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Abstract

Cross-lingual summarization is the task of gen-
erating a summary in one language given a
text in a different language. Previous works
on cross-lingual summarization mainly focus
on using pipeline methods or training an end-
to-end model using the translated parallel data.
However, it is a big challenge for the model
to directly learn cross-lingual summarization
as it requires learning to understand different
languages and learning how to summarize at
the same time. In this paper, we propose to
ease the cross-lingual summarization training
by jointly learning to align and summarize.
We design relevant loss functions to train this
framework and propose several methods to en-
hance the isomorphism and cross-lingual trans-
fer between languages. Experimental results
show that our model can outperform compet-
itive models in most cases. In addition, we
show that our model even has the ability to
generate cross-lingual summaries without ac-
cess to any cross-lingual corpus.

1 Introduction

Neural abstractive summarization has witnessed
rapid growth in recent years. Variants of sequence-
to-sequence models have shown to obtain promis-
ing results on English (See et al., 2017) or Chinese
summarization datasets. However, Cross-lingual
summarization, which aims at generating a sum-
mary in one language from input text in a different
language, has been rarely studied because of the
lack of parallel corpora.

Early researches on cross-lingual abstrac-
tive summarization are mainly based on
the summarization-translation or translation-
summarization pipeline paradigm and adopt
different strategies to incorporate bilingual features
(Leuski et al., 2003; Orasan and Chiorean, 2008;
Wan et al., 2010; Wan, 2011) into the pipeline
model.

Recently, Shen et al. (2018) first propose a neu-
ral cross-lingual summarization system based on
a large-scale corpus. They first translate the texts
automatically from the source language into the
target language and then use the teacher-student
framework to train a cross-lingual summarization
model. Duan et al. (2019) further improve this
teacher-student framework by using genuine sum-
maries paired with the translated pseudo source
sentences to train the cross-lingual summarization
model. Zhu et al. (2019) propose a multi-task learn-
ing framework to train a neural cross-lingual sum-
marization model.

Cross-lingual summarization is a challenging
task as it requires learning to understand different
languages and learning how to summarize at the
same time. It would be difficult for the model to
directly learn cross-lingual summarization. In this
paper, we explore this question: can we ease the
training and enhance the cross-lingual summariza-
tion by establishing alignment of context represen-
tations between two languages?

Learning cross-lingual representations has been
proven a beneficial method for cross-lingual trans-
fer for some downstream tasks (Klementiev et al.,
2012; Artetxe et al., 2018; Ahmad et al., 2019;
Chen et al., 2019). The underlying idea is to learn
a shared embedding space for two languages to im-
prove the model’s ability for cross-lingual transfer.
Recently, it has been shown that this method can
also be applied to context representations (Aldar-
maki and Diab, 2019; Schuster et al., 2019). In this
paper, we show that the learning of cross-lingual
representations is also beneficial for neural cross-
lingual summarization models.

We propose a multi-task framework that jointly
learns to summarize and align context-level repre-
sentations. Concretely, we first integrate monolin-
gual summarization models and cross-lingual sum-
marization models into one unified model and then
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build two linear mappings to project the context
representation from one language to the other. We
then design several relevant loss functions to learn
the mappers and facilitate the cross-lingual summa-
rization. In addition, we propose some methods to
enhance the isomorphism and cross-lingual trans-
fer between different languages. We also show that
the learning of aligned representation enables our
model to generate cross-lingual summaries even in
a fully unsupervised way where no parallel cross-
lingual data is required.

We conduct experiments on several public cross-
lingual summarization datasets. Experiment results
show that our proposed model outperforms com-
petitive models in most cases, and our model also
works on the unsupervised setting. To the best
of our knowledge, we are the first to propose an
unsupervised framework for learning neural cross-
lingual summarization.

In summary, our primary contributions are as
follow:

• We propose a framework that jointly learns to
align and summarize for neural cross-lingual
summarization and design relevant loss func-
tions to train our system.

• We propose a procedure to train our cross-
lingual summarization model in an unsuper-
vised way.

• The experimental results show that our model
outperforms competitive models in most
cases, and our model has the ability to gener-
ate cross-lingual summarization even without
any cross-lingual corpus.

2 Overview

We show the overall framework of our proposed
model in Figure 1. Our model consists of two
encoders, two decoders, two linear mappers, and
two discriminators.

Suppose we have an English source text x =
{x1, . . . , xm} and a Chinese source text y =
{y1, . . . , yn}, which consist of m and n words, re-
spectively. The English encoder φEX (res. Chinese
encoder φEY ) transforms x (res. y) into its context
representation zx (res. zy), and the decoder φDX

(res. φDY ) reads the memory zx (res. zy) and gen-
erates the corresponding English summary x̃ (res.
Chinese summary ỹ).

