
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6600–6610
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6600

Evaluating and Enhancing the Robustness of Neural Network-based
Dependency Parsing Models with Adversarial Examples

Xiaoqing Zheng1,2∗, Jiehang Zeng1,2∗, Yi Zhou1,2∗,
Cho-Jui Hsieh3, Minhao Cheng3, Xuanjing Huang1,2

1School of Computer Science, Fudan University, Shanghai, China
2Shanghai Key Laboratory of Intelligent Information Processing

3Department of Computer Science, University of California, Los Angeles, USA
{zhengxq, jhzeng18, yizhou17}@fudan.edu.cn

{chohsieh, mhcheng}@cs.ucla.edu, xjhuang@fudan.edu.cn

Abstract

Despite achieving prominent performance on
many important tasks, it has been reported that
neural networks are vulnerable to adversarial
examples. Previously studies along this line
mainly focused on semantic tasks such as sen-
timent analysis, question answering and read-
ing comprehension. In this study, we show
that adversarial examples also exist in depen-
dency parsing: we propose two approaches
to study where and how parsers make mis-
takes by searching over perturbations to exist-
ing texts at sentence and phrase levels, and de-
sign algorithms to construct such examples in
both of the black-box and white-box settings.
Our experiments with one of state-of-the-art
parsers on the English Penn Treebank (PTB)
show that up to 77% of input examples admit
adversarial perturbations, and we also show
that the robustness of parsing models can be
improved by crafting high-quality adversaries
and including them in the training stage, while
suffering little to no performance drop on the
clean input data.

1 Introduction

Deep neural network-based machine learning (ML)
models are powerful but vulnerable to adversarial
examples. Adversarial examples also yield broader
insights into the targeted models by exposing them
to such maliciously crafted examples. The intro-
duction of the adversarial example and training
ushered in a new era to understand and improve
the ML models, and has received significant at-
tention recently (Szegedy et al., 2013; Goodfellow
et al., 2015; Moosavi-Dezfooli et al., 2016; Paper-
not et al., 2016b; Carlini and Wagner, 2017; Yuan
et al., 2019; Eykholt et al., 2018; Xu et al., 2019).

Even though generating adversarial examples
for texts has proven to be a more challenging task

∗These authors contributed equally to this work.

The

DT

link

NN

between

IN

the

DT

futures

NNS

and

CC

stock

NN

markets

NNS

ripped

VBD

apart

RB

.

.

det advmodprep det cc nn

conjpobj punct

nsubj

The

DT

link

NN

between

IN

the

DT

futures

NNS

and

CC

exchange

NN

markets

NNS

ripped

VBD

apart

RB

.

.

det advmodprep cc

conj punct

nn

det

pobj

nsubj

Figure 1: Sentence-level attack: An adversarial exam-
ple (bottom) for the output (top) of a deep neural depen-
dency parser (Dozat and Manning, 2017). Replacing a
word “stock” with an adversarially-chosen word “ex-
change” in the sentence causes the parser to make four
mistakes (blue, dashed) in arc prediction. The adversar-
ial example preserves the original syntactic structures,
and the substitute word is assigned to the same part of
speech (POS) as the replaced one. The assigned POS
tags (blue) are listed below the words.

than for images and audios due to their discrete na-
ture, a few methods have been proposed to generate
adversarial text examples and reveal the vulnera-
bility of deep neural networks in natural language
processing (NLP) tasks including reading compre-
hension (Jia and Liang, 2017), text classification
(Samanta and Mehta, 2017; Wong, 2017; Liang
et al., 2018; Alzantot et al., 2018), machine trans-
lation (Zhao et al., 2018; Ebrahimi et al., 2018;
Cheng et al., 2018) and dialogue systems (Cheng
et al., 2019). These recent methods attack text
examples mainly by replacing, scrambling, and
erasing characters or words or other language units
under certain semantics-preserving constraints.

Although adversarial examples have been stud-
ied recently for NLP tasks, previous work almost
exclusively focused on semantic tasks, where the
attacks aim to alter the semantic prediction of ML
models (e.g., sentiment prediction or question an-
swering) without changing the meaning of original
texts. To the best of our knowledge, adversarial



6601

examples to syntactic tasks, such as dependency
parsing, have not been studied in the literature. Mo-
tivated by this, we take the neural network-based
dependency parsing algorithms as targeted models
and aim to answer the following questions: Can we
construct syntactic adversarial examples to fool a
dependency parser without changing the original
syntactic structure? And can we make dependency
parsers robust with respect to these attacks?

To answer these questions, we propose two ap-
proaches to study where and how parsers make
mistakes by searching over perturbations to exist-
ing texts at sentence and phrase (corresponding to
subtrees in a parse tree) levels. For the sentence-
level attack, we modify an input sentence to fool a
dependency parser while such modification should
be syntactically imperceptible to humans (see Fig-
ure 1). Any new error (excluding the arcs directly
connected to the modified parts) made by the parser
is accounted as a successful attack.

For the phrase-level (or subtree-level) attack, we
choose two phrases from a sentence, which are sep-
arated by at least k words (say k ≥ 0), and modify
one phrase to cause the parser’s prediction errors
in another target phrase (see Figure 2). Unlike the
sentence-level attack, any error occurred outside
the target subtree is not considered as a successful
attacking trial. It helps us to investigate whether
an error in one part of a parse tree may exert long-
range influence, and cause cascading errors (Ng
and Curran, 2015). We study the sentence-level
and subtree-level attacks both in white-box and
black-box settings. In the former setting, an at-
tacker can access to the model’s architecture and
parameters while it is not allowed in the latter one.

