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Abstract

We propose variable-in-situ logico-semantic
graphs to bridge the gap between semantic
graph and logical form parsing. The new
type of graph-based meaning representation
allows us to include analysis for scope-related
phenomena, such as quantification, negation
and modality, in a way that is consistent
with the state-of-the-art underspecification ap-
proach. Moreover, the well-formedness of
such a graph is clear, since model-theoretic in-
terpretation is available. We demonstrate the
effectiveness of this new perspective by de-
veloping a new state-of-the-art semantic parser
for Minimal Recursion Semantics. At the core
of this parser is a novel neural graph rewriting
system which combines the strengths of Hy-
peredge Replacement Grammar, a knowledge-
intensive model, and Graph Neural Networks,
a data-intensive model. Our parser achieves an
accuracy of 92.39% in terms of ELEMENTARY
DEPENDENCY MATCH, which is a 2.88 point
improvement over the best data-driven model
in the literature. The output of our parser is
highly coherent: at least 91% graphs are valid,
in that they allow at least one sound scope-
resolved logical form.

1 Introduction

Graphs have recently become popular as a strat-
egy for encoding sentence-level semantics, and
related data-driven parsing techniques have been
making rapid progress. The primary component of
popular semantic graphs, e.g. Elementary Depen-
dency Structure (EDS; Oepen and Lønning, 2006)
and Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013), is the predicate–argument
structure, with the predicate being a concept that
takes a number of arguments. Though expressive
for many applications, this predicative core does
not fully match the need for logical forms that used
to stand in the central area of semantic parsing.

Partly due to the lack of model-theoretic seman-
tics, it is rather difficult to add scope information
related to quantification, negation and modality to
a graph. Partly due to the lack of logical deduction
engines, it is rather difficult to directly perform au-
tomated reasoning over graphs.

This paper proposes to express logical forms
with variable-in-situ graphs for the ongoing ad-
vances in graph-centric formalisms, algorithms
and neural architectures. This leads us to a novel
neural graph rewriting system that combines the
strengths of Hyperedge Replacement Grammar
(HRG; Drewes et al., 1997) and Graph Neural Net-
works (Song et al., 2018a). On the one hand, it
can be viewed as an improved graph embedding
model that explicitly explores recursive structures
that are defined by an HRG. On the other hand, it
can be viewed as an enhanced graph grammar with
which all nodes involved in derivations of graphs
are assigned vector-based distributed encodings.

Based on our neural graph rewriting system, we
develop a new parser for Minimal Recursion Se-
mantics (MRS; Copestake et al., 2005). By means
of the DeepBank (Flickinger et al., 2012) data, our
parser achieves an accuracy of 92.39% in terms of
ELEMENTARY DEPENDENCY MATCH, which is a
2.88 point improvement over the best data-driven
model in the literature. We also consider the struc-
tural validity of logico-semantic graphs following
the original design of MRS.

The output of our parser is highly coherent: at
least 91% graphs are coherent, in that they allow
at least one sound scope-resolved logical form.

2 Logico-Semantic Graphs

2.1 Logic-Based Meaning Representations

Classic theories of natural language semantics are
based on the assumption that the core meaning of a

Source code: https://github.com/draplater/var-parser/

https://github.com/draplater/var-parser/
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every(x, dog(x), some(y, cat(y), chase(e1, x, y) ∧ happy(e2, e1)))
1
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Figure 1: Different representations of a logical form.

sentence is captured as its truth conditions. Under
this assumption, using expressions of some logi-
cal languages to encode truth conditions is the de
facto approach in formal semantics. Classic logic,
e.g. first-order predicate logic, supports precise,
consistent and controlled meaning representation
via truth-conditional interpretation.

A logical form can be visualized as a pseudo
tree, as suggested by Copestake et al. (2005). For
example, the formula in Fig. 1a can be encoded as
the tree in Fig. 1b. However, the leaves of such
a tree are not independent of each other. For in-
stance, dog(x) and chase(e1, x, y) share the same
variable x. Transforming logical forms into trees
may enlarge the distance between closely-related
nodes and make it difficult for a statistical or neu-
ral model to explicitly capture such dependencies.
In addition, considering syntactico-semantic sim-
ilarity, this tree-structured logical form is essen-
tially different from the corresponding syntactic
tree, as shown in Fig. 2. Such a tree representation
brings difficulties to develop a systematic syntax-
semantics interface.

chase

cat

some

happilydog

every

Figure 2: Dependency-based syntactic analysis.

Previous study (Oepen and Lønning, 2006;
Copestake, 2009) shows that there are some good
engineering reasons for producing a dependency
style representation (see Fig. 1c) with links be-
tween predicates: It improves readability for con-
sumers of the representation and eases integration
with distributional semantics. Exploiting this di-
rection further, we augment such a semantic de-

pendency graph with variables (see Fig. 1d). In
fact, it is a more straightforward way to encode
logical forms using graphs. Comparing the two
types of graphs, we can see that the variable-in-
situ representation fully specifies what there is in a
logical form, while a variable-free graph may lose
some information. Take Fig. 1c for example. The
following logical form is also compatible with the
graph, which is unfortunately a bad reading, since
happy, according to its conceptual meaning, is not
a scopal predicate.

(1) every(x, dog(x), some(y, cat(y),

happy(e2, chase(e1, x, y))))

2.2 Representing Underspecification

Natural language utterances are often ambiguous,
i.e., they have more than one reading. Take scope
ambiguity, an important type of ambiguity that has
been receiving heightened attention by semanti-
cists, for example. Considering the following sen-
tence:

(2) a. Every dog happily chases some cat.

b. some(y, cat(y), every(x, dog(x),

happy(e2, e1) ∧ chase(e1, x, y)))

c. every(x, dog(x), some(y, cat(y),

happy(e2, e1) ∧ chase(e1, x, y)))

The sentence is ambiguous: it can either mean that
for every dog it is the case that it chases some—
potentially different— cats; or else it can mean
that there is a particular group of cats which are
chased by every dog. The two readings are all
made up of the same set of predicates and oper-
ators, but differ in the relative scopes of certain

1This formula is comparable to the following first-order
formula: ∀x(dog(x) → ∃y(cat(y) ∧ (chase(e1, x, y) ∧
happy(e2, e1))))
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scope bearing elements. There are some other nat-
ural language constructions that also involve scope
ambiguity, e.g. negation and modality.

Underspecification is by now the standard tech-
nique to deal with semantic ambiguities in many
modern semantic theories, e.g. Underspecified
Discourse Representation Theory (Kamp et al.,
2011) and Hole Semantics (Bos, 1996). The basic
idea behind it is to derive a single compact rep-
resentation that describes the set of readings for a
sentence that exhibits a scope ambiguity. The in-
dividual readings can be enumerated from such an
underspecified description if it is required (Koller
and Thater, 2005), but it is also possible to pro-
cess underspecified representations directly with-
out enumerating the readings (Koller and Thater,
2010).

In this paper, we make our logico-semantic
graph representations expressive to exhibit the
complexities of human language semantics to
some extent, by adopting a specific formalism for
underspecification, i.e. Minimal Recursion Se-
mantics (MRS; Copestake et al., 2005), a widely-
used computational semantic framework in NLP.
In addition to variables to represent individuals or
events, an MRS structure use another kind of ele-
ment, called handle, to represent out-of-scope re-
lationships between predicates. Each node is as-
signed with a label handle, and some arguments
of a concept are specified as hole handles. Note
that a hole argument is different from an event-
variable argument, as illustrated by Ex. (1). Han-
dles can be added to current variable-in-situ graph
as a new type of node. See Fig. 3 for an exam-
ple. h1, h2, h3, h4 and h5 are labels, h2, h5, h7, h9
are hole handles. The out-of-scope relationships
in logical forms are converted into a set of con-
straints between holes and labels. For example, if
we let h7 = h4 and h9 = h3, the MRS will be
resolved into reading Ex. (2c); similarly, h4 = h1
and h7 = h3 for reading Ex. (2b).

To be more precise, a variable-in-situ logico-
semantic graph is a graph such that,

• every node must be a predicate, handle or
variable;

• every edge must be (1) between a predicate
and a variable, encoding predicate–argument
relation, (2) between a predicate and a han-
dle, encoding scopal argument or (3) between
a predicate and a label, encoding naming con-
vention and tagged by “L.”
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cat

h4

every

dog

h2

h1 h7 h9

e1

happy

h3

e2

L L

ARG1 ARG2
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ARG0L LARG0L
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ARG0

ARG1

ARG0

L

Figure 3: Underspecified logico-semantic graph. Han-
dles associated to predicates are labeled with “L,” while
handles play as arguments are labeled with semantic
roles, like “RSTR.”

2.3 Structural Validity

Considering any type of logical form-equivalent
representation, we need to be careful that our
structures are well-formed. MRS provides a prin-
cipled way to enumerate readings from an under-
specified logical form (Niehren and Thater, 2003),
showing us a way to validate the output logic
structure. We thus define a valid semantic struc-
ture as an MRS in which a scope-resolved logical
form is allowable. To be more precise, a variable-
in-situ logico-semantic graph is valid if and only
if there exists at least one fully specified logical
form that satisfies all the constraints encoded by
the graph.

3 Neural Graph Rewriting

Automatically constructing a semantic represen-
tation can be achieved by exploring the compo-
sitionality principle: The meaning of a complex
expression is a function of the meanings of its
parts and of the syntactic rules by which they are
combined. In this perspective, both meanings of
its parts and the function of syntactic rules can
be precisely defined by graph fragments. In this
paper, we investigate how to manipulate semantic
graph fragments with HRG, a context-free rewrit-
ing system for generating graphs. We give a for-
mal description of HRG, and then show how to
model syntactico-semantic composition through
graph rewriting. Recursive neural networks are
also important for handling linguistic data. In this
section, we will further augment an HRG with a
hypergraph-state LSTM.

3.1 Gluing Graph Fragments with an HRG

An edge-labeled, node-typed hypergraph is a tu-
ple H = 〈V,E, l, t,X〉, where V is a finite set
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Table 1: Example HRG rules. Throughout this paper,
we use filled black nodes to indicate external nodes, ar-
rows to indicate single-node edges and directed arcs to
indicate edges connected to two nodes. The edge la-
beled as V in Rule ® connects more than two nodes
whose orders are indicated by tiny numbers around
lines. We use single-node edges with underlined ter-
minal labels to represent predicates, e.g. every.

of nodes, and E ⊆ V + is a finite set of hyper-
edges. A hyperedge is an extension of a normal
edge which can connect to more than two nodes or
only one node. l : E → L assigns a label from a fi-
nite set L to each hyperedge. Since nodes receive
no informative labels, we use single-node edges
with terminal labels to represent predicates. This
strategy is widely used by HRG-based NLP sys-
tems, including Chiang et al. (2013), Peng et al.
(2015) and Chen et al. (2018). X ∈ V ∗ defines an
ordered list of nodes called external nodes, which
specify the docking points during graph rewriting.
t : V → T assigns a type from a finite set T to
each node.

Different from the hypergraphs used by Chiang
et al. (2013) and Chen et al. (2018), we highlight
the usage of node types which has a significant
impact on making parsing results logically coher-
ent. Three node types are utilized: h, x and c,
which indicate handle, variable and predicate re-
spectively. During node gluing, we must make
sure that the types of nodes are identical. If the
type of any node is still unspecified, the type of
the other node will be selected. For convenience,
we define the type of a non-terminal hyperedge
as the tuple of types of all nodes it connects to; we
define the type of a graph fragment as the tuple
of types of all external nodes in order. For exam-
ple, the graph fragment of some in Fig. 4 is typed
as (h, x), which will be denoted as hx for short.

