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Abstract

Knowledge inference on knowledge graph has
attracted extensive attention, which aims to
find out connotative valid facts in knowledge
graph and is very helpful for improving the per-
formance of many downstream applications.
However, researchers have mainly poured at-
tention to knowledge inference on binary facts.
The studies on n-ary facts are relatively scarcer,
although they are also ubiquitous in the real
world. Therefore, this paper addresses knowl-
edge inference on n-ary facts. We represent
each n-ary fact as a primary triple coupled with
a set of its auxiliary descriptive attribute-value
pair(s). We further propose a neural network
model, NeuInfer, for knowledge inference on
n-ary facts. Besides handling the common task
to infer an unknown element in a whole fact,
NeuInfer can cope with a new type of task,
flexible knowledge inference. It aims to infer
an unknown element in a partial fact consisting
of the primary triple coupled with any number
of its auxiliary description(s). Experimental
results demonstrate the remarkable superiority
of NeuInfer.

1 Introduction

With the introduction of connotative valid facts,
knowledge inference on knowledge graph improves
the performance of many downstream applica-
tions, such as vertical search and question answer-
ing (Dong et al., 2015; Lukovnikov et al., 2017).
Existing studies (Nickel et al., 2016; Wang et al.,
2017) mainly focus on knowledge inference on
binary facts with two entities connected with a cer-
tain binary relation, represented as triples, (head
entity, relation, tail entity). They attempt to infer
the unknown head/tail entity or the unknown rela-
tion of a given binary fact. However, n-ary facts
involving more than two entities are also ubiquitous.
For example, in Freebase, more than 1/3 entities
participate in n-ary facts (Wen et al., 2016). The

fact that John Bardeen receivedNobel Prize in
Physics in 1956 together with Walter Houser
Brattain and William Shockley1 is a typical 5-
ary fact. So far, only a few studies (Wen et al.,
2016; Zhang et al., 2018; Guan et al., 2019) have
tried to address knowledge inference on n-ary facts.

In existing studies for knowledge inference on n-
ary facts, each n-ary fact is represented as a group
of peer attributes and attribute values. In prac-
tice, for each n-ary fact, there is usually a primary
triple (the main focus of the n-ary fact), and other
attributes along with the corresponding attribute
values are its auxiliary descriptions. Take the
above 5-ary fact for example, the primary triple is
(John Bardeen, award-received,Nobel Prize
in Physics), and other attribute-value pairs in-
cluding point-in-time : 1956 , together-with :
Walter Houser Brattain and together-with :
William Shockley are its auxiliary descriptions.
Actually, in YAGO (Suchanek et al., 2007) and
Wikidata (Vrandečić and Krötzsch, 2014), a pri-
mary triple is identified for each n-ary fact.

The above 5-ary fact is a relatively complete
example. In the real-world scenario, many n-ary
facts appear as only partial ones, each consisting
of a primary triple and a subset of its auxiliary
description(s), due to incomplete knowledge ac-
quisition. For example, (John Bardeen, award-
received,Nobel Prize in Physics) with point-
in-time : 1956 and it with {together-with :
Walter Houser Brattain, together-with :
William Shockley} are two typical partial facts
corresponding to the above 5-ary fact. For differ-
entiation, we call those relatively complete facts
as whole ones. We noticed that existing studies
on n-ary facts infer an unknown element in a well-
defined whole fact and have not paid attention to
knowledge inference on partial facts. Later on, we

1https://www.wikidata.org/wiki/Q949
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refer the former as simple knowledge inference,
while the latter as flexible knowledge inference.

With these considerations in mind, in this pa-
per, by discriminating the information in the same
n-ary fact, we propose a neural network model,
called NeuInfer, to conduct both simple and flexible
knowledge inference on n-ary facts. Our specific
contributions are summarized as:

• We treat the information in the same n-ary fact
discriminatingly and represent each n-ary fact
as a primary triple coupled with a set of its
auxiliary descriptive attribute-value pair(s).

• We propose a neural network model, NeuIn-
fer, for knowledge inference on n-ary facts.
NeuInfer can particularly handle the new type
of task, flexible knowledge inference, which
infers an unknown element in a partial fact
consisting of a primary triple and any number
of its auxiliary description(s).

• Experimental results validate the significant
effectiveness and superiority of NeuInfer.

2 Related Works

2.1 Knowledge Inference on Binary Facts

They can be divided into tensor/matrix based meth-
ods, translation based methods, and neural network
based ones.

The quintessential one of tensor/matrix based
methods is RESCAL (Nickel et al., 2011). It relates
a knowledge graph to a three-way tensor of head
entities, relations, and tail entities. The learned em-
beddings of entities and relations via minimizing
the reconstruction error of the tensor are used to
reconstruct the tensor. And binary facts correspond-
ing to entries of large values are treated as valid.
Similarly, ComplEx (Trouillon et al., 2016) relates
each relation to a matrix of head and tail entities,
which is decomposed and learned like RESCAL.
To improve the embeddings and thus the perfor-
mance of inference, researchers further introduce
the constraints of entities and relations (Ding et al.,
2018; Jain et al., 2018).

Translation based methods date back to
TransE (Bordes et al., 2013). It views each valid
binary fact as the translation from the head entity
to the tail entity via their relation. Thus, the score
function indicating the validity of the fact is defined
based on the similarity between the translation re-
sult and the tail entity. Then, a flurry of methods

spring up (Wang et al., 2014; Lin et al., 2015b; Ji
et al., 2015; Guo et al., 2015; Lin et al., 2015a; Xiao
et al., 2016; Jia et al., 2016; Tay et al., 2017; Ebisu
and Ichise, 2018; Chen et al., 2019). They modify
the above translation assumption or introduce ad-
ditional information and constraints. Among them,
TransH (Wang et al., 2014) translates on relation-
specific hyperplanes. Entities are projected into the
hyperplanes of relations before translating.

Neural network based methods model the valid-
ity of binary facts or the inference processes. For
example, ConvKB (Nguyen et al., 2018) treats each
binary fact as a three-column matrix. This matrix is
fed into a convolution layer, followed by a concate-
nation layer and a fully-connected layer to generate
a validity score. Nathani et al. (2019) further pro-
poses a generalized graph attention model as the
encoder to capture neighborhood features and ap-
plies ConvKB as the decoder. ConvE (Dettmers
et al., 2018) models entity inference process via
2D convolution over the reshaped then concate-
nated embedding of the known entity and relation.
ConvR (Jiang et al., 2019) further adaptively con-
structs convolution filters from relation embedding
and applies these filters across entity embedding
to generate convolutional features. SENN (Guan
et al., 2018) models the inference processes of
head entities, tail entities, and relations via fully-
connected neural networks, and integrates them
into a unified framework.

2.2 Knowledge Inference on N-ary Facts

As aforesaid, only a few studies handle this type of
knowledge inference. The m-TransH method (Wen
et al., 2016) defines n-ary relations as the mappings
from the attribute sequences to the attribute values.
Each n-ary fact is an instance of the correspond-
ing n-ary relation. Then, m-TransH generalizes
TransH (Wang et al., 2014) on binary facts to n-
ary facts via attaching each n-ary relation with a
hyperplane. RAE (Zhang et al., 2018) further in-
troduces the likelihood that two attribute values
co-participate in a common n-ary fact, and adds
the corresponding relatedness loss multiplied by a
weight factor to the embedding loss of m-TransH.
Specifically, RAE applies a fully-connected neural
network to model the above likelihood. Differently,
NaLP (Guan et al., 2019) represents each n-ary fact
as a set of attribute-value pairs directly. Then, con-
volution is adopted to get the embeddings of the
attribute-value pairs, and a fully-connected neural
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network is applied to evaluate their relatedness and
finally to obtain the validity score of the input n-ary
fact.

In these methods, the information in the same
n-ary fact is equal-status. Actually, in each n-ary
fact, a primary triple can usually be identified with
other information as its auxiliary description(s), as
exemplified in Section 1. Moreover, these methods
are deliberately designed only for the inference on
whole facts. They have not tackled any distinct
inference task. In practice, the newly proposed
flexible knowledge inference is also prevalent.

3 Problem Statement

3.1 The Representation of N-ary Facts
Different from the studies that define n-ary rela-
tions first and then represent n-ary facts (Wen et al.,
2016; Zhang et al., 2018), we represent each n-ary
fact as a primary triple (head entity, relation, tail
entity) coupled with a set of its auxiliary descrip-
tion(s) directly. Formally, given an n-ary fact Fct
with the primary triple (h, r, t), m attributes and
attribute values, its representation is:(

(h,r, t), {
|−− a1 : v1,

|−− a2 : v2,

|−− . . . ,

|−− am : vm}
)
,

where each ai :vi (i = 1, 2, . . . ,m) is an attribute-
value pair, also called an auxiliary description to
the primary triple. An element of Fct refers to
h/r/t/ai/vi; AFct = {a1, a2, . . . , am} is Fct’s at-
tribute set and ai may be the same to aj (i, j =
1, 2, . . . ,m, i 6= j); VFct = {v1, v2, . . . , vm} is
Fct’s attribute value set.

For example, the representation of the 5-ary fact,
mentioned in Section 1, is:(

(John Bardeen, award-received,Nobel Prize

in Physics), {
|−− point-in-time : 1956 ,

|−− together-with : Walter Houser Brattain,

|−− together-with : William Shockley}
)
.

Note that, in the real world, there is a type of
complicated cases, say, where more than two enti-
ties participate in the same n-ary fact with the same
primary attribute. We follow Wikidata (Vrandečić
and Krötzsch, 2014) to view the cases from dif-
ferent aspects of different entities. Take the case
that John Bardeen, Walter Houser Brattain,

andWilliam Shockley receivedNobel Prize in
Physics in 1956 for example, besides the above
5-ary fact from the view of John Bardeen, we
get other two 5-ary facts from the views ofWalter
Houser Brattain2 and William Shockley3, re-
spectively:(

(Walter Houser Brattain, award-received,Nobel

Prize in Physics), {
|−− point-in-time : 1956 ,

|−− together-with : John Bardeen,

|−− together-with : William Shockley}
)
.(

(William Shockley, award-received,Nobel Prize

in Physics), {
|−− point-in-time : 1956 ,

|−− together-with : Walter Houser Brattain,

|−− together-with : John Bardeen}
)
.

3.2 Task Statement

In this paper, we handle both the common sim-
ple knowledge inference and the newly proposed
flexible knowledge inference. Before giving their
definitions under our representation form of n-ary
facts, let us define whole fact and partial fact first.

Definition 1 (Whole fact and partial fact). For the
fact Fct, assume its set of auxiliary description(s)
as Sd = {ai : vi|i = 1, 2, . . . ,m}. Then a partial
fact of Fct is: Fct′ =

(
(h, r, t), S′d

)
, where S′d ⊂

Sd, i.e., S′d is a subset of Sd. And we call Fct the
whole fact to differentiate it from Fct′.

Notably, whole fact and partial fact are relative
concepts, and a whole fact is a relatively complete
fact compared to its partial fact. In this paper, par-
tial facts are introduced to imitate a typical open-
world setting where different facts of the same
type may have different numbers of attribute-value
pair(s).

Definition 2 (Simple knowledge inference). It
aims to infer an unknown element in a whole fact.

Definition 3 (Flexible knowledge inference). It
aims to infer an unknown element in a partial fact.

4 The NeuInfer Method

4.1 The Framework of NeuInfer

To conduct knowledge inference on n-ary facts,
NeuInfer first models the validity of the n-ary facts
and then casts inference as a classification task.

2https://www.wikidata.org/wiki/Q184577
3https://www.wikidata.org/wiki/Q163415
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Figure 1: The framework of the proposed NeuInfer method.

4.1.1 The Motivation of NeuInfer
How to estimate whether an n-ary fact is valid or
not? Let us look into two typical examples of in-
valid n-ary facts:(
(John Bardeen, award-received, Turing Award), {
|−− point-in-time : 1956 ,

|−− together-with : Walter Houser Brattain,

|−− together-with : William Shockley}
)
.(

(John Bardeen, award-received,Nobel Prize

in Physics), {
|−− point-in-time : 1956 ,

|−− together-with : Walter Houser Brattain,

|−− place-of -marriage : New Y ork City}
)
.

In the above first n-ary fact, the primary triple is in-
valid. In the second one, some auxiliary description
is incompatible with the primary triple.