Our contributions are summarized as follows: (1)
we explore the feasibility of generating syntactic
adversarial sentence examples to cause a depen-
dency parser to make mistakes without altering the
original syntactic structures; (2) we propose two
approaches to construct the syntactic adversarial ex-
amples by searching over perturbations to existing
texts at sentence and phrase levels in both the black-
box and white-box settings; (3) our experiments
with a close to state-of-the-art parser on the English
Penn Treebank show that up to 77% of input exam-
ples admit adversarial perturbations, and moreover
that robustness and generalization of parsing mod-
els can be improved by adversarial training with
the proposed attacks. The source code is available
at (https://github.com/zjiehang/DPAttack).

buy

VBP

,

,

traders

NNS

or

CC

sell

VBP

in

IN

program

NN

a

DT

stock-index

NN

arbitrage

NN

sell

NN

baskets

NNS

big

JJ

of

IN

stocks

NNS

and

CC

offset

VBP

trade

NN

the

DT

in

IN

futures

NNS

.

.

lock

VB

to

TO

in

IN

difference

NN

a

DT

price

NN

S
u
b
tr

ee
 t
o

b
e 

m
od

if
ie

d

Target
subtree

A example sentence: In a stock-index arbitrage sell

program, traders buy or sell big baskets of stocks and

offset the trade in futures to lock in a price difference.

Figure 2: Phrase-level attack: two separate subtrees in
a parse tree are selected, and one of them (left) is delib-
erately modified to cause a parser to make incorrect arc
prediction for another target subtree (right). For exam-
ple, we can make a neural dependency parser (Dozat
and Manning, 2017) to attach the word “difference” in
the target subtree to its sibling “in” instead of the cor-
rect head “lock” (the subtree’s root) by maliciously ma-
nipulating the selected leftmost subtree only.

2 Related Work

Generating adversarial examples – inputs intention-
ally crafted to fool a model – has become an impor-
tant means of exploring model vulnerabilities. Fur-
thermore, adding adversarial examples in the train-
ing stage, also known as adversarial training, has
become one of the most promising ways to improve
model’s robustness. Although there is limited liter-
ature available for NLP adversarial examples, some
studies have been conducted on NLP tasks such as
reading comprehension (Jia and Liang, 2017), text
classification (Samanta and Mehta, 2017; Wong,
2017; Liang et al., 2018; Alzantot et al., 2018), ma-
chine translation (Zhao et al., 2018; Ebrahimi et al.,
2018; Cheng et al., 2018), and dialogue systems
(Cheng et al., 2019).

Depending on the degree of access to the target
model, adversarial examples can be constructed
two different settings: white-box and black-box
settings (Xu et al., 2019; Wang et al., 2019). In
the white-box setting, an adversary can access the
model’s architecture, parameters and input feature
representations while not in the black-box one. The
white-box attacks normally yield a higher success
rate because the knowledge of target models can be
used to guide the generation of adversarial exam-
ples. However, the black-box attacks do not require
access to target models, making them more prac-
ticable for many real-world attacks. Such attacks
also can be divided into targeted and non-targeted
ones depending on the purpose of adversary. Our
phrase-level attack can be viewed as a targeted at-



6602

tack towards a specific subtree while the sentence-
level attack can be taken as a non-targeted one.

For text data, input sentences can be manipulated
at character (Ebrahimi et al., 2018), sememe (the
minimum semantic units) (Zang et al., 2019), or
word (Samanta and Mehta, 2017; Alzantot et al.,
2018) levels by replacement, alteration (e.g. delib-
erately introducing typos or misspellings), swap,
insertion, erasure, or directly making small pertur-
bations to their feature embeddings. Generally, we
would like to ensure that the crafted adversarial ex-
amples are sufficiently similar to their original ones,
and these modifications should be made within
semantics-preserving constraints. Such semantic
similarity constraints are usually defined based on
Cosine similarity (Wong, 2017; Barham and Feizi,
2019; Jin et al., 2019; Ribeiro et al., 2018) or edit
distance (Gao et al., 2018).

Text adversarial example generation usually in-
volves two steps: determine an important position
(or token) to change; modify it slightly to maxi-
mize the model’s prediction error. This two-step
can be repeated iteratively until the model’s predic-
tion changes or certain stopping criteria are reached.
Many methods have been proposed to determine
the important positions by random selection (Alzan-
tot et al., 2018), trial-and-error testing at each pos-
sible point (Kuleshov et al., 2018), analyzing the
effects on the model of masking various parts of a
input text (Samanta and Mehta, 2017; Gao et al.,
2018; Jin et al., 2019; Yang et al., 2018), compar-
ing their attention scores (Hsieh et al., 2019), or
gradient-guided optimization methods (Ebrahimi
et al., 2018; Lei et al., 2019; Wallace et al., 2019;
Barham and Feizi, 2019).

After the important positions are identified, the
most popular way to alter text examples is to re-
place the characters or words at selected posi-
tions with similar substitutes. Such substitutes can
be chosen from nearest neighbours in an embed-
ding space (Alzantot et al., 2018; Kuleshov et al.,
2018; Jin et al., 2019; Barham and Feizi, 2019),
synonyms in a prepared dictionary (Samanta and
Mehta, 2017; Hsieh et al., 2019), visually similar
alternatives like typos (Samanta and Mehta, 2017;
Ebrahimi et al., 2018; Liang et al., 2018) or Internet
slang and trademark logos (Eger et al., 2019), para-
phrases (Lei et al., 2019) or even randomly selected
ones (Gao et al., 2018). Given an input instance,
Zhao et al. (2018) proposed to search for adver-
saries in the neighborhood of its corresponding

representation in latent space by sampling within a
range that is recursively tightened. Jia and Liang
(2017) tried to insert few distraction sentences gen-
erated by a simple set of rules into text examples
to mislead a reading comprehension system.

3 Preliminary
Dependency parsing is the task of constructing a
parse tree of a sentence that represents its syntac-
tic structure and defines the relationships between
“head” words and dependent ones, which modify
their heads (see the arcs in Figure 1). In this section,
we first describe a graph-based dependency parsing
method, and then formally present the adversarial
attack problem of dependency parsing.

3.1 Dependency Parsing
Graph-based parsing models learn the parameters
to score correct dependency subgraphs over incor-
rect ones, typically by factoring the graphs directed
edges (or arcs), and performs parsing by searching
the highest-scoring graph for a given sentence.

Given a sentence x, we denote the set of all valid
parse trees that can be constructed from x as Y(x).
Assume that there exists a graph scoring function s,
the dependency parsing problem can be formulated
as finding the highest scoring directed spanning
tree for the sentence x.

y∗(x) = argmax
ŷ∈Y(x)

s(x, ŷ; θ) (1)

where y∗(x) is the parse tree with the highest score,
and θ are all the parameters used to calculate the
scores. Given a sentence x[1:n] that is a sequence
of n words xi, 1 ≤ i ≤ n, the score of a graph is
usually factorized into the sum of its arc scores to
make the search tractable (McDonald et al., 2005).

s(x, ŷ; θ) =
∑

(xh,xm)∈A(ŷ)

s(xh, xm; θ) (2)

whereA(ŷ) represents a set of directed edges in the
parse tree ŷ. The score of an arc (xh, xm) repre-
sents the likelihood of creating a dependency from
head xh to modifier xm in a dependency tree.

3.2 Problem Definition
A neural network can be considered as a mapping
f : X → Y from an input x ∈ X to a output y ∈ Y
with parameters θ. For classification problems, y
is a label which lies in some finite set of categories.
For the dependency parsing, y is one of valid parses
that can be built from x. The model f maps x to y∗

with the highest score, as defined in Equation (1).



6603

Given the original input x, adversarial examples
are crafted to cause an ML model to misbehave.
Following the common definition in previous pa-
pers (e.g., Kuleshov et al., (2018)), for a model f ,
we say x′ is a good adversarial example of x for
untargeted attack if

f(x′) 6= y, c(x, x′) ≤ ε (3)

where y is the truth output for x. For targeted attack
the goal is to turn f(x′) into a particular targeted
class, denoted by y′, under the same constraint in
(3). The constraint function c : X × X → Rg

+

and a vector of bounds ε ∈ Rg(g ≥ 1) reflect
the notion of the “imperceptibility” of perturbation
to ensure that the true label of x′ should be the
same as x. In the context of image classification,
popular choices of such constraint include `0, `2
and `∞ distances. For natural language tasks, x
and x′ are sentences composed with discrete words,
and previous methods often define c to measure
the semantic similarity between them, and thus
x, x′ should have the same semantic meaning while
being predicted differently using model f . In this
paper, we consider the syntactic similarity and
propose various ways to define such constraint for
the dependency parsing task (see Section 4).

Generating adversarial examples can be formu-
lated as an optimization problem of maximizing
the probability of f(x′) 6= y by choosing x′ for x
subject to c(x, x′) ≤ ε. Algorithms for solving this
problem include fast gradient sign method (Good-
fellow et al., 2015), iterative methods based on con-
strained gradient descent (Papernot et al., 2016a),
GAN-based strategy (Wong, 2017), genetic algo-
rithms (Alzantot et al., 2018), and submodular set
function maximization (Lei et al., 2019).

4 Method
Adversarial examples are required to maintain the
original functionality of the input. In the adversar-
ial NLP literature, previous studies often expect the
adversarial examples to retain the same or similar
semantic meaning as the original one (Samanta and
Mehta, 2017; Wong, 2017; Alzantot et al., 2018;
Zhao et al., 2018; Zang et al., 2019). However, in
this paper we focus on the dependency parsing task,
which focuses on predicting the syntactic structure
of input sentences. Therefore, to expose regions
of the input space where the dependency parsers
perform poorly, we would like the modified ex-
amples x′ to preserve the same syntactic structure
as the original x, but slightly relax the constraint

on their similarity in semantic properties. A ro-
bust parser should perform consistently well on the
sentences that share the same syntactic properties,
while differ in their meaning. For example, substi-
tuting the word “black” for “white”, or “dog” for
“cat” are acceptable replacements because they are
grammatically imperceptible to humans.

4.1 Adversarial Examples for Parsing
We craft the adversarial examples mainly by re-
placing few words in an input sentence with care-
fully selected ones. To preserve the same syntactic
structure as the original sentence x, we impose the
following three constraints that should be satisfied
by the word replacement when generating the ad-
versarial examples x′:

(i) The substitute word x′i should fit in well with
the context, and can maintain both the seman-
tic and syntactic coherence.

(ii) For any word xi in an original example, the
word x′i to replace xi must have the same part-
of-speech (POS) as xi.

(iii) Pronouns, articles, conjunctions, numerals,
interjections, interrogative determiners, and
punctuations are not allowed to be replaced1.

To select a substitute word that agrees well with
the context of a sentence, we use the BERT (Devlin
et al., 2019) to generate a set of candidate words
that are suitable to replace the original word thanks
to its bidirectional language model that is capable
of capturing the wider context of the entire sen-
tence2. Words that are assigned to the same POS
generally have similar grammatical properties and
display similar syntactic behavior. To enforce the
second constraint, we require that the substitute x′i
should be assigned to the same part of speech as xi
by a POS tagger like (Samanta and Mehta, 2017;
Ebrahimi et al., 2018). We filter out the aforemen-
tioned words in the third constraint.

We adopt the following two-step procedure for
generating text adversarial examples: choose weak
spots (or positions) to change, and then modify
them to maximize the model’s error. In the black-
box setting, we first identify the weak spots of an

1We exclude those words from being replaced because
either there are very limited number of substitutes available,
or such replacements easily lead to syntactic inconsistency.

2We also tried to replace words with their nearest neighbors
in the vector space of pre-trained word embeddings such as
GloVe (Pennington et al., 2014). However, our preliminary
experiments show that these nearest neighbors cannot fit well
with the context in many cases since the neighboring words
are retrieved without taking the specific context into account.



6604

input sentence with the greedy search strategy by
replacing each word, one at a time, with a special
“unknown” symbol (<unk>), and examining the
changes in unlabeled attachment score (UAS) like
(Yang et al., 2018; Gao et al., 2018; Hsieh et al.,
2019). For each identified weak spot, we replace
it with a word in the candidate set proposed by
the BERT to form an attack. We select the substi-
tute word that causes the greatest decrease in UAS
while satisfying the aforementioned constraints to
construct the adversarial example. This process is
repeated until all candidate words are exhausted
and every weak spot is tested (see Figure 3).

In the white-box setting, full access to the tar-
get model’s parameters and features enables us to
launch a “surgical” attack by crafting more accu-
rate adversarial examples. We propose a scoring
function to determine which parts are more vulner-
able to adversarial attacks for an input sentence x
of n words xi (1 ≤ i ≤ n) as follows.

F(x, θ) =
n∑

m=1

max[s(xh, xm; θ)−max
j 6=h

s(xj , xm; θ),−ε]

S(xi, θ) =
∥∥∥∥∂F(x, θ)∂exi

∥∥∥∥
2

(4)

where θ are all the parameters of a target depen-
dency parser, exi is the embedding of word xi, and
ε ≥ 0 denotes a confidence margin. A larger ε
will lead to a more confident output and a higher
success rate, but with the cost of more iterations.
The function F(x, θ) sums up all the differences
between the score of any ground truth arc (xh, xm)
and that of the incorrect, but the highest scoring
one with the same dependant xm. Generally speak-
ing, the greater the value of this function is, the
harder we can find adversarial examples for the
input x because it has a larger margin between the
true parse tree and any incorrect one. Minimizing
this function maximizes the probability of causing
the parser to misbehave.

We determine the importance of words by their
values of S(xi, θ), namely the norm of the partial
derivative of the function F(x, θ) with respect to
the word xi. The key idea is that we use the mag-
nitude of the gradient to decide which words to
attack. Assuming we have a set of candidate words
Cxi , we select the optimal one x∗i by:

x∗i = argmin
w∈Cxi

∥∥∥∥ew − (exi −
α

S(xi, θ)
∂F(x, θ)
∂exi

)∥∥∥∥
2

(5)

where the coefficient α governs the relative impor-
tance of the normalized gradient term. We want

the selected word as close to the replaced one xi
as possible in their embedding space according to
the Euclidean distance, where the embedding of
xi is updated in the opposite direction of the gra-
dient at the rate of α. Such replacement will lead
to a decrease in the value of the function F(x, θ).
Our algorithm of generating adversarial examples
for dependency parsing in the white-box setting is
shown in Figure 4.

Inputs:
x[1:n]: an input sentence of n words xi, 1 ≤ i ≤ n.
f : a target parser.
γ: the maximum percentage of words that can be modified.
ψ: the size of the set of candidate words.

Output: an adversarial example x′ of x.
Algorithm:
1: κ = γ ·n (the maximum number of words to be modified)
2: for each word xi except those listed in the constraint (iii)
3: x̂i = replace xi with a special symbol “<unk>” in x;
4: calculate the unlabeled attachment score of f(x̂i).
5: sort x̂i by their UAS, and append the top-κ positions

into an ordered index list [1 : κ];
6: for each position j in the list [1 : κ]

7: generate a set of ψ candidate words Cj by BERT;
8: remove the words from Cj if they do not have the

same part-of-speech as the xj ;
9: select the word x∗j ∈ Cj that causes the greatest

decrease in UAS if we replace xj with x∗j in x;
10: x′ = replace xj with the word x∗j in x.
11: return x′.

Figure 3: Adversarial example generation algorithm for de-
pendency parsing in the black-box setting.

4.2 Sentence-level and Phrase-level Attacks

For the sentence-level attack, we simply use the
algorithms listed in Figure 3 and 4 to form a attack.
For the phrase-level attack, we first choose two
phrases (corresponding to two subtrees in a parse)
from a sentence, which do not overlap each other
and are separated by at least k words. Then, we
try to cause the parser to make mistakes in a tar-
get subtree by modifying another one. Unlike the
sentence-level attack, any error occurred outside
the target subtree will not be counted as a success-
ful trial. Note that even if we can force the parser to
change its prediction on the head of the target sub-
tree’s root, it is still not considered as a successful
attack because the changed edge connects a certain
word outside the subtree.

We require that all the subtrees should contain 4
to 12 words3, and the source subtree to be modified

3A subtree-level attack can be launched on a sentence if it
has at least two subtrees. We ensure that there are enough sen-



6605

and its target share no word in common. Depend-
ing on the purpose of the adversary, adversarial
attacks can be divided into two categories: targeted
attack and non-targeted attack. The subtree-level
attack can be viewed as a targeted attack while the
sentence-level attack as a non-targeted one.

A small subtree can be taken as a relatively inde-
pendent structure. If a parser is robust enough, it
should always give the consistent result for a target
subtree even when there are some errors in another
source subtree that does not overlap with the tar-
get one. Therefore, we relax some constraints in
the cases of the phrase-level attacks, and allow the
words in the source tree to be replaced with any
word in the vocabulary if the number of modified
words is no more than a given value. With the help
of these adversarial examples, we can investigate
whether an error in one part of a parse tree may
exert long-range influence, and successfully cause
cascading errors.

In the black-box setting, we first collect all the
subtrees from an input sentence, and then perform
trial-and-error testing with every source-target pair.
For each pair, we try to modify the source subtree
up to κ words (say κ = 3) by replacing them with
other randomly selected words. This process is
repeated until a pair is found where the UAS of the
target subtree decreases.

In the white-box setting, we can obtain a func-
tion as F(x, θ) in Equation (4) for every possible
target subtree (excluding its root), and then calcu-
late a score for each source-target pair as follows.

S(x[s], x[t], θ) =
∑

xi∈x[s]

∥∥∥∥∂F(x[t], θ)∂exi

∥∥∥∥
2

(6)

where x[s] denotes a source subtree, and x[t] a target
one. Such scores can be used to rank the source-
target pairs for their potential to deliver a successful
attack. Generally, the greater the score is, the more
vulnerable the target subtree is to the source one. If
we remove the sum from the right hand side of (6),
we can obtain the norm of the partial derivative of
the functionF(x[t], θ) with respect to each word xi
in the source subtree, which helps us to determine
which words have higher priority to be changed.

For an input sentence, we successively take one
from the list of the source-target pairs in the order
of their scores. For each pair, we simultaneously

tence examples for the experiment. According to our statistics
on the English PTB test set, 35.14% sentences have two such
subtrees, 17.18% have three, and 8.98% have four or more.

Inputs:
x[1:n]: an input sentence of n words xi, 1 ≤ i ≤ n.
f : a target parser.
γ: the maximum percentage of words that can be modified.
ψ: the size of the set of candidate words.
ξ: the maximum number of trials.

Output: an adversarial example x′ of x.
Algorithm:
1: κ = γ ·n (the maximum number of words to be modified)
2: while no decrease of UAS in the latest ξ trials do
3: select the word xi to be replaced as Equation (4);
4: if the number of words to replace is greater than κ then

break;
5: generate a set of ψ candidate words Ci by BERT;
6: remove the words from Ci if they do not have the

same part-of-speech as the xi;
7: choose the word x∗i ∈ Ci to replace xi as Equation (5);
8: x′ = replace xi with the word x∗i in x.
9: return x′.

Figure 4: Adversarial example generation algorithm for de-
pendency parsing in the white-box setting.

replace three words in the source subtree guided
by their gradients as Equation (5). More than one
word are replaced at each iteration to avoid getting
stuck in a local optimum. This two-step procedure
is repeated until the parser’s prediction changes.

5 Experiments

We first describe the target parser as well as its three
variants, evaluation dataset, and hyper-parameter
settings. We then report the empirical results of the
proposed adversarial attacking and training. We
also list some adversarial examples generated by
our attacking algorithms in Table 5.

5.1 Target Parser and Its Variants
We choose the graph-based dependency parser pro-
posed by Dozat and Manning (2017) as our target
model. This well-known parser achieved 95.7%
unlabeled attachment scores (UAS) and 94.1% la-
beled attachment scores (LAS) on English PTB
dataset and close to state-of-the-art performance on
standard treebanks for five other different natural
languages (Buchholz and Marsi, 2006).

Specifically, Dozat and Manning (2017) extends
bidirectional LSTM-based approach (Kiperwasser
and Goldberg, 2016) with biaffine classifiers to
predict arcs and labels. They presented two vari-
ants of their model: one takes only words as input,
and the other takes both the words and their POS
tags. Moreover, we use the Stanford POS tagger
(Toutanova et al., 2003) to generate the POS tag for
each word. In addition to these two, we add a new



6606

Model Max% Word-based Word + POS Character-based
UAS #Word Succ% UAS #Word Succ% UAS #Word Succ%

Clean −− 95.52 −− −− 95.58 −− −− 95.73 −− −−

Black-box
5% 90.91 0.99 42% 90.87 1.00 41% 91.18 1.09 37%
10% 89.38 1.52 49% 90.20 1.54 43% 88.49 1.99 51%
15% 88.69 2.23 51% 89.86 2.24 44% 85.89 3.08 60%

White-box
5% 87.80 0.60 55% 89.76 0.50 46% 90.37 0.40 37%
10% 83.73 1.50 68% 86.36 1.40 61% 86.58 1.20 54%
15% 80.35 2.40 77% 83.75 2.10 69% 83.25 1.90 64%

Table 1: Results of sentence-level adversarial attacks on a state-of-the-art parser with the English Penn Treebank
in both the black-box and white-box settings. “Word-based”, “Word + POS”, and “Character-based” denote three
variants of the model (Dozat and Manning, 2017) with differences in their input forms. “Max%” denotes the
maximum percentage of words that are allowed to be modified, “UAS” unlabeled attachment scores, “#Word” the
average number of words actually modified, and “Succ%” the success rate in terms of the number of sentences.

Model Word-based Word + POS Character-based
Original Adv [b] Adv [w] Original Adv [b] Adv [w] Original Adv [b] Adv [w]

Clean 95.52 95.59 95.16 95.58 95.53 95.05 95.73 95.55 95.34
Attack [b] 88.69 90.03 89.98 89.86 91.86 91.60 85.89 92.93 89.89
Attack [w] 80.35 80.82 88.87 83.75 84.89 90.32 83.25 84.10 86.56

Table 2: Performance of adversarial training. “Clean” stands for the testing results on the clean data, and “Attack
[b]” and “Attack [w]” respectively denote the accuracy under test-time attacks in the black-box ([b]) and white-box
([w]) settings. “Original” and “Adv” denotes the testing and adversarial accuracy of the models without and with
the adversarial training.

variant that takes characters as inputs, and uses a
bidirectional LSTM to generate word representa-
tions from the character embeddings.

Model POS Word-based Word + POS
∆UAS Succ% ∆UAS Succ%

JJ −1.89 23% −1.13 17%
Black- NN −2.00 24% −1.25 20%
box RB −3.13 37% −2.43 31%

VB −7.42 48% −6.17 41%
IN −11.10 67% −9.22 62%
JJ −4.48 37% −2.23 25%

White- NN −10.53 65% −8.33 57%
box RB −4.09 40% −3.14 35%

VB −13.36 73% −10.51 63%
IN −15.58 87% −13.24 85%

Table 3: The attack success rate and the corresponding
changes in UAS by modifying the words with differ-
ent part-of-speech. “JJ” denotes adjective, “NN” noun,
“RB” adverb, “VB” verb, and “IN” preposition.

5.2 Datasets and Hyper-parameter Settings

We evaluate our methods on the English Penn Tree-
bank (PTB), converted into Stanford dependencies
using version 3.3.0 of the Stanford dependency con-
verter (de Marneffe et al., 2006)4. We follow the
standard PTB split, using section 2-21 for training,
section 22 for development and 23 for testing.

4We ask for the copula (linking verbs) to remain the head
when its complement is an adjective or noun.

For the target parsing models, we use the same
choice of hyperparameters as (Dozat and Manning,
2017): 100-dimensional uncased word embeddings
and POS tag vectors; three bi-directional LSTM
layers (400 dimensions in each direction); and 500-
and 100-dimensional ReLU MLP layers for arc and
label predictions respectively. For the character-
based variant, we use 100-dimensional character
vectors, and 200-dimensional LSTM. The other
hyper-parameters were tuned with the PTB 3.3.0
development set by trying only a few different set-
tings. In the following experiments, the maximum
size of candidate words ψ was set to 50, the coef-
ficient α in Equation (5) to 15, and the maximum
number of trials to 40. For each example, we ter-
minate the trials immediately if the drop in UAS is
more than 30% in the white-box setting.

5.3 Results of the Sentence-level Attacks

We now report the empirical studies of adversarial
attacks for sentence-level methods. In Table 1, we
present both clean accuracy and accuracy under at-
tacks on PTB with the three variants of the parsing
model (Dozat and Manning, 2017), where we allow
three different, 5%, 10% and 15% word replace-
ments. A success rate is defined as the number of
sentences successfully modified (causing the model
to make errors) divided by all the number of sen-



6607

tences to be attempted. The results show that the
proposed attacks are effective. With less than two
words perturbed on average, our white-box attack
can consistently achieve > 60% success rate.

We also observe that the word-based model is
most vulnerable to the adversarial examples among
the three variants. Its performance drops 15.17%
in UAS, and 77% sentence examples admit the ad-
versarial perturbations under the white-box attack
with 15% word replacement. The model taking the
words and their POS tags as input (“Word + POS”)
seems to be more robust against adversarial exam-
ples in both settings. One reasonable explanation
is that we require the substitute words to have the
same part-of-speech as the original ones, and the
model can produce more consistent results with
the help of the POS tags. The white-box attacks
are clearly much more effective than the black-box
ones across the three variants of the parsing model
and different word replacement rates.

Despite having high success rates, we want to
know whether the generated examples are syntacti-
cally faithful to and coherent with the original sen-
tences. To evaluate the quality of these adversarial
examples, we randomly collect 100 sentences and
their adversarial examples each generated in the
black-box and white-box settings, and presented
them to three human evaluators. The evaluators
were asked to examine whether each generated ex-
ample still preserve the original syntactic structure.
We adopted a majority vote for the results, and
found that 80% examples generated in the white-
box setting and 75% in the black-box setting are
considered unchanged in their syntactic structures.

The three human evaluators are postgraduate
students with at least three years of research ex-
perience in syntactic parsing. Those three anno-
tators’ pairwise-agreement percentages are 90%,
82%, and 82% for the adversarial examples gener-
ated in the white-box setting, and 93%, 85%, 84%
for those generated in the black-box setting. Their
average Kappa coefficients are 53.8% (white-box),
and 67.3% (black-box) respectively. In Table 5, we
listed five sentences and their adversarial examples
generated by our algorithms each in the black-box
and white-box settings, which were randomly ex-
tracted from the PTB test set.

We would like to know which type of words to
modify is most likely to form a successful attack
like (Hashemi and Hwa, 2016). In this experiment,
we only allowed to replace the words belonging to

one part of speech, and also tried to generate adver-
sarial examples by replacing prepositions, which is
forbidden in the above experiments. It can be seen
from Table 3 that the following dependencies es-
pecially suffer: prepositional, verbal and adverbial
phrases. Not surprisingly most of the errors occur
with structures which are inherently hard to attach
in the dependency parsing.

Model Word-based Word + POS
k ≥ 0 k ≥ 1 k ≥ 0 k ≥ 1

Black-box 34.73% 21.72% 19.61% 10.06%
White-box 40.06% 28.66% 25.35% 15.82%

Table 4: The success rate of the phrase-level attacks.

5.4 Results of the Phrase-level Attacks

For the phrase-level attacks, we aim to study
whether changes in a source subtree can alter the
prediction on another target subtree (see an illustra-
tion in Figure 2). We tried two different settings:
one asks for the source and target subtrees to be
separated by at least one word (k ≥ 1), and another
only requires those two subtrees do not overlap
with each other (k ≥ 0). In the case of k ≥ 0,
we can find 1420 sentence examples from the test
set, while for k ≥ 1, there are 1340 valid exam-
ples that can be used to deliver phrase-level attacks
(there are 2416 sentences in total in the PTB test
set). Note that all the subtrees should contain 4 to
12 words. For each source-target pair, we allow
to modify the source subtree up to 3 words. For
some sentences, their adversarial examples can be
generated by replacing just one or two words.

The success rate for the phrase-level attacks is
defined as the ratio between the number of the
sentences where there is at least one source-target
subtree pair, such that a modification in the source
subtree causes the model to make errors in the
target subtree, and the number of the sentences
that contain at least one source-target subtree pair,
regardless of whether the model is caused to make
an error or not. It can be seen from Table 4 that with
only three words perturbed, the proposed white-box
attack can achieve 27.47% success rate on average
for all the settings. The white-box attacks are again
much more effective, and spend less than 50% of
the time to find the most vulnerable pairs than the
black-box ones. Like the sentence-level attacks,
verbal and prepositional phrases have been shown
to be more susceptible to such attacks.



6608

" We 're are after a little bigger niche , " he said .

Looking ahead to other big commodity markets this week .

The centers normally usually are closed through the weekend .

But at least most part of the increase could have come from higher prices , analysts said .

Posted yields on 30 year mortgage commitments for delivery within 30 years days priced at par .

But his release within the next few months is widely highly excepted .

The most popular such shows appeals focus on narrow national concerns .

Size Breadth and weight considerations also have limited screen displays .

Columbia savings officials were not available last for comment on the downgrade . 

That would be the lowest worst level since the early 1970s .

Figure 5: Five adversarial examples each generated by our algorithms in the black-box (top) and white-box (bot-
tom) settings. These adversarial examples were randomly extracted from the test set of the English Penn Treebank
(PTB). The original words are highlighted in bold blue font while the substitute words are highlighted in bold green
ones. The incorrect arcs (i.e. head-modifier pairs) predicted by the target parser are indicated by dash arrows while
the ground truth arcs are indicated by solid arrows.

5.5 Adversarial Training
We also investigated whether our adversarial exam-
ples can aid in improving model robustness. We
randomly selected 50% of the training data and
generated adversarial examples from them using
the algorithms listed in Figure 3 and 4. We merged
these adversarial examples with the original train-
ing set. Some previous studies show that the mod-
els tend to overfit the adversarial examples, and
their performance on the clean data will drop if too
many adversarial examples are used. Therefore, we
used a similar training strategy.

The testing and adversarial performance with
and without adversarial training are listed in Table
2. Under all circumstances, adversarial training im-
proved the generalization of the models and made
them less vulnerable to the attacks, while suffering
little to no loss in on the clean data. For example,
88.69 (column 1, row 2) is the accuracy achieved
by the original model on the adversarial examples
generated in the black-box setting, 90.03 (column
2, row 2) and 89.98 (column 3, row 2) are the ac-
curacy achieved on the perturbed test data with the
test-time adversarial attacks by the models with the
adversarial training. It is clear that the robustness
of parsing models was improved by the adversarial

training. Furthermore, from the first row of Ta-
ble 2 these robust models suffer from little to no
performance drop on the clean testing data.

6 Conclusion

In this paper, we study the robustness of neural
network-based dependency parsing models. To the
best of our knowledge, adversarial examples to syn-
tactic tasks, such as dependency parsing, have not
been explored in the literature. We develop the first
adversarial attack algorithms for this task to suc-
cessfully find the blind spots of parsers with high
success rates. Furthermore, by applying adversarial
training using the proposed attacks, we are able to
significantly improve the robustness of dependency
parsers without sacrificing their performance on
clean data.

Acknowledgements

The authors would like to thank the anonymous
reviewers for their valuable comments. This work
was supported by National Key R&D Program of
China (No. 2018YFC0830902), Shanghai Munic-
ipal Science and Technology Major Project (No.
2018SHZDZX01) and Zhangjiang Lab.



6609

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Samuel Barham and Soheil Feizi. 2019. Interpretable
adversarial training for text. Computing Research
Repository, arXiv: 1905.12864.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency parsing.
In Proceedings of the International Conference on
Computational Natural Language Learning.

Nicholas Carlini and David Wagner. 2017. Towards
evaluating the robustness of neural networks. In Pro-
ceedings of the IEEE Symposium on Security and
Privacy.

Minhao Cheng, Wei Wei, and Cho-Jui Hsieh. 2019.
Evaluating and enhancing the robustness of dialogue
systems: A case study on a negotiation agent. In
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Minhao Cheng, Jinfeng Yi, Huan Zhang, Pin-Yu Chen,
and Cho-Jui Hsieh. 2018. Seq2Sick: Evaluating
the robustness of sequence-to-sequence models with
adversarial examples. Computing Research Reposi-
tory, arXiv: 1803.01128.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the International Conference
on Learning Representations.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics.

Steffen Eger, Gozde Gul Sahin, Andreas Rucklé, Ji-
Ung Lee, Claudia Schulz, Mohsen Mesgar, Kr-
ishnkant Swarnkar, Edwin Simpson, and Iryna
Gurevych. 2019. Text processing like humans do:
Visually attacking and shielding NLP systems. In
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes,
Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash,
Tadayoshi Kohno, and Dawn Song. 2018. Robust
physical-world attacks on deep learning models. In

Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. Com-
puting Research Repository, arXiv: 1801.04354.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In Proceedings of the International
Conference on Learning Representations.

Homa B. Hashemi and Rebecca Hwa. 2016. An eval-
uation of parser robustness for ungrammatical sen-
tences. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei
Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. 2019. On
the robustness of self-attentive models. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial ex-
amples for evaluating reading comprehension sys-
tems. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is BERT really robust? a strong
baseline for natural language attack on text classifi-
cation and entailment. Computing Research Reposi-
tory, arXiv: 1907.11932.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Volodymyr Kuleshov, Shantanu Thakoor, Tingfung
Lau, and Stefano Ermon. 2018. Adversarial ex-
amples for natural language classification problems.
OpenReview Submission, id: r1QZ3zbAZ.

Qi Lei, Lingfei Wu, Pin-Yu Chen, Alexandros G. Di-
makis, Inderjit S. Dhillon, and Michael Witbrock.
2019. Discrete adversarial attacks and submodular
optimization with applications to text classification.
In Proceedings of the Conference on Systems and
Machine Learning.

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2018. Deep text clas-
sification can be fooled. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the International Conference on Lan-
guage Resources and Evaluation.



6610

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
and Pascal Frossard. 2016. DeepFool: a simple and
accurate method to fool deep neural networks. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Dominick Ng and James R. Curran. 2015. Identify-
ing cascading errors using constraints in dependency
parsing. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics and
the International Joint Conference on Natural Lan-
guage Processing.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z. Berkay Celik, and Ananthram Swami.
2016a. The limitations of deep learning in adversar-
ial settings. In Proceedings of the IEEE European
Symposium on Security and Privacy.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. 2016b. Distillation as
a defense to adversarial perturbations against deep
neural networks. In Proceedings of the IEEE Sym-
posium on Security and Privacy.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversarial
rules for debugging NLP models. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics.

Suranjana Samanta and Sameep Mehta. 2017. Towards
crafting text adversarial samples. Computing Re-
search Repository, arXiv: 1707.02812.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2013. Intriguing properties of neural
networks. Computing Research Repository, arXiv:
1312.6199.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing NLP. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing and the International
Joint Conference on Natural Language Processing.

Wenqi Wang, Lina Wang, Benxiao Tang, Run Wang,
and Aoshuang Ye. 2019. A survey: Towards a ro-
bust deep neural network in text domain. Computing
Research Repository, arXiv: 1902.07285.

Catherine Wong. 2017. DANCin SEQ2SEQ: Fooling
text classifiers with adversarial text example gen-
eration. Computing Research Repository, arXiv:
1712.05419.

Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui
Liu, Jiliang Tang, and Anil K. Jain. 2019. Adversar-
ial attacks and defenses in images, graphs and text:
A review. Computing Research Repository, arXiv:
1909.08072.

Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling
Wang, and Michael I. Jordan. 2018. Greedy attack
and gumbel attack: Generating adversarial examples
for discrete data. Computing Research Repository,
arXiv: 1805.12316.

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li.
2019. Adversarial examples: Attacks and defenses
for deep learning. IEEE transactions on neural net-
works and learning systems, 30(9):2805–2824.

Yuan Zang, Chenghao Yang, Fanchao Qi, Zhiyuan
Liu, Meng Zhang, Qun Liu, and Maosong Sun.
2019. Textual adversarial attack as combinato-
rial optimization. Computing Research Repository,
arXiv: 1910.12196.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018.
Generating natural adversarial examples. In Pro-
ceedings of the International Conference on Learn-
ing Representations.