A Typed Hyperedge Replacement Grammar
(THRG) G = 〈N,T, P 〉 is a graph rewriting sys-
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Figure 4: Semantic composition as graph gluing with
the rule in Tab. 1. The top composition is according to
rule ®, where the left graph that is labeled as V is glued
with the right graph that is labeled as NP by combining
their separated external nodes that are labeled as “0.”

tem, where N and T are two disjoint finite sets of
non-terminal and terminal symbols respectively.
P is a finite set of production rules of the form
A → R, where the left hand side (LHS) A ∈ N ,
and the right hand side (RHS) R is a hypergraph
with edge labels overN∪T . The rewriting process
replaces a non-terminal hyperedge with the graph
fragment specified by a rule’s RHS, attaching each
external node to the matched node of the corre-
sponding LHS. In the meantime, the co-related
nodes in LHS and RHS must be of the same types.
Tab. 1 presents four example rules. Rule ® con-
sists of three nodes and two hyperedges. All three
nodes are of type x, indicating that they are vari-
ables. One hyperedge has a label NP and connects
to one internal node; the other is labelled as VP
and connects to one internal node and two exter-
nal nodes. Fig. 4 presents the composition pro-
cess for chase some cat, in which Rule  and ®

are recursively called for semantic construction.

The types of a HRG rule put additional con-
straints to the combination of subgraphs and in this
way the output graph is regularized to some extent.
A failed combination is illustrated in Fig. 5.
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Figure 5: We deliberately swap the two external nodes
of graph fragment cat. This combination can be
blocked by type restrictions.

3.2 Recursive Hypergraph-state LSTM

Since we explicitly describe a recursive process,
we are able to define a new graph embedding
method—encoding graphs along with such a re-
cursive structure. Our strategy is to assign vec-
tors to nodes involved in the composition process
in a bottom-up way. Before the application of
an HRG rule A → R (R = 〈V,E, l, t,X〉, V =
{n1, n2, ...},X = {e1, e2, ...}), the external nodes
of all non-terminal edges in R have been as-
signed vectors based on preceding composition
while other newly introduced nodes are zero-
initialized. The vectors assigned to all nodes in
R will be updated according to a Graph Neural
Network (GNN), which works by exploiting lo-
cality encoded by R. In this paper, we propose a
hypergraph-state LSTM structure to do so. In what
follows, we will first introduce our GNN model
and then use it to equip an HRG, resulting in a re-
cursive hypergraph-state LSTM model.

Each node nj ∈ V has a node property vec-
tor xnj to represent its own information, such as
the type and the corresponding label of a concept
node, and the index of an external node. And an-
other hidden state vector hj is employed to hope-
fully encode the information of its surroundings.
The surrounding information of nj is collected by
multi-step information exchange between nj and
its neighbouring nodes, denoted as π(nj). Two
nodes nj and nk are viewed as neighbours if there
is at least one hyperedge that connects them. To
keep its own information, we assume that each
node has a self loop, i.e. nj ∈ π(nj). Thus the
neighbouring relation is symmetric. An optional
label l(nj , nk) can be attached to each neighbor-
ing relation.

Each node has an initial state h0
j , representing

the state when information has not been updated
yet. In each step of information exchange, accord-
ing to xj and its previous hidden state ht−1j , the
new hidden state htj is calculated from the repre-

sentation of itself, its neighbours π(nj), and the
label of each relation, in a way as generally de-
fined as follows:

htj = f({xk|k ∈ π(nj)}, {ht−1k |k ∈ π(nj)},
{l(nj , nk)|nk ∈ π(nj)})

Assume that L is a randomly initialized matrix
for encoding neighbouring labels. Summation is
utilized to collect information from neighbouring
nodes:

Πx,j =
∑

k∈π(nj)

(xk ⊕L[l(nj , nk)])

Πt−1
h,j =

∑
k∈π(nj)

ht−1k

Introducing the LSTM gate mechanism, the
state transition can be written as:

itj = σ(WiΠx,j +UiΠ
t−1
h,j + bi)

otj = σ(WoΠx,j +UoΠ
t−1
h,j + bo)

f tj = σ(WfΠx,j +UfΠ
t−1
h,j + bf )

utj = σ(WuΠx,j +UuΠ
t−1
h,j + bu)

ctj = f tj ⊗ ct−1j + itj ⊗ utj

htj = otj ⊗ tanh(ctj)

where i,o,f are the input, output and forget gates
of LSTM. W and U are the model parameters.