Therefore, we believe that a valid n-ary fact has
two prerequisites. On the one hand, its primary
triple should be valid. If the primary triple is in-
valid, attaching any number of attribute-value pairs
to it does not make the resulting n-ary fact valid;
on the other hand, since each auxiliary description
presents a qualifier to the primary triple, it should
be compatible with the primary triple. Even if the
primary triple is basically valid, any incompatible
attribute-value pair makes the n-ary fact invalid.
Therefore, NeuInfer is designed to characterize
these two aspects and thus consists of two com-
ponents corresponding to the validity evaluation of
the primary triple and the compatibility evaluation
of the n-ary fact, respectively.

4.1.2 The Framework of NeuInfer
The framework of NeuInfer is illustrated in Fig-
ure 1, with the 5-ary fact presented in Section 1 as
an example.

For an n-ary fact Fct, we look up the embed-
dings of its relation r and the attributes in AFct

from the embedding matrix MR ∈ R|R|×k of re-
lations and attributes, where R is the set of all the
relations and attributes, and k is the dimension of
the latent vector space. The embeddings of h, t,
and the attribute values in VFct are looked up from
the embedding matrix ME ∈ R|E|×k of entities
and attribute values, where E is the set of all the
entities and attribute values. In what follows, the
embeddings are denoted with the same letters but in
boldface by convention. As presented in Figure 1,
these embeddings are fed into the validity evalua-
tion component (the upper part of Figure 1) and the
compatibility evaluation component (the bottom
part of Figure 1) to compute the validity score of
(h, r, t) and the compatibility score of Fct, respec-
tively. These two scores are used to generate the
final score of Fct by weighted sum ⊕ and further
compute the loss. Note that, following RAE (Zhang
et al., 2018) and NaLP (Guan et al., 2019), we only
apply fully-connected neural networks in NeuInfer.

4.2 Validity Evaluation

This component estimates the validity of (h, r, t),
including the acquisition of its interaction vector
and the assessment of its validity, corresponding to
“hrt-FCNs” and “FCN1” in Figure 1, respectively.

Detailedly, the embeddings of h, r, and t are
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concatenated and fed into a fully-connected neural
network. After layer-by-layer learning, the last
layer outputs the interaction vector ohrt of (h, r, t):

ohrt =f(f(· · ·f(f([h; r; t]W1,1 + b1,1)·
W1,2 + b1,2) · · · )W1,n1 + b1,n1),

(1)

where f(·) is the ReLU function; n1 is the number
of the neural network layers; {W1,1,W1,2, . . . ,
W1,n1} and {b1,1,b1,2, . . . ,b1,n1} are their
weight matrices and bias vectors, respectively.

With ohrt as the input, the validity score valhrt
of (h, r, t) is computed via a fully-connected layer
and then the sigmoid operation:

valhrt = σ(ohrtWval + bval), (2)

where Wval and bval are the weight matrix and bias
variable, respectively; σ(x) = 1

1+e−x is the sig-
moid function, which constrains valhrt ∈ (0, 1).

For simplicity, the number of hidden nodes
in each fully-connected layer of “hrt-FCNs” and
“FCN1” gradually reduces with the same difference
between layers.

4.3 Compatibility Evaluation
This component estimates the compatibility of Fct.
It contains three sub-processes, i.e., the capture of
the interaction vector between (h, r, t) and each
auxiliary description ai : vi (i = 1, 2, . . . ,m), the
acquisition of the overall interaction vector, and
the assessment of the compatibility of Fct, corre-
sponding to “hrtav-FCNs”, “min” and “FCN2” in
Figure 1, respectively.

Similar to “hrt-FCNs”, we obtain the interaction
vector ohrtaivi

of (h, r, t) and ai :vi:

ohrtaivi
=f(f(· · ·f(f([h; r; t;ai;vi]W2,1+b2,1)·
W2,2 + b2,2) · · · )W2,n2 + b2,n2),

(3)

where n2 is the number of the neural network
layers; {W2,1,W2,2, . . . ,W2,n2} and {b2,1,
b2,2, . . . ,b2,n2} are their weight matrices and bias
vectors, respectively. The number of hidden nodes
in each fully-connected layer also gradually re-
duces with the same difference between layers.
And the dimension of the resulting ohrtaivi

is d.
All the auxiliary descriptions share the same pa-
rameters in this sub-process.

The overall interaction vector ohrtav of Fct is
generated based on ohrtaivi

. Before introducing
this sub-process, let us see the principle behind
first.

Straightforwardly, if Fct is valid, (h, r, t) should
be compatible with any of its auxiliary description.
Then, the values of their interaction vector, measur-
ing the compatibility in many different views, are
all encouraged to be large. Therefore, for each di-
mension, the minimum over it of all the interaction
vectors is not allowed to be too small.

Thus, the overall interaction vector ohrtav of
(h, r, t) and its auxiliary description(s) is:

ohrtav = minmi=1(ohrtaivi
), (4)

where min(·) is the element-wise minimizing func-
tion.

Then, similar to “FCN1”, we obtain the compati-
bility score compFct of Fct:

compFct = σ(ohrtavWcomp + bcomp), (5)

where Wcomp of dimension d × 1 and bcomp are
the weight matrix and bias variable, respectively.

4.4 Final Score and Loss Function

The final score sFct of Fct is the weighted sum ⊕
of the above validity score and compatibility score:

sFct = valhrt ⊕ compFct

= w · valhrt + (1− w) · compFct,
(6)

where w ∈ (0, 1) is the weight factor.
If the arity of Fct is 2, the final score is equal

to the validity score of the primary triple (h, r, t).
Then, Equation (6) is reduced to:

sFct = valhrt. (7)

Currently, we obtain the final score sFct of Fct.
In addition, Fct has its target score lFct. By com-
paring sFct with lFct, we get the binary cross-
entropy loss:

LFct=−lFct logsFct−(1−lFct) log(1−sFct), (8)

where lFct = 1, if Fct ∈ T , otherwise Fct ∈ T−,
lFct = 0. Here, T is the training set and T− is the
set of negative samples constructed by corrupting
the n-ary facts in T . Specifically, for each n-ary fact
in T , we randomly replace one of its elements with
a random element in E/R to generate one negative
sample not contained in T .

We then optimize NeuInfer via backpropagation,
and Adam (Kingma and Ba, 2015) with learning
rate λ is used as the optimizer.
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5 Experiments

5.1 Datasets and Metrics

We conduct experiments on two n-ary datasets.
The first one is JF17K (Wen et al., 2016; Zhang
et al., 2018), derived from Freebase (Bollacker
et al., 2008). In JF17K, an n-ary relation of
a certain type is defined by a fixed number
of ordered attributes. Then, any n-ary fact of
this relation is denoted as an ordered sequence
of attribute values corresponding to the at-
tributes. For example, for all n-ary facts of the
n-ary relation olympics.olympic medal honor,
they all have four attribute values (e.g., 2008
Summer Olympics, United States, Natalie
Coughlin, and Swimming at the 2008
Summer Olympics – Women′s 4×100 metre
freestyle relay), corresponding to the four
ordered attributes of this n-ary relation. The
second one is WikiPeople (Guan et al., 2019),
derived from Wikidata (Vrandečić and Krötzsch,
2014). Its n-ary facts are more diverse than
JF17K’s. For example, for all n-ary facts that
narrate award-received, some have the attribute
together-with, while some others do not. Thus,
WikiPeople is more difficult.

To run NeuInfer on JF17K and WikiPeople, we
transform the representation of their n-ary facts.
For JF17K, we need to convert each attribute value
sequence of a specific n-ary relation to a primary
triple coupled with a set of its auxiliary descrip-
tion(s). The core of this process is to determine the
primary triple, formed by merging the two primary
attributes of the n-ary relation and the correspond-
ing attribute values. The two primary attributes are
selected based on RAE (Zhang et al., 2018). For
each attribute of the n-ary relation, we count the
number of its distinct attribute values from all the
n-ary facts of this relation. The two attributes that
correspond to the largest and second-largest num-
bers are chosen as the two primary attributes. For
WikiPeople, since there is a primary triple for each
n-ary fact in Wikidata, with its help, we simply
reorganize a set of attribute-value pairs in WikiPeo-
ple to a primary triple coupled with a set of its
auxiliary description(s).

The statistics of the datasets after conversion
or reorganization are outlined in Table 1, where
#Train, #V alid, and #Test are the sizes of the
training set, validation set, and test set, respectively.

As for metrics, we adopt the standard Mean Re-

Dataset |R| |E| #Train #V alid #Test

JF17K 501 28,645 76,379 - 24,568
WikiPeople 193 47,765 305,725 38,223 38,281

Table 1: The statistics of the datasets.

ciprocal Rank (MRR) and Hits@N . For each n-ary
test fact, one of its elements is removed and re-
placed by all the elements in E/R. These corrupted
n-ary facts are fed into NeuInfer to obtain the fi-
nal scores. Based on these scores, the n-ary facts
are sorted in descending order, and the rank of the
n-ary test fact is stored. Note that, except the n-
ary test fact, other corrupted n-ary facts existing
in the training/validation/test set, are discarded be-
fore sorting. This process is repeated for all other
elements of the n-ary test fact. Then, MRR is the
average of these reciprocal ranks, and Hits@N is
the proportion of the ranks less than or equal to N .

Knowledge inference includes entity inference
and relation inference. As presented in Table 1, the
number of relations and attributes in each dataset
is far less than that of entities and attribute val-
ues (on JF17K, |R| = 501, while |E| = 28, 645;
on WikiPeople, |R| = 193, while |E| = 47, 765).
That is, inferring a relation/attribute is much sim-
pler than inferring an entity/attribute value. There-
fore, we adopt MRR and Hits@{1, 3, 10} on entity
inference, while pouring attention to more fine-
grained metrics, i.e., MRR and Hits@1 on relation
inference.

5.2 Experimental Settings

The hyper-parameters of NeuInfer are tuned via
grid search in the following ranges: The em-
bedding dimension k∈{50, 100}, the batch size
β ∈ {128, 256}, the learning rate λ ∈ {5e−6,
1e−5, 5e−5, 1e−4, 5e−4, 1e−3}, the numbers n1
and n2 of the neural network layers of “hrt-FCNs”
and “hrtav-FCNs” in {1, 2}, the dimension d of the
interaction vector ohrtaivi

in {50, 100, 200, 400,
500, 800, 1000, 1200}, the weight factor w of the
scores in {0.1, 0.2, . . . , 0.9}. The adopted opti-
mal settings are: k = 100, β = 128, λ = 5e−5,
n1 = 2, n2 = 1, d = 1200, and w = 0.1 for
JF17K; k = 100, β = 128, λ = 1e−4, n1 = 1,
n2 = 1, d = 1000, and w = 0.3 for WikiPeople.

5.3 Simple Knowledge Inference

Simple knowledge inference includes simple entity
inference and simple relation inference. For an n-
ary fact, they infer one of the entities/the relation in
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Method JF17K WikiPeople
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

RAE 0.310 0.219 0.334 0.504 0.172 0.102 0.182 0.320
NaLP 0.366 0.290 0.391 0.516 0.338 0.272 0.364 0.466

NeuInfer 0.517 0.436 0.553 0.675 0.350 0.282 0.381 0.467

Table 2: Experimental results of simple entity inference.

the primary triple or the attribute value/attribute in
an auxiliary description, given its other information.

5.3.1 Baselines
Knowledge inference methods on n-ary facts
are scarce. The representative methods are m-
TransH (Wen et al., 2016) and its modified version
RAE (Zhang et al., 2018), and the state-of-the-art
one is NaLP (Guan et al., 2019). As m-TransH is
worse than RAE, following NaLP, we do not adopt
it as a baseline.

5.3.2 Simple Entity Inference
The experimental results of simple entity inference
are reported in Table 2. From the results, it can be
observed that NeuInfer performs much better than
the best baseline NaLP, which verifies the superior-
ity of NeuInfer. Specifically, on JF17K, the perfor-
mance gap between NeuInfer and NaLP is signifi-
cant. In essence, 0.151 on MRR, 14.6% on Hits@1,
16.2% on Hits@3, and 15.9% on Hits@10. On
WikiPeople, NeuInfer also outperforms NaLP. It
testifies the strength of NeuInfer treating the infor-
mation in the same n-ary fact discriminatingly. By
differentiating the primary triple from other auxil-
iary description(s), NeuInfer considers the validity
of the primary triple and the compatibility between
the primary triple and its auxiliary description(s)
to model each n-ary fact more appropriately and
reasonably. Thus, it is not surprising that NeