Up Attention (Anderson et al.,
2018), ResNet (He et al., 2015), etc. and a region-
grounded caption (RGC) encoder which encodes
the RGCs. The RGCs are generated by a dense
captioning model. Then, they are encoded with
a GRU and a parser (Schuster et al., 2015). The
RGCs are useful to answer questions about object
attributes and their relationships. We now describe
the details and motivation for these components.

Visual Feature Extraction. To extract visual
features, we use the Bottom-Up Attention model.
The features are obtained via Faster R-CNN and
101-layer ResNet, which attend to specific image
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regions. Using a fixed threshold on object detection,
we extract N 2048-dimensional image features
from N different regions of the image. The value
of N depends on the image and ranges from 10 to
100. Each feature vector has a bounding-box speci-
fied by its coordinates r = (rx, ry, rx′ , ry′), where
(rx, ry) and (rx′ , ry′) are the top-left and bottom-
right corners of the bounding-box which are nor-
malized to have a values between 0 and 1 based on
the height and width of the image. We concatenate
each feature vector with its bounding-box to obtain
a vector denoted by xi, (i = 1, . . . , N). Note that
xi only describes the image at its bounding-box
without exploiting the global spatial context.

Captions. To extract a set of RGCs for the im-
age, we use a dense captioning model proposed
by Johnson et al. (2015). This model contains a
CNN, a dense localization layer, and an RNN lan-
guage model that generates the captions (https://
github.com/jcjohnson/densecap). The model
is trained on RGCs from the Visual Genome dataset.
The training set that we use does not include VQA-
v2.0/Visual7W test images. Through transfer learn-
ing, our model is leveraging the caption annota-
tions. Each RGC has a caption, a bounding-box,
and a confidence score. To encode a caption, we
first create a dictionary using all words in the cap-
tions and questions. We preprocess the captions
and questions with basic tokenization by convert-
ing all sentences to lower case and throwing away
non-alphanumeric characters.

We map the words to a dense vector represen-
tation using a trainable word embedding matrix
L ∈ L×D, where D is the dimensionality of the
semantic space, and L is the size of the dictionary.
To initialize the word embeddings, we use the pre-
trained GloVe vectors. The words that don’t occur
in the pretrained word embedding model are initial-
ized with zeros. We encode a caption using a GRU
and a parser. The parser takes a caption and parses
it into a set of objects with their attributes and a
set of relationship triplets. The encoded RGC is a
vector representation denoted by x̃ ∈ RD. See ap-
pendix A for more detail about the RGC encoding.

4.2 Question Module

We encode a question using the same dictionary
as we use for captions. This enables our model to
match the words in a caption with the words in a
question and attend to the relevant caption. The
final hidden state of a GRU, denoted by q, is used

as the representation of the question.

4.3 Multimodal Graph Memory Network

Given a set of visual feature vectors, a set of en-
coded RGCs, and the encoded question, the mul-
timodal graph memory network module produces
a representation of the relevant information based
on the encoded question. The memory chooses
which parts of the inputs to focus on using an at-
tention mechanism. Unlike previous work (Xu and
Saenko, 2015; Xiong et al., 2016), our memory
network module is multimodal and relational. That
is, it employs both textual and visual information
of the input image regions, and it exploits pair-wise
interactions between each pair of visual/textual fea-
tures using a visual/textual GN. Similar to visual
features, most of the RGCs may be irrelevant to the
given question. Thus, the memory module needs to
learn an attention mechanism for focusing on the
relevant RGCs.

Formally, the multimodal graph memory net-
work is composed of a visual GN G = (u,V, E)
with N nodes, a textual GN G̃ = (ũ, Ṽ, Ẽ) with Ñ
nodes, and an external spatial memory. Each node
of the visual GN represents a visual feature with
an associated bounding-box. Similarly, each node
of the textual GN has a bounding-box corresponds
to a detected RGC of the image. In both GNs, we
connect two nodes via two forward and backward
edges if they are nearby. That is, we connect two
nodes if the Euclidean distance between the nor-
malized center of their bounding-boxes is less than
γ = 0.5. Note that even if two nodes of a GN are
not neighbors, they may still communicate via the
message passing mechanism of the GN.

The external memory is a network of mem-
ory cells arranged in a P × Q grid. Each cell
has a fixed location that corresponds to a specific
(H/P )×(W/Q) region in the image, whereH and
W are height and width of the image. Each node
of the visual/textual GN sends its information to a
memory cell if its bounding-box covers the location
of the cell. Since the bounding-boxes may overlap,
a cell may get information from multiple nodes.
The external memory network is responsible for
aggregating the information from both GNs and
eliminating redundancy introduced by overlapping
bounding-boxes. This makes our architecture less
sensitive to the number of detected bounding-boxes.
Since the input to the spatial memory is the output
of the GNs, the state of the GN nodes can be seen

https://github.com/jcjohnson/densecap
https://github.com/jcjohnson/densecap
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as an internal memory, and the state of the spatial
memory can be seen as an “external” memory like
Neural Turing Machines (Graves et al., 2014).

Initialization. To initialize each node attribute of
the visual GN, we combine a visual feature vector
extracted from a region of the image with the en-
coded question using MCB pooling as vi = q ? xi,
where ? represents the MCB pooling. Similarly,
we initialize each node attribute of the textual GN
as ṽi = q� x̃i, where � is the element-wise mul-
tiplication. We use the MCB to combine the visual
features with the encoded question since the ques-
tion and visual features are from different modali-
ties. The global attribute u is initialized by a global
feature vector of the image extracted from the last
layer of the 101-layer ResNet. This helps to an-
swer questions that need the global features of the
scene. The global attribute ũ is initialized with the
encoded question. The edge features of the GNs
and memory cells are initialized with zero vectors.

Updates. At each iteration, we first update the
GNs. Then, we update the content of the memory
cells. We update the edge attributes, node attributes,
and global attribute of both GNs as described in
Algorithm 1. For each GN, we use three differ-
ent GRUs to implement the functions φe, φv, and
φu. The ρe→v is an element-wise summation. The
ρv→u and ρe→u for visual GN are implemented as

v̄′ = ψ
(∑

i σ(W1vi + b1)� ψ(W2vi + b2)
)

ē′ = ψ
(∑

k σ(W3ek + b3)� ψ(W4ek + b4)
)

where, σ and ψ are the sigmoid and tangent
hyperbolic activation functions, and Wi, bi, i =
1, . . . , 4, are trainable parameters. This allows
to incorporate information from the question for
computing the attention weights using the sig-
moid function for each node/edge. The ρv→u and
ρe→u for the textual GN are implemented in a
similar way. Let, v̄p,q = 1

|Np,q |
∑

i∈Np,q
vi and

¯̃vp,q = 1
|Ñp,q |

∑
i∈Ñp,q

ṽi, where Np,q and Ñp,q

are the set of nodes which are connected to the
memory cell (p, q) in the visual and textual GNs,
respectively. Each memory cell is updated as

m̄p,q = f(mp−1,q,mp,q−1,mp,q+1,mp+1,q)

m′p,q = GRU([v̄p,q, ¯̃vp,q, m̄p,q],mp,q)

where f is a neural network layer which aggregates
the memories from the neighboring cells. We re-
peat these steps for two iterations. Applying one

iteration decreases the accuracy by about 2.0 points.
As observed by Kumar et al. (2015), iterating over
the inputs allows the memory network to take sev-
eral reasoning steps which some questions require.

4.4 Answer Module

The answer module predicts an answer using a GN
called answer GN. The nodes of the answer GN
are the external spatial memory cells. However,
there is an edge between every ordered pair of the
nodes (cells), hence the answer GN is a complete
graph. This supports reasoning across distant re-
gions of the image. Let m◦p,q be the final state of
the memory cell at location (p, q). We initialize the
node attributes of the answer GN denoted by v◦p,q
as v◦p,q = m◦p,q. The edge attributes are initialized
using the one-hot representation of the location of
the sender and receiver memory cells. That is, the
edge attribute of the edge going from the memory
cell at location (p, q) to (p′, q′), is initialized with
a vector of size 2P + 2Q which is computed by
concatenating the one-hot representation of p, q, p′,
and q′. The global attribute of the answer GN is
initialized with a vector of zeros.

Then, we update the edge attributes, the node
attributes and the global attribute of the answer
GN as described in Algorithm 1. As before, we
use three different GRUs to implement functions
φe, φv, and φu. The ρe→v is a simple element-
wise summation. The ρv→u and ρe→u are imple-
mented as before, but with different set of param-
eters. The answer module predicts an answer as
p̂ = σ

(
Wg(u◦) + W̃g̃(u◦) + b

)
where, u◦ is

the updated global attribute of the answer GN,
W ∈ RY×2048,W̃ ∈ RY×300,b ∈ RY are train-
able parameters, g, g̃ are non-linear layers, and Y
is the number of possible answers.

Following Teney et al. (2018), to exploit prior
linguistic information about the candidate answers,
the GloVe embeddings of the answer words are
used to initialize the rows of the W̃. Initialization
with the Glove embeddings improves the perfor-
mance by about 1.0 point. Similarly, to utilize
prior visual information about the candidate an-
swers, a visual embedding is used to initialize the
rows of W. The visual embedding is obtained
by retrieving 10 image from Google Images for
each word. Then, the images are encoded using
the ResNet-101 pretrained on ImageNet to obtain
a feature vector of size 2048. For each word, the
average of the feature vectors is used to initialize a



7183

row of W. The loss for a single sample is defined
as L = −

∑Y
i=1 pi log(p̂i) + (1 − pi) log(1 − p̂i)

where, p̂i is the ith element of p̂, and pi is the ith
element of the ground-truth vector p (pi = 1.0 if
A ≥ 3 annotators give the ith answer word, oth-
erwise pi = A/3). For multiple choice task, the
candidate answers are encoded by the last state
of a GRU and concatenated with u◦ using a neu-
ral network layer as ṕ = σ

(
ẃf́([u◦,a]) + b́

)
where, a is an encoded answer choice, f́ is a
non-linear layer, and ẃ, b́ are trainable parameters.
For multiple choice task, the binary logistic loss
−p log(ṕ) − (1 − p) log(1 − ṕ) is used, where p
is 1.0 for an (image,question,answer) triplet, if the
answer choice is correct, otherwise p is 0.

Training Details and Optimization. The MN-
GMN is implemented in TensorFlow. We use
a library from https://github.com/deepmind/

graph_nets to implement the GNs. We follow
VQA tips in Teney et al. (2018) to train our models.
More specifically, to apply an ensemble technique,
20 instances of the model is trained with various
initial random seeds. For test images, the scores for
the answers by all models are summed, and the an-
swer is predicted using the highest summed score.
To minimize the loss, we apply the RMSprop opti-
mization algorithm with a learning rate of 0.0001
and minibatches of size 100.

Dropout with probability 0.5 and early stopping
are applied to prevent overfitting. Dropout is used
after the layer that computes the updated global
attribute of the answer GN. During training, all
parameters are tuned except for the weights of the
CNN and RGC detector to avoid overfitting. For
VQA-v2.0 and Visual7W datasets, we augment the
training dataset with Visual Genome/GQA images
and QA pairs. The training set that we use does not
include the VQA-v2.0/Visual7W test or Visual7W
validation images. The output dimension of the
MCB and the dimension of the hidden layer in both
RGC and question GRUs are set to 512. Also, we
set P,Q = 14 and D = 512. The full model takes
around 6 hours to train on two Titan X GPUs.

5 Experiments

We explain the datasets, baseline models, and eval-
uation metric that we use in our experiments. Then,
the experimental results are discussed.

Datasets. VQA-v2.0 (Antol et al., 2015) includes
82, 783 training images, 40, 504 validation images,

and 81, 434 testing images. There are 443, 757
training questions, 214, 354 validation questions,
and 447, 793 test questions in this dataset. A sub-
set of the standard test set, called test-dev, contains
107, 394 questions. Each question has 10 candidate
answers generated by humans. We choose correct
answers that appear more than 8 times. This makes
Y = 3, 110 candidate answers. We use the stan-
dard metric (Antol et al., 2015), which is an answer
is correct if at least 3 people agree.

Visual7W dataset (Zhu et al., 2015) includes
47, 300 images. We train and evaluate our model on
telling questions of the Visual7W which includes
28, 653 images. This set uses six types of ques-
tions: what (6%), where (48%), when (16%), who
(5%), why (10%), how (15%). The training, valida-
tion and test splits, contain 50%, 20%, 30% of the
QA pairs, respectively. For evaluation, Visual7W
provides four candidate answers. The Visual7W
has fewer language biases compared to VQA.

We also experiment on CLEVR dataset (Johnson
et al., 2017a). CLEVR evaluates different aspects
of visual reasoning, such as attribute recognition,
counting, comparison, logic, and spatial relation-
ships. Each object in an image has the following
attributes: shape (cube, sphere, or cylinder), size
(large or small), color (8 colors), and material (rub-
ber or metal). An object detector with 96 classes
is trained using all combinations of the attributes
by the Tensorflow Object Detection API. We use
Faster R-CNN NasNet trained on the MS-COCO
dataset as the pretrained model. Given an image,
the output of the object detector is a set of ob-
ject bounding-boxes with their feature vectors. For
CLEVR, we omit the textual GN, since CLEVR
images do not have rich textual information.

Baselines. We compare our model with several
architectures developed recently, including the
state-of-the-art models ReGAT, BAN, VCTREE,
and MuRel. For comparison, we also include
three related models in Table 1 that have been pro-
posed more recently in Arxiv preprints during the
preparation of this work: LXRT, MSM@MSRA,
and MIL@HDU. The ReGAT exploits supervision
from Visual Genome relationships. MAN is a
memory-augmented neural network which attends
to each training exemplar to answer visual ques-
tions, even when the answers infrequently happen
in the training set. The Count (Zhang et al., 2018)
is a neural network model designed to count ob-
jects from object proposals. For Visual7W, we

https://github.com/deepmind/graph_nets
https://github.com/deepmind/graph_nets
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compare our models with Zhu et al. (2015), MCB,
MAN, and MLP. The MCB leverages the Visual
Genome QA pairs as additional training data and
the 152-layer ResNet as a pretrained model. The
MLP method uses (image,question,answer) triplets
to score answer choices. For CLEVR, we com-
pare our models with several baselines proposed
by Johnson et al. (2017a) as well as the state-of-
the-art models RAMEN, PROGRAM-GEN, and
NS-VQA. N2NMN learns to predict a layout based
on the question and compose a network using a set
of neural modules. The CNN+LSTM+RN learns
to infer a relation using a neural network model
called Relation Networks. The PROGRAM-GEN
exploits supervision from functional programming,
which is used to generate CLEVR questions.

Ablation Study. We implement several lesion ar-
chitectures. The MN+ResNet model does not use
any GNs and is designed to evaluate the effect of
using GN. This model is similar to MN (Sukhbaatar
et al., 2015). It applies a soft attention for 14× 14
ResNet feature maps (the last 14 × 14 pooling
layer) and generates a representation u◦ = h(q) ?
h′(
∑196

i=1 αixi). Here h, h′ are non-linear layers,
and αi is an attention weight computed as αi =
softmax

(
wh′′([xi,q])

)
, where w is a learned pa-

rameter vector and h′′ is a non-linear layer. Then,
an answer is predicted as described before.

The N-GMN model only uses the visual GN
(no textual GN nor spatial memory). This model
evaluates the effect of incorporating RGCs. After
two iterations, the global feature vector of the vi-
sual GN is used as u◦ to generate an answer. The
N-GMN+ model only uses the visual GN and the
external spatial memory components (no textual
GN). This model is used for the CLEVR dataset
since CLEVR images do not have rich textual infor-
mation. The MN-GMN− model does not use the
external spatial memory. After two iterations, the
global feature vector of the visual and textual GNs
are concatenated and fed into a non-linear layer to
generate u◦. Finally, MN-GMN is our full model.

Results and Discussion. Our experimental re-
sults on VQA-v2.0 dataset are reported in Table
1. For LXRT, MSM@MSRA, and MIL@HDU,
the numbers are reported from the VQA Challenge
2019 Leaderboard (using an ensemble of models).
Across all question types, N-GMN outperforms
MN+ResNet. This shows that applying the visual
GN with explicit object bounding-boxes provides

a usefully richer representation than a grid of fixed
visual features. MN-GMN− outperforms N-GMN.
This shows that RGCs help to improve accuracy.
RGCs are especially useful for answering the Other
and Yes/No question types. Our full model MN-
GMN outperforms MN-GMN−. This shows that
applying external spatial memory is effective, es-
pecially for Number questions. The full model’s
accuracy is higher than the baselines.

Test-dev Test-std
Model Y/N Num Other All Y/N Num Other All
MAN1 - - - - 79.2 39.5 52.6 62.1
Count2 83.1 51.6 59.0 68.1 83.6 51.4 59.1 68.4
MFH3 84.3 50.7 60.5 68.8 - - - -
Buttom-Up4 81.8 44.2 56.1 65.3 - - - 65.7
G-learner5 - - - - 82.9 47.1 56.2 66.2
v-AGCN6 82.4 45.9 56.5 65.9 82.6 45.1 56.7 66.2
RAMEN7 - - - 66.0 - - - -
MuRel8 84.8 49.8 57.9 68.0 - - - 68.4
VCTREE9 84.3 47.8 59.1 68.2 84.6 47.4 59.3 68.5
BAN10 85.4 54.0 60.5 70.0 - - - 70.4
ReGAT11 86.1 54.4 60.3 70.3 - - - 70.6
LXRT12 89.3 56.9 65.1 74.2 89.5 56.7 65.2 74.3
MSM@MSRA 13 89.8 58.9 65.4 74.7 89.8 58.4 65.7 74.9
MIL@HDU14 90.1 59.2 65.7 75.0 90.4 59.2 65.8 75.2
MN+ResNet 84.2 43.4 58.1 67.3 84.5 44.0 58.1 67.5
N-GMN 86.1 53.5 61.2 70.6 86.7 53.6 61.8 71.2
MN-GMN− 88.0 53.5 63.8 72.6 88.5 53.7 64.2 73.1
MN-GMN 88.2 56.0 64.2 73.2 88.3 56.1 64.5 73.5

Table 1: Accuracy percentage on the VQA-v2.0 dataset.
The references are Ma et al. (2018)1, Zhang et al.
(2018)2, Yu et al. (2018)3, Teney et al. (2018); Ander-
son et al. (2018)4, Norcliffe-Brown et al. (2018)5, Yang
et al. (2018)6, Shrestha et al. (2019)7, Cadene et al.
(2019)8, Tang et al. (2019)9, Kim et al. (2018)10, Li
et al. (2019)11, Tan and Bansal (2019)12, Liu et al.
(2019)13, and Yu et al. (2019)14.

Model What Where When Who Why How Avg
Human1 96.5 95.7 94.4 96.5 92.7 94.2 95.7
LSTM-ATT1 51.5 57.0 75.0 59.5 55.5 49.8 54.3
Concat+ATT 2 47.8 56.9 74.1 62.3 52.7 51.2 52.8
MCB+ATT2 60.3 70.4 79.5 69.2 58.2 51.1 62.2
MAN3 62.2 68.9 76.8 66.4 57.8 52.9 62.8
MLP4 64.5 75.9 82.1 72.9 68.0 56.4 67.1
N-GMN 66.2 77.2 83.3 74.0 69.2 58.5 68.6
MN-GMN− 67.1 77.4 84.0 75.1 70.1 59.2 69.3
MN-GMN 67.3 77.4 84.0 75.0 70.3 59.4 69.5

Table 2: Accuracy percentage on Visual7W dataset.
The references are Zhu et al. (2015)1, Fukui et al.
(2016)2, Ma et al. (2018)3, and Jabri et al. (2016)4.

Our results on Visual7W are reported in Table 2.
Our N-GMN, MN-GMN−, and MN-GMN outper-
form the baselines MLP, MAN, and MCB+ATT.
The results for our N-GMN+ on CLEVR in Table 3
are competitive with the state-of-the-art RAMEN,
PROGRAM-GEN, and NS-VQA. We emphasize
that, unlike PROGRAM-GEN, our algorithm does
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not exploit supervision from functional program-
ming. Also, unlike NS-VQA, our model is not
tailored to synthetic datasets only, since it performs
well on both natural and artificial datasets that need
multi-step compositional reasoning.

Model All Exist Count Cmp-Int Q-At Cmp-At
HUMAN1 92.6 96.6 86.7 86.5 95.0 96.0
Q-TYPE MODE1 41.8 50.2 34.6 51.0 36.0 51.3
LSTM1 46.8 61.1 41.7 69.8 36.8 51.3
CNN+BOW1 48.4 59.5 38.9 51.1 48.3 51.8
CNN+LSTM1 52.3 65.2 43.7 67.1 49.3 53.0
CNN+LSTM+MCB1 51.4 63.4 42.1 66.4 49.0 51.0
CNN+LSTM+SA1 68.5 71.1 52.2 73.5 85.3 52.3
N2NMN2 83.3 85.7 68.5 85.0 90.0 88.8
CNN+LSTM+RN3 95.5 97.8 90.1 93.6 97.9 97.1
PROGRAM-GEN4 96.9 97.1 92.7 98.7 98.2 98.9
RAMEN5 96.9 98.9 94.1 88.5 98.9 99.3
NS-VQA6 99.8 99.9 99.7 99.9 99.8 99.8
N-GMN− 95.6 97.7 90.3 93.5 98.0 97.3
N-GMN+ 96.3 98.0 91.8 94.8 98.1 98.1

Table 3: Accuracy on CLEVR dataset. The references
are Johnson et al. (2017a)1, Hu et al. (2017)2, Santoro
et al. (2017)3, Johnson et al. (2017b)4, Shrestha et al.
(2019)5, and Yi et al. (2018)6.

Figure 3: N-GMN versus MN-GMN. The MN-GMN
provides the correct answer using a cloudy blue sky.

Figure 3 shows how MN-GMN can answer a
question correctly by incorporating RGCs, whereas
N-GMN gives the wrong answer. Figure 4 illus-
trates the visualization of the attention weights with
MN-GMN to answer a Number question. We com-
pute the attention weights that are used to obtain v̄′

for each spatial memory cell. More precisely, the
magnitude of the sigmoid output that implements
ρv→u for the spatial memory is visualized. Each
attention weight shows the importance of a fixed
region in a 14 × 14 grid of cells to the question.
Figure 5 shows a VQA example on the CLEVR
dataset. Appendix B provides more examples.

Figure 4: Visualization of the attention weights for a
14× 14 grid of cells. Red regions get higher attention.

Figure 5: Example VQA with N-GMN+ on CLEVR.

6 Conclusions

Multi-modal Neural Graph Memory Networks are
a new architecture for the VQA task. The MN-
GMN represents bimodal local features as node
attributes in a graph. It leverages a graph neural
network model, Graph Network, to reason about
objects and their interactions in a scene. In exper-
iments on three datasets, the MN-GMN showed
superior quantitative and qualitative performance
compared to the lesion approaches and rivals the
state-of-the-art models. A future research direction
is to combine RGCs with distant supervision by an
external knowledge base to answer the visual ques-
tions that need external knowledge; for example
Which animal in this photo can climb a tree?
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A Encoding Region-Grounded Captions

Given a caption, the hidden state of the caption
GRU for the i-th word is computed by ci =
GRU(si, ci−1), where si is the semantic represen-
tation of the i-th word in the caption. The final
hidden state of the GRU, denoted by c ∈ RD, is
used as a vector representation of the caption. We
reset the GRU after feeding each caption.

The encoded captions may not properly repre-
sent the objects in an image, the relationships be-
tween them, and the object attributes, especially
for a caption with a complex parse tree. Thus,
we enrich this representation by utilizing a parser
developed by Schuster et al. (2015) that takes a
single caption and parses it into a set of relationship
triplets (possibly empty), a set of objects, and their
attributes. For example, given orange and white
cat laying on a wooden bench, the parser outputs a
triplet cat-lay on-bench, objects cat and bench, and
attributes cat-white, cat-orange and bench-wooden.

For the Visual Genome dataset, the parser pro-
duces less than three relationships for about %98
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of the captions. We obtain a fixed-length repre-
sentation for the output of the parser, denoted by
c̃ ∈ R14D by allocating the embedding of 14 words:
6 words for up to two relationship triplets and 8
words for up to 4 objects and their attributes. For
the aforementioned example, the fixed-length rep-
resentation is the concatenation of the embedding
of each word in sequence ≺cat-lay on-bench,x-x-
x,bench-wooden,cat-orange,cat-white,x-x�, where
x is a special token to represent an empty slot. To
create the sequences, we use a fixed arbitrary order.
Each RGC has also a bounding-box specified by
its coordinates r̃ = (r̃x, r̃y, r̃x′ , r̃y′), where (r̃x, r̃y)
and (r̃x′ , r̃y′) are the top-left and bottom-right cor-
ners of the bounding-box which are normalized to
have a value between 0 and 1 based on the height
and width of the image. For each RGC, we project
the concatenation of r̃, c and c̃ to a space of di-
mensionality D using a densely-connected layer
with ReLU activation function to obtain a vector
representation denoted by x̃ ∈ RD.

B More Examples for VQA Task

Figure 6 shows a VQA example on CLEVR dataset.
Figure 7 shows how MN-GMN can answer a ques-

Figure 6: Example VQA with N-GMN+ on CLEVR.

tion correctly by incorporating the region-grounded
captions, whereas N-GMN gives the wrong answer.
Figure 8 illustrates the visualization of the attention
weights with MN-GMN to answer a Number ques-
tion. For this example, we compute the attention
weights that are used to obtain v̄′ for each spatial
memory cell. More precisely, the magnitude of the
sigmoid output that implements ρv→u for the ex-
ternal spatial memory is visualized. Each attention
weight shows the importance of a fixed region in a
14× 14 grid of memory cells to the question.

Figure 7: The MN-GMN provides the correct answer
using white and black tennis shoes.

Figure 8: Visualization of the attention weights for a
14× 14 grid of cells. Red regions get higher attention.