Similar to the tree LSTM (Tai et al., 2015), our
recursive hyperedge-state LSTM model composes
the states of a graph fragment from input vec-
tors and the representations of its subgraphs. The
model alternates between two kinds of steps: (1)
graph fragment encoding and (2) state propaga-
tion. The process for encoding a non-leaf graph
fragment is visualized in Fig. 6. The most impor-
tant feature of our graph encoding method is that
the process is step-wise, making it possible to per-
form semantic disambiguation and graph encoding
iteratively.

In a graph fragment encoding step for R, we
want to get some vectors representing a specific
graph fragment for further combination. This can
be done by running multilayer hypergraph-state
LSTM (denoted as HGS) on R:

[hTn1
;hTn2

; ...] = HGST ([h0
n1
;h0

n2
; ...],

[xn1 ;xn2 ; ...], R)
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Figure 6: A graphical illustration of our recursive hypergraph-state LSTM model. “⇑ HGS” represents graph
encoding with hypergraph-state LSTM. The final hidden states hT of external nodes are used as interface vectors
(brown vectors). Solid lines across the boxes denotes state propagation steps, we initialize hidden states according
to the corresponding HRG rule, e.g. h0

NP,0 = hT
D,1 + hT

N,1 and h0
NP,i = hT

D,0 + hT
N,0.

T represents the number of layers in the
hypergraph-state LSTM. For a node nj in a lex-
ical graph fragment, we use a zero vector as h0

nj
.

For the non-leaf case, x and h0 is acquired from
preceding state propagation. Not all final states
hTn1

,hTn2
. . . should be kept for further compo-

sition. Considering the role played by external
nodes in graph gluing, we use the final states of ex-
ternal nodes hTe1 ,h

T
e2 . . . to pass information and

call them interface vectors.

State propagation is the preparatory stage of
non-leaf graph fragment encoding, in which the
interface vectors of its subgraph fragments are
combined to calculate x and h0 for the next
step. Without the loss of generality, we only dis-
cuss the case for binary rules in which R con-
sists of two non-terminal hyperedges. It is worth
noting that in non-leaf graph fragment encoding,
the hypergraph-state LSTM is operated on a rule
rather than the entire graph fragment. The process
of encoding a non-leaf graph fragment can be seen
as encoding an RHS R with special initial states
originated from interface vectors. The nodes in R
are of three types: unified nodes, passover nodes
and newly created nodes. Newly created nodes
bring new information to the combined graph frag-

ment while the other two kinds of nodes are only
used for structural connection. For a newly cre-
ated node, the node property vector x is calculated
from its own information, and the initial state is a
zero vector. A unified node is connected by both
non-terminal hyperedges, and therefore receive in-
formation from both sides. The initial state h0 of
a unified node is the sum of the two correspond-
ing interface vectors. The property vector x is
redefined as the sum of the two related property
vectors. A passover node is a node connected to
only one non-terminal hyperedge. And its prop-
erty vector and initial state are simply copied from
the unique corresponding node. For example, the
rule VP in Tab. 1 contains one unified node and
two passover nodes. Denote the set of correspond-
ing nodes of nj as cor(nj). |cor(nj)| is 0, 1 or 2
for newly created nodes, passover nodes and uni-
fied nodes respectively. xnj and h0

nj
for non-leaf

graph fragment encoding can be calculated as:

h0
nj

=
∑

ni∈cor(nj)

hTni

xnj =
∑

ni∈cor(nj)

xni if |cor(nj)| 6= 0
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4 Parsing to Variable-in-situ Graphs

Following our previous work (Chen et al., 2018),
we continue to employ a synchronous grammar to
build a practical parser. We integrate a CFG that
expresses syntactic composition with an HRG that
expresses semantic composition. Semantic con-
struction is divided into two subtasks: syntac-
tic parsing and semantic interpretation. When
a phrase structure tree T is available, a seman-
tic interpreter translates T to the derivation of
graph construction by assigning corresponding
HRG rules to the syntactic counterparts. At a sin-
gle derivation step, there may be more than one
HRG rule applicable. In this case, we need a dis-
ambiguation model to select a good one.

The simplest disambiguation model is a count-
based model: Given a coherent derivation tree,
together with corresponding rule types, it simply
selects the most frequent rule in the training data.
This model provides baseline performance for ref-
erence. Chen et al. (2018) showed that disam-
biguation can be significantly improved when a
classifier is introduced. In particular, they pro-
posed a feature engineering-based classifier, in
which manually defined sparse vectors are uti-
lized. This is not suitable for our purpose because
a variable-in-situ graph is much more complex in
that much more external nodes are involved. With
the neural graph rewriting system introduced in
§3.2, we propose a subgraph-based model which
can handle the above problem by automatically
learning vector representations for graphs.

More concretely, assume that we have built the
left and right subgraphs, denoted by Hl and Hr,
for further composition. Usually, multiple rules,
viz. r1, r2, ..., rM , are applicable to combine Hl

and Hr. Let the possible merged graphs be de-
noted by H = {H1, H2, . . . ,HM}. To build a
high-quality graph, we need to rankH1, H2, ... ac-
cording to some score functions that reflect their
goodness. Formally, we have an optimization
problem:

Ĥ = arg max
Hm∈H

SCORE(Hm)

To calculate the score for Hm, we consider both
syntactic and semantic contexts. To reflect the
syntactic information, we use a vector-based en-
coding, denoted by si,j , of the corresponding
phrase/span (i, j) that can be calculated by a
sequence-based model, such as LSTM or Trans-
former. Graph fragmentHm with n external nodes

can be encoded by the neural graph rewriting sys-
tem: running a recursive hypergraph-state LSTM
on the RHS Rm of an HRG rule where the inter-
face vectors of Hl and Hr are consumed as ini-
tial states. After that we get n new interface vec-
tors related to Hm (denoted as um,k, 0 ≤ k <
n). Taking advantage of the recursive structure,
the common parts Hl and Hr of graph fragments
H1, H2, ... are encoded only once, avoiding redun-
dant computation. We use an attention mecha-
nism to get a single vector representation tm for
the graph fragment Hm:

wm,k = (um,k)
>Wsi,j

tm =
∑

0≤k<n
(um,k · wm,k)

We use the similarity between tm and si,j as the
score of this graph fragment. For training, we use
the cross-entropy function as loss.

SCORE(Hm, i, j) = (tm)
>W2si,j

5 Experiments

5.1 Data Setup

DeepBank (Flickinger et al., 2012) is a deep lin-
guistic resource that covers the Wall Street Jour-
nal section of Penn TreeBank (PTB; Marcus et al.,
1993). All annotations are governed by English
Resource Grammar (ERG; Flickinger, 2000). We
use the DeepBank v1.1 data, and split it into train-
ing, development and test sets along with previous
work (Oepen et al., 2014, 2015; Buys and Blun-
som, 2017; Chen et al., 2018) to make sure that the
numeric performance can be directly compared to
the results in the literature.

5.2 Evaluation Metrics

Token-wise Evaluation for Accuracy The se-
mantic annotations in DeepBank are presented
as variable-in-situ MRS style originally. It is a
non-trivial problem to measure the similarity be-
tween different logical forms accordingly. Copes-
take (2009) provides a method to reversibly trans-
late them into variable-reduced semantic graphs,
namely dubbed Dependency MRS (DMRS), in an
information-equivalent fashion, which is widely
used by previous studies. We convert our out-
puts to DMRS, and re-use the evaluation met-
rics for variable-reduced graph representations,
including Elementary Dependency Match (EDM;
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Dridan and Oepen, 2011) and SMATCH (Cai and
Knight, 2013) to perform evaluation.

Search-Based Evaluation for Coherence An-
other dimension for parser evaluation—the coher-
ence of the output structures—is as essential as
accuracy, since we also emphasize on the logical
nature. Under the framework of underspecifica-
tion, the coherence of a semantic structure entails
that there must be at least one fully specified, i.e.
scope-resolved logical form, which satisfies all the
constraints encoded by that structure. The follow-
ing shows a by-design incoherent semantic graph:

everydog ?
RSTR BODY

every has two scopal arguments, corresponding
to the restriction and body domains respectively,
but there is not enough predicates to fill in them.

Niehren and Thater (2003) proved that figuring
out whether an MRS structure is coherent is NP-
hard. Accordingly, we use exhaustive search to
find the first scope-resolved logical form if there
is any. Practically, our implementation is efficient
enough to cover all graphs produced by our parser.

5.3 Inducing a Synchronous Grammar

#E EDS MRS #E EDS MRS

1 89.59% 23.42% 4 0.27% 3.53%
2 8.57% 54.98% 5+ 0.09% 0.40%
3 1.48% 17.55%

Table 2: Statistics of HRG rule instances. “#E” indi-
cates the number of external nodes. EDS represents
the variable-free framework, while MRS represents the
variable-in-situ framework.

We conduct automatic grammar induction fol-
lowing our previous method (Chen et al., 2018).
Tab. 1 shows some rule examples, while Tab. 2
presents some statistics of the related grammars.
There is a big difference between the rule dis-
tributions of the grammars for variable-reduced
and variable-in-situ semantic graphs. For compar-
ison, we report results on Elementary Dependency
Structure (EDS; Oepen and Lønning, 2006). Rules
for the latter one have more external nodes on av-
erage.

More external nodes bring in a new problem for
grammar induction — determining the order of ex-
ternal nodes. Consider the rule related to chase

in Fig. 4. chase has three external nodes: the
endpoints of ARG0, ARG1 and ARG2. A grammar

TH AO Span EDMP EDMA EDM SMATCH

Count-Based

N Y 91.98 94.41 65.68 80.52 80.79
Y N 91.80 94.41 75.35 84.91 85.42
Y Y 91.76 94.57 87.28 90.91 91.52

Subgraph-Based

N Y 91.98 94.86 83.59 89.22 89.72
Y N 91.80 94.77 89.50 92.11 92.72
Y Y 91.76 94.85 90.27 92.54 93.39

Table 3: Accuracies on the development data. “TH”
indicates whether to use type restriction; “AO” indi-
cates whether the attachment order strategy is applied.
“Y/N” is short for “yes/no.” “Span” indicates the per-
formance (evalb F-score) of syntactic parsing.

Model EDMP EDMA EDM SMATCH

Buys and Blunsom 87.54 80.10 84.16 86.69
ACE 92.08 86.77 89.64 93.50
Chen et al. 93.11 86.01 89.51 89.77

Ours (−ELMo) 93.08 88.10 90.56 91.54
Ours (+ELMo) 94.56 90.27 92.39 93.06

Table 4: Accuracies on the test set.

induction algorithm needs to decide which one is
taken as the first external node and which one the
second, etc. We find that a good order is impor-
tant to the performance of a parser. In our ex-
periments, we use the syntactic attachment or-
der to decide the order of an external node. The
attachment order reflects when a node is being
glued to another graph fragment. For example, the
ARG2 of chase connects to the graph fragment
of cat firstly, since cat is the syntactic object; sec-
ondly, the ARG0 connects to the graph fragment of
happy, because happily as a adjunct stands in be-
tween object and subject. As a result, we take the
ARG2 and ARG0 endpoints as the first and second
external nodes. This method not only makes the
grammar more regular, but also endows the order
of external nodes with semantic meaning.

TH Dataset SV (%)

N Devel. 29.91
Y Devel. 91.71

Y Test 92.13

Table 5: Results of structural validation (SV).
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5.4 Model Setup

We implement a syntactic parser according to Ki-
taev and Klein (2018), which contains an 8-layer
transformer to extract dense vector representations
for candidate phrases. ELMo (Peters et al., 2018)
is used as pretrained contextualized word embed-
dings. In addition to the CFG rules, our syntac-
tic parser also predicts the types of synchronous
rules. If a phrase NP has a semantic part of type
x, it is labeled as NP#x. A CKY decoder is em-
ployed to make sure that the output of the syntactic
parser is coherent for semantic interpretation. Tab.
3 presents the accuracy of syntactic parsing.

When syntactic trees are ready, the semantic in-
terpreter selects an HRG rule for each tree node.
We apply greedy search to complete this translat-
ing process. In subgraph-based model, the span
features si,j obtained by the syntactic parser are
also used to perform disambiguation. The word
embedding and transformer are fixed in this step.

5.5 Results and Analyses

Tab. 3 summarizes the parsing results with dif-
ferent set-ups. There is a significant gap between
the typed and untyped HRG with respect to EDM

scores. Note that the performance of syntactic
parsing is comparable. This demonstrates the ne-
cessity to explicitly control the structural coher-
ence of the semantic outputs.

An interesting observation is that the perfor-
mance also drops significantly without a proper
order of external nodes in the count-based model.
But the gap narrows after introducing the neural
model. It reveals that using the syntactic attach-
ment order makes the grammar more regular, giv-
ing it more ability of semantic disambiguation.
The recursive hypergraph-state LSTM model is
robust. Its strong disambiguation ability can make
up for the weakness of the grammar.

Tab. 4 shows the results on test set. Our parser
achieves an accuracy of 92.39% in terms of EDM,
which is a 2.88 point improvement over the best
data-driven model in the literature. For fair com-
petition, we remove the ELMo to match the exper-
iment set-up of previous models. The result shows
that we still outperform the previous best model
by 1.05 points. We test the well-formedness of
the output MRS and present the result in Tab. 5.
With type restrictions, the output of our parser is
highly coherent: at least 91% MRS allow at least
one sound scope-resolved logic form.

6 Related Work

It has been a long time since researchers manip-
ulated semantic construction following the princi-
ple of compositionality. Different formalisms have
been developed to express the syntactic-semantic
interface in natural language utterances. To ma-
nipulate compositional construction, HRG is a
popular framework to define a graph-structured
syntax-semantics interface (Peng et al., 2015;
Chen et al., 2018). AM algebra (Koller, 2015;
Groschwitz et al., 2017) is another formalism
to handle graph construction which has been
successfully explored to build semantic parsers
(Groschwitz et al., 2018; Lindemann et al., 2019).

Compositional vector representation is also
widely studied in recent years. Kiperwasser and
Goldberg (2016) encodes syntactic dependency
trees with a recursive recurrent neural network,
which acts as the core of a bottom-up dependency
parser. Dyer et al. (2016) introduced Recurrent
Neural Network Grammar, a probabilistic model
of sentences with explicit phrase structure. A re-
cursive syntactic composition function is used to
compute an embedding of a completed phrase-
structure subtree.

Modeling discrete structures with principled
neural networks has received an increasing inter-
est. Kipf and Welling (2017) proposed Graph
Convolution Network to classify nodes in graphs.
DAG-structured LSTM is a natural extension to
tree LSTM which treats nodes as basic states (Zhu
et al., 2016). Graph-state LSTM can be used in
both generation task (Song et al., 2018a) and rela-
tion extraction (Song et al., 2018b).

7 Conclusion

Graph-structured meaning representations provide
an effective way to encode rich semantic infor-
mation of natural language sentences and have
been extensively studied recently. We enriched the
discussion by studying an alternative graph-based
representation for underspecified logical forms. In
particular, we introduced a novel neural graph
rewriting system and developed a new state-of-
the-art semantic parser for variable-in-situ graphs.
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