The mappers MX : Zx → Zy and MY : Zy →
Zx are used for transformations between zx and

Figure 1: The overall framework of our proposed
model.

zy, and the discriminators DX and DY are used
for discriminating between the encoded representa-
tions and the mapped representations.

Taking English-to-Chinese summarization for
example, our model generates cross-lingual sum-
maries as follows: First we use the English encoder
to get the English context representations, then we
use the mapper to map English representations into
Chinese space. Lastly the Chinese decoder is used
to generate Chinese summaries.

In Section 3, we describe the techniques we
adopt to enhance the cross-lingual transferability of
the model. In Section 4 and Section 5, we describe
the unsupervised training objective and supervised
training objective for cross-lingual summarization,
respectively.

3 Model Adjustment for Cross-Lingual
Transfer

3.1 Normalizing the Representations
In our model, we adopt Transformer (Vaswani et al.,
2017) as our encoder and decoder, which is the
same with previous works (Duan et al., 2019; Zhu
et al., 2019). The encoder and decoder are con-
nected via cross-attention. The cross-attention is
implemented as the following dot-product attention
module:

Attention (S, T ) = softmax

(
TS>
√
dk

)
S (1)

where S is the packed encoder-side contextual rep-
resentation, T is the packed decoder-side contex-
tual representation and dk is the model size.
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In the dot-product module, it would be beneficial
if the contextual representations of the encoder and
decoder have the same distributions. However, in
the cross-lingual setting, the encoder and decoder
deal with different languages and thus the distri-
butions of the learned contextual representations
may be inconsistent. This motivates us to explicitly
learn alignment relationships between languages.

To make the contextual representations of two
languages easier to be aligned, we introduce
the normalization technique into the transformer
model. Normalizing the word representations has
been proved an effective technique on word align-
ment (Xing et al., 2015). After normalization, two
sets of embeddings are both located on a unit hy-
persphere, which makes them easier to be aligned.

We achieve this by introducing the pre-
normalization technique and replacing the
LayerNorm with ScaleNorm (Nguyen and Salazar,
2019):

o`+1 = LayerNorm (o` + F` (o`))

⇓
o`+1 = o` + F`(ScaleNorm (o`))

where F` is the `-th layer and o` is its input. The
formula for calculating ScaleNorm is:

ScaleNorm(x; g) = g · x/‖x‖ (2)

where g is a hyper-parameter.
An additional benefit of ScaleNorm is that after

being normalized, the dot-product of two vectors
u>v is equivalent to their cosine distance u>v

‖u‖‖v‖ ,
which may benefit the attention module in Trans-
former. We will conduct experiments to verify this.

3.2 Enhancing the Isomorphism
A key assumption of aligning the representations
of two languages is the isomorphism of learned
monolingual representations. Some researchers
show that the isomorphism assumption weakens
when two languages are etymologically distant
(Søgaard et al., 2018; Patra et al., 2019). How-
ever, Ormazabal et al. (2019) show that this lim-
itation is due to the independent training of two
separate monolingual embeddings, and they sug-
gest to jointly learn cross-lingual representations
on monolingual corpora. Inspired by Ormazabal
et al. (2019), we take the following approaches to
address the isomorphism problem.

First, we combine the English and Chinese sum-
marization corpora and build a unified vocabulary.

Second, we share encoders and decoders in our
model. Sharing encoders and decoders can also en-
force the model to learn shared contextual represen-
tations across languages. For the shared decoder, to
indicate the target language, we set the first token
of the decoder to specify the language the module
is operating with. Third, we train several mono-
lingual summarization steps before cross-lingual
training, as shown in the first line in Alg. 1. The
pre-trained monolingual summarization steps also
allow the model to learn easier monolingual sum-
marization first, then further learn cross-lingual
summarization, which may reduce the training dif-
ficulty.

4 Unsupervised Training Objective

We describe the objective of unsupervised cross-
lingual summarization in this section. The whole
training procedure can be found in Alg. 1.

Summarization Loss Given an English text-
summary pair x and x′, we use the encoder φEX

and the decoder φDX to generate the hypotheti-
cal English summary x̃ that maximizes the out-
put summary probability given the source text:
x̃ = argmaxx̄ P (x̄ |x). We adopt maximum log-
likelihood training with cross-entropy loss between
hypothetical summary x̃ and gold summary x′:

zx = φEX (x), x̃ = φDX (zx)

LsummX (x,x
′)=−

T∑
t=1

logP
(
x′t | x̃<t, zx

)
(3)

where T is the length of x′. The Chinese summa-
rization loss LsummY is similarly defined for the
Chinese encoder φEY and decoder φDY .

Generative and Discriminative Loss Given an
English source text x and a Chinese source text
y, we use the encoder φEX and φEY to obtain the
contextual representations zx = {zx1 , . . . , zxm}
and zy = {zy1 , . . . , zyn}, respectively. For Zh-
to-En summarization, we use the mapper MY to
map zy into the English context space: zy→x =
MY(zy). We hope the mapped distribution zy→x

and the real English distribution zx could be as
similar as possible such that the English decoder
can deal with cross-lingual summarization just like
dealing with monolingual summarization.

To learn this mapping, we introduce two discrim-
inators and adopt the adversarial training (Good-
fellow et al., 2014) technique. We optimize the
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mappers at the sentence-level1 rather than word-
level, which is inspired by Aldarmaki and Diab
(2019) where they found learning the aggregate
mapping can yield a more optimal solution com-
pared to word-level mapping.

Concretely, we first average the contextual rep-
resentations:

z̃y→x =
1

n

n∑
i=1

(zy→x)i , z̃x =
1

m

m∑
i=1

zxi (4)

Then we train the discriminatorDX to discriminate
between z̃y→x and z̃x using the following discrimi-
native loss:

LdisX (z̃y→x, z̃x) =− logPDX (src = 0|z̃y→x)

− logPDX (src = 1|z̃x)
(5)

where PDX (src |z̃) is the predicted probability of
DX to distinguish whether z̃ is coming from the
real English representation (src = 1) or from the
mapper MY (src = 0).

In our framework, the encoder φEX and mapper
MY together make up the generator. The generator
tries to generate representations which would con-
fuse the discriminator, so its objective is to maxi-
mize the discriminative loss in Eq. 5. Alternatively,
we train the generator to minimize the following
generative loss:

LgenY (z̃y→x, z̃x) =− logPDX (src = 1|z̃y→x)

− logPDX (src = 0|z̃x)
(6)

The discriminative loss LdisY (z̃x→y, z̃y) for
DY , generative loss LgenX (z̃x→y, z̃y) for φEY and
MX are similarly defined.

Notice that since we use vector averaging and
adopt the linear transformation, it does not matter
whether we apply the linear mapping before or
after averaging the contextual representations, and
the learned sentence-level mappers can be directly
applied to word-level mappings.

Cycle Reconstruction Loss Theoretically, if we
do not add additional constraints, there exist infinite
mappings that can align the distribution of z̃x and
z̃y, and thus the learned mappers may be invalid.
In order to learn better mappings, we introduce the
cycle reconstruction loss and back-translation loss
to enhance them.

1The “sentence” in this paper can refer to the sequence
containing multiple sentences.

Given zx, we first use MX to map it to the Chi-
nese space, and then use MY to map it back:

zx→y =MX (zx), ẑx =MY(zx→y) (7)

We force zx and ẑx to be consistent, constrained
by the following cycle reconstruction loss:

LcycX (zx, ẑx) = ‖zx − ẑx‖ (8)

The cycle reconstruction loss LcycY for zy and
ẑy is similarly defined.

Back-Translation Loss The cycle-reconstructed
representation ẑx in Eq. 8 can be regarded as aug-
mented data to train the decoder, which is similar to
the back-translation in the Neural Machine Trans-
lation area.

Concretely, we use the decoder φDX to read ẑx
and generate the hypothetical summary x̂. The
back-translation loss is defined as the cross-entropy
loss between x̂ and gold summary x′:

x̂ = φDX (ẑx)

LbackX (ẑx) =−
T∑
t=1

logP
(
x′t | x̂<t, ẑx

)
(9)

The back-translation loss enhances not only the
generation ability of the decoder but also the effec-
tiveness of the mapper. The back-translation loss
LbackY for ẑy is similarly defined.

Total Loss The total loss for optimizing the en-
coder, decoder, and mapper of the English side is
weighted sum of the above losses:

LX = LsummX + λ1LgenX + λ2LcycX + λ3LbackX
(10)

where λ1, λ2, and λ3 is the weighted hyper-
parameters.

The total loss of the Chinese side is similarly
defined, and the complete loss of our model is the
sum of English loss and Chinese loss:

L = LX + LY (11)

The total loss for optimizing the discriminators
is:

Ldis = LdisX + LdisY (12)

5 Supervised Training Objective

The supervised training objective contains the same
summarization loss in unsupervised training objec-
tive (Eq. 3). In addition, it has X-summarization
loss and reconstruction loss.
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Algorithm 1 Cross-lingual summarization
Input: English summarization data X and Chinese
summarization data Y .

1: Pre-train English and Chinese monolingual
summarization several epochs on X and Y .

2: for i = 0 to max iters do
3: Sample a batch fromX and a batch fromY
4: if unsupervised then
5: for k = 0 to dis iters do
6: UpdateDX andDY onLdis in Eq.5.
7: (a) Update φEX , φEY , φDX , and φDY

8: on Lsumm in Eq. 3.
9: (b) Update φEX , φEY ,MX , and MY

10: on Lgen in Eq. 6.
11: (c) Update φEX , φEY ,MX , and MY
12: on Lcyc in Eq. 8.
13: (d) Update MX ,MY , φDX , and φDY

14: on Lback in Eq. 9.
15: else if supervised then
16: (a) Upate φEX , φEY , φDX , and φDY

17: on Lsumm in Eq. 3.
18: (b) Update φEX , φEY , φDX , and φDY

19: on Lxsumm in Eq. 13.
20: (c) Update φEX , φEY ,MX , and MY
21: on Lrec in Eq. 14.

X-Summarization Loss Given a parallel En-
glish source text x and Chinese summary y′. We
use φEX , MX , and φDY to generate the hypotheti-
cal Chinese summary ỹ, then train them with cross-
entropy loss:

zx=φEX(x), zx→y=MX(zx), ỹ=φDY(zx→y)

LxsummX (x,y
′) = −

T∑
t=1

logP
(
y′t | ỹ<t,x

)
(13)

The X-summarization loss for a Chinese text y and
English summary x′ is similarly defined.

Reconstruction Loss Since the cross-lingual
summarization corpora are constructed by trans-
lating the texts to the other language, the English
texts and the Chinese texts are parallel to each other.
We can build a reconstruction loss to align the sen-
tence representation for the parallel English and
Chinese texts.

Specifically, supposing x and y are parallel
source English and Chinese texts, we first use φEX

and φEY to obtain contextual representations zx

and zy, respectively. Then we average the con-
textual representations to get their sentence repre-
sentations and use the mappers to map them into
the other language. Since the English and Chinese
texts are translations to each other, the semantics of
their sentence representations should be the same.
Thus we design the following reconstruction loss:

z̃x =
1

m

m∑
i=1

zxi , z̃y→x =
1

n

n∑
i=1

(zy→x)i

LrecX (z̃x, z̃y→x) = ‖z̃x − z̃y→x‖ (14)

and LrecY is similarly defined.
Notice that the generative and discriminative

loss, cycle-construction loss, and back-translation
loss are unnecessary here because we can directly
use aligned source text with objective 14 to align
the context representations.

Total Loss The total loss for training the English
side is:

LX = LxsummX + λ1LsummX + λ2LrecX (15)

where λ1 and λ2 is the weighted hyper-parameters.
The total loss of the Chinese side is similarly de-
fined.

6 Experiments

6.1 Experiment Settings

We conduct experiments on English-to-Chinese
(En-to-Zh) and Chinese-to-English (Zh-to-En) sum-
marizations. Following Duan et al. (2019), we
translate the source texts to the other language
to form the (pseudo) parallel corpus. Since they
do not release their training data, we translate the
source text ourselves through the Google transla-
tion service. Notice that Zhu et al. (2019) translate
the summaries rather than source texts.

Since Duan et al. (2019) use Gigaword and
DUC2004 datasets for experiments while Zhu et al.
(2019) use LCSTS and CNN/DM for experiments,
we conduct experiments on all the 4 datasets. When
comparing with Duan et al. (2019) and Zhu et al.
(2019), we use the same number of translated par-
allel data for training. Due to limited computing
resources, we only do unsupervised experiments
on gigaword and LCSTS datasets.

Notice that the test sets provided by Zhu et al.
(2019) are unprocessed, therefore we have to pro-
cess the test samples they provided ourselves.
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6.2 Dataset
Gigaword English Gigaword corpus (Napoles
et al., 2012) contains 3.80M training pairs, 2K val-
idation pairs, and 1,951 test pairs. We use the
human-translated Chinese source sentences pro-
vided by (Duan et al., 2019) to do Zh-to-En tests.

DUC2004 DUC2004 corpus only contains test
sets. We use the model trained on gigaword corpus
to generate summaries on DUC2004 test sets. We
use the 500 human-translated test samples provided
by (Duan et al., 2019) to do Zh-to-En tests.

LCSTS LCSTS (Hu et al., 2015) is a Chinese
summarization corpus, which contains 2.40M train-
ing pairs, 10,666 validation pairs, and 725 test pairs.
We use 3K cross-lingual test samples provided by
Zhu et al. (2019) to do Zh-to-En tests.

CNN/DM CNN/DM (Hermann et al., 2015) con-
tains 287.2K training pairs, 13.3K validation pairs,
and 11.5K test pairs. We use the 3K cross-lingual
test samples provided by Zhu et al. (2019) to do
En-to-Zh cross-lingual tests.

6.3 Evaluation Metrics
We use ROUGE-1 (unigram), ROUGE-2 (bigram),
and ROUGE-L (LCS) F1 scores as the evaluation
metrics, which are most commonly used evaluation
metrics in the summarization task.

6.4 Competitive Models
For unsupervised cross-lingual summarization, we
set the following baselines:

• Unified It jointly trains English and Chi-
nese monolingual summarizations in a unified
model and uses the first token of the decoder
to control whether it generates Chinese or En-
glish summaries.

• Unified+CLWE It builds a unified model and
adopts pre-trained unsupervised cross-lingual
word embeddings. The cross-lingual word em-
beddings are obtained via projecting embed-
dings from source language to target language.
We use Vecmap2 to learn the cross-lingual
word embeddings.

For supervised cross-lingual summarization, we
compare our model with (Shen et al., 2018), (Duan
et al., 2019), and Zhu et al. (2019). We also con-
sider the following baselines for comparison:

2https://github.com/artetxem/vecmap

• Pipe-TS The Pipe-TS baseline first uses a
Transformer-based translation model to trans-
late the source text to the other language, then
uses a monolingual summarization model to
generate summaries. To make this baseline
stronger, we replace the translation model
with the Google translation system and name
it as Pipe-TS*.

• Pipe-ST The Pipe-ST baseline first uses a
monolingual summarization model to gener-
ate the summaries, then uses a translation
model to translate the summaries to the other
language. We replace the translation model
with the Google translation system as Pipe-
ST*.

• Pseudo The Pseudo baseline directly trains a
cross-lingual summarization model by using
the pseudo parallel cross-lingual summariza-
tion data.

• XLM Pretraining This method is proposed
by Lample and Conneau (2019), where they
pretrain the encoder and decoder on large-
scale multilingual text using causal language
modeling (CLM), masked language modeling
(MLM), and translation language modeling
(TLM) tasks. 3

6.5 Implementation Details

For transformer architectures, we use the same con-
figuration as Vaswani et al. (2017), where the num-
ber of layers, model hidden size, feed-forward hid-
den size, and the number of heads are 6, 512, 1024,
and 8, respectively. We set g =

√
dmodel =

√
512

in ScaleNorm. The mapper is a linear layer with
a hidden size of 512, and the discriminator is a
two-layer linear layer with a hidden size of 2048.

We use the NLTK4 tool to process English texts
and use jieba5 tool to process Chinese texts. The
vocabulary size of English words and Chinese
words are 50,000 and 80,000 respectively. We set
λ1 = 1, λ2 = 5, λ3 = 2 in unsupervised training
and λ1 = 0.5, λ2 = 5 in supervised training ac-
cording to the performance of the validation set.
We set dis iters = 5 in Alg. 1.

3This baseline was suggested by the reviewers, and the
results are only for reference since it additionally uses a lot of
pre-training text.

4https://github.com/nltk/nltk
5https://github.com/fxsjy/jieba

https://github.com/artetxem/vecmap
https://github.com/nltk/nltk
https://github.com/fxsjy/jieba
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Method
Zh-to-En En-to-Zh

Gigaword DUC2004 LCSTS CNN/DM
R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

Pipe-TS 22.27 6.58 20.53 21.29 5.96 17.99 27.26 10.41 21.72 - - -
Pipe-ST 28.27 11.90 26.50 25.73 8.19 21.60 36.48 18.87 31.44 25.95 11.01 23.29
Pipe-TS* 22.52 6.67 20.76 21.83 6.11 18.42 29.29 11.09 23.18 - - -
Pipe-ST* 29.56 12.50 26.42 26.66 8.51 22.37 38.26 19.56 32.93 27.82 11.78 24.97
Pseudo* 30.93 13.25 27.29 27.03 8.49 23.08 38.61 19.76 34.63 35.81 14.96 32.07

(Shen et al., 2018) 21.5 6.6 19.6 19.3 4.3 17.0 - - - - - -
(Duan et al., 2019) 30.1 12.2 27.7 26.0 8.0 23.1 - - - - - -
(Zhu et al., 2019) - - - - - - 40.34 22.65 36.39 38.25 20.20 34.76

(Zhu et al., 2019) w/ LDC - - - - - - 40.25 22.58 36.21 40.23 22.32 36.59
XLM Pretraining 32.28 14.03 28.19 28.27 9.40 23.78 42.75 22.80 38.73 39.11 17.57 34.14

Ours 32.04 13.60 27.91 27.25 8.71 23.36 40.97 23.20 36.96 38.12 16.76 33.86

Table 1: Rouge F1 scores (%) on cross-lingual summarization tests. “XLM Pretraining” and “Zhu et al. (2019)
w/ LDC” use additional training data. Our model significantly (p < 0.01) outperforms all pipeline methods and
pseudo-based methods.

We use Adam optimizer (Kingma and Ba, 2014)
with β = (0.9, 0.98) for optimization. We set the
learning rate to 3e − 4 and adopt the warm-up
learning rate (Goyal et al., 2017) for the first 2,000
steps, the initial warm-up learning is set to 1e− 7.
We adopt the dropout technique and set the dropout
rate to 0.2.

7 Results and Analysis

7.1 Unsupervised Cross-Lingual
Summarization

The experiment results of unsupervised cross-
lingual summarization are shown in Table 2, and
it can be seen that our model significantly outper-
forms all baselines by a large margin. By training
a unified model of all languages, the model’s cross-
lingual transferability is still poor, especially for the
gigaword dataset. Incorporating cross-lingual word
embeddings into the unified model can improve the
performance, but the improvement is limited. We
think this is due to that the cross-lingual word em-
beddings learned by Vecmap cannot leverage the
contextual information. Due to space limitations,
we present case studies in the Appendix.

After checking the generated summaries of the
two baseline models, we find that they can generate
readable texts, but the generated texts are far away
from the theme of the source text. This indicates
that the encoder and decoder of these baselines
have a large gap, such that the decoder cannot un-
derstand the output of the encoder. We also find
that summaries generated by our model are obvi-
ously more relevant, demonstrating that aligned
representations between languages are helpful.

But we can also see that there is still a gap be-

Method LCSTS Gigaword
R1 R2 RL R1 R2 RL

Unified 13.52 1.35 10.02 5.25 0.87 2.09
Unified+CLWE 14.02 1.49 12.10 6.51 1.07 2.92

Ours 20.11 5.46 16.07 13.75 4.29 11.82

Table 2: Rouge F1 scores (%) on unsupervised cross-
lingual summarization tests. Our model outperforms
all baselines significantly (p < 0.01).

tween our unsupervised results (Table 2) and super-
vised results (Table 1), indicating that our model
has room for improvement.

7.2 Supervised Cross-Lingual
Summarization

The experiment results of supervised cross-lingual
summarization are shown in Table 1. Due to the
lack of corpus for training Chinese long document
summarization model, we do not experiment with
the Pipe-TS model on the CNN/DM dataset.

By comparing our results with pipeline-based
or pseudo baselines, we can find that our model
outperforms all these baselines in all cases. Our
model achieves an improvement of 0∼3 Rouge
scores over the Pseudo model trained directly with
translated parallel cross-lingual corpus, and 1.5∼4
Rouge-1 scores over those pipeline models. We
also observe that models using the Google transla-
tion system all perform better than models using
the Transformer-based translation system. This
may because the Transformer-based translation
system will bring some “UNK” tokens, and the
transformer-based translation system trained by
ourselves does not perform as well as the Google
translation system. In addition, Pipe-ST models
perform better than Pipe-TS models, which is con-
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Method Info. ↑ Con. ↑ Flu. ↑
Reference 3.60 3.50 3.80
PipeST* 3.56 3.51 4.00
PipeTS* 3.37 3.80 3.81
Pseudo 3.27 3.81 3.89
Ours (supervised) 3.56 3.93 3.94
Ours (unsupervised) 2.18 3.34 2.87

Table 3: Results of the human evaluation on the giga-
word dataset.

Method Info. ↑ Con. ↑ Flu. ↑
Reference 3.58 3.57 4.21
PipeST* 3.38 3.45 4.13
PipeTS* 3.38 3.93 3.78
Pseudo 3.46 3.90 4.05
Ours (supervised) 3.55 4.03 4.13

Table 4: Results of the human evaluation on the
CNN/DM dataset.

sistent with the conclusions of previous work. This
is because (1) the translation process may discard
some informative clauses, (2) the domain of the
translation corpus is different from the domain of
summarization corpus, which will bring the domain
discrepancy problem to the translation process, and
(3) the translated texts are often “translationese”
(Graham et al., 2019). The Pseudo model performs
better than Pipe-TS models but performs similarly
as Pipe-ST models.

By comparing our results with others, we can
find that our model outperforms Shen et al. (2018)
and Duan et al. (2019) on both gigaword and
DUC2004 test sets, and it outperforms Zhu et al.
(2019) on the LCSTS dataset. But our Rouge
scores are lower than Zhu et al. (2019) on the
CNN/DM dataset, especially the Rouge-2 score.
However, our model performs worse than pre-
trained models.

7.3 Human Evaluation
The human evaluation was also performed. Since
we cannot get the summaries generated by other
models, we only compare with our baselines in
the human evaluation. We randomly sample 50
examples from the gigaword (Zh-to-En) test set and
20 examples from the CNN/DM (En-to-Zh) test
set. We ask five volunteers to evaluate the quality
of the generated summaries from the following
three aspects: (1) Informative: how much does
the generated summaries cover the key content of
the source text? (2) Conciseness: how concise
are the generated summaries? (3) Fluency: how
fluent are the generated summaries? The scores are

Method Gigaword CNN/DM
R1 R2 RL R1 R2 RL

Ours (supervised) 32.04 13.60 27.91 38.12 16.76 33.86
w/o summ. loss 30.36*12.84*26.41*36.37*15.97*32.11*
w/o mappers 31.95 13.46 27.88 38.28 16.73 33.93
w/o ScaleNorm 31.27* 13.29 27.22*37.01*16.30*32.87*
w/o pre. steps 31.33* 13.30 27.35*37.23* 16.39 33.01*
Unshare enc/dec30.10*12.71*26.28*35.93*15.86*31.82*

Table 5: Results of ablation tests in supervised setting.
Statistically significant improvement (p < 0.01) over
the complete model are marked with *.

between 1-5, with 5 being the best. We average the
scores and show the results in Table 3 and Table 4.

Our model exceeds all baselines in informative
and conciseness scores, but get a slightly lower
fluency score than Pipe-ST*. We think this is be-
cause the Google translation system has the ability
to identify grammatical errors and generate fluent
sentences.

7.4 Ablation Tests

To study the importance of different components
of our model, we also test some variants of our
model. For supervised training, we set variants
of (1) without (monolingual) summarization loss,
(2) without mappers6, (3) replace ScaleNorm with
LayerNorm, (4) without pre-trained monolingual
steps, and (5) unshare the encoder and decoder. For
unsupervised training, we additionally set variants
without cyc-reconstruction loss or back-translation
loss. The results of ablation tests of supervised
and unsupervised cross-lingual summarization are
shown in Table 5 and Table 6, respectively.

It seems that the role of mappers does not seem
obvious in the case of supervised training. We
speculate that this may be due to the joint train-
ing of monolingual and cross-lingual summariza-
tions, and directly constraining the context repre-
sentations before mapping can also yield shared
(aligned) representations. But mappers are cru-
cial for unsupervised cross-lingual summarization.
For supervised cross-lingual summarization, ex-
cept for mappers, all components contribute to
the improvement of the performance. The perfor-
mance decreases after removing any of the compo-
nents. For unsupervised cross-lingual summariza-
tion, all components contribute to the improvement
of the performance and the mappers and shared
encoder/decoder are key components.

6In this case, we directly constrain the parallel zx and zy

to be the same.
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Method LCSTS Gigaword
R1 R2 RL R1 R2 RL

Ours (unsupervised) 20.10 5.46 16.07 13.75 4.29 11.82
w/o mappers 14.79* 2.29* 12.36* 6.26* 1.02* 3.11*
w/o cyc. loss 17.51* 4.70* 13.95* 7.21* 1.31* 4.04*
w/o back. loss 19.37 5.23 15.44 13.20 4.11 11.27
w/o ScaleNorm 19.24* 5.21 15.37* 13.15* 4.08 11.21
w/o pre. steps 19.70 5.24 15.72 13.13 4.10 10.91
Unshare enc/dec 12.28* 0.97* 10.37* 4.88* 0.82* 1.91*

Table 6: Results of the ablation tests of unsupervised
cross-lingual summarization. Statistically significant
improvement (p < 0.01) over the complete model are
marked with *.

8 Related Work

8.1 Cross-Lingual Summarization

Early researches on cross-lingual abstractive sum-
marization are mainly based on the monolingual
summarization methods and adopt different strate-
gies to incorporate bilingual information into the
pipeline model (Leuski et al., 2003; Orasan and
Chiorean, 2008; Wan et al., 2010; Wan, 2011; Yao
et al., 2015).

Recently, some neural cross-lingual summariza-
tion systems have been proposed for cross-lingual
summarization (Shen et al., 2018; Duan et al., 2019;
Zhu et al., 2019). The first neural-based cross-
lingual summarization system was proposed by
Shen et al. (2018), where they first translate the
source texts from the source language to the target
language to form the pseudo training samples. A
teacher-student framework is adopted to achieve
end-to-end cross-lingual summarization. Duan
et al. (2019) adopt a similar framework to train
the cross-lingual summarization model, but they
translate the summaries rather than source texts to
strengthen the teacher network. Zhu et al. (2019)
propose a multi-task learning framework by jointly
training cross-lingual summarization and monolin-
gual summarization (or machine translation). They
also released an English-Chinese cross-lingual sum-
marization corpus with the aid of online translation
services.

8.2 Learning Cross-Lingual Representations

Learning cross-lingual representations is a benefi-
cial method for cross-lingual transfer.

Conneau et al. (2017) use adversarial networks
to learn mappings between languages without su-
pervision. They show that their method works
very well for word translation, even for some dis-
tant language pairs like English-Chinese. Lample

et al. (2018) learn word mappings between lan-
guages to build an initial unsupervised machine
translation model, and then perform iterative back-
translation to fine-tune the model. Aldarmaki and
Diab (2019) propose to directly map the averaged
embeddings of aligned sentences in a parallel cor-
pus, and achieve better performances than word-
level mapping in some cases.

9 Conclusions

In this paper, we propose a framework that jointly
learns to align and summarize for neural cross-
lingual summarization. We design training objec-
tives for supervised and unsupervised cross-lingual
summarizations, respectively. We also propose
methods to enhance the isomorphism and cross-
lingual transfer between languages. Experimental
results show that our model outperforms supervised
baselines in most cases and outperforms unsuper-
vised baselines in all cases.
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A Visualization

We use the PCA (Wold et al., 1987) algorithm to
visualize the pre- and post-aligned context repre-
sentations of our model in Figure 2. The left picture
shows the original distribution of two languages,
and the right picture shows the distribution after
we map Chinese representations to English.

Figure 2 reveals that the representations of the
two languages are originally separated but be-
come aligned after our proposed procedure, which
demonstrates that our proposed alignment proce-
dure is effective.

B Case Studies

We show four cases of Chinese-to-English sum-
marization in Table 7. Since most of the sum-
maries generated by other unsupervised baselines
are meaningless (e.g., far away from the theme of
the source text, all tokens are “UNK” and so on),
we don’t show their results here.
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Figure 2: Visualization of the pre- and post-aligned
context representations. The blue dots are English con-
text representations and the red dots are Chinese con-
text representations.
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Text: 野生动物专家称，除非政府发起全面打击猖獗偷猎的战争，否则印度大象将会灭绝.
(wildlife experts say indian elephants will go extinct unless government launches full-scale war
against sting poaching)
Reference: india elephant may be facing extinction : experts by <unk>
Pipe-ST: wildfile expert says indian elephant will die out
Pipe-TS: india to kill elephants in war on poaching
Pseudo: indian elephants face extinction unless government launches war against poaching
Ours (supervised): india elephants face extinction over poaching
Ours (unsupervised): india elephants rise to extinct
Text: 一份媒体报道，一名日本男子周日在台湾上吊自杀，原因是亚洲冠军没能在世界杯上
获得一场胜利.
(report claimed that a japanese man hanged himself in taiwan on sunday because the asian
champion failed to win a victory at the word cup)
Reference: fan hangs himself for nation ’s dismal world cup performance
Pipe-ST: japanese man hangs himself in taiwan as asian champion fails to win
Pipe-TS: world cup winner commits suicide
Pseudo: man commits suicide because of world cup failure
Ours (supervised): man hangs himself after world cup failure
Ours (unsupervised): failed to secure a single champions
Text: 澳大利亚教练罗比-迪恩斯对上周末在这里对阵意大利的袋鼠测试前被新西兰击败的
球队做了八次改变.
(australian coach robbie deans made eight changes to a team defeated by new zealand before
the kangaroo test against italy here last weekend)
Reference: <unk> : deans rings changes for aussies azzurri test
Pipe-ST: australian coach changes team eight times before kangaroo test
Pipe-TS: australia make eight changes for italy test
Pseudo: deans makes eight changes for new zealand
Ours (supervised): australia make eight changes ahead of italy test
Ours (unsupervised): weekend ahead of wallabies test against Italy here
Text: 凯尔特人中场保罗哈特利在经历了一个星期痛苦的欧洲之旅后，于周五为苏格兰足球
发起了一场激情的辩护.
(celtic midfielder paul hartley launched a passionate defence for scottish football on friday after a
week of painful european travel)
Reference: football : scottish football is not a joke says celtic star
Pipe-ST: paul hartley launches passionate defense
Pipe-TS: celtic ’s hartley launches passionate defense
Pseudo: celtic ’s hartley launches passionate defense for scotland
Ours (supervised): celtic ’s hartley defends scottish football
Ours (unsupervised): celtic midfielder paul week of european misery

Table 7: Case studies of Chinese-to-English summarization.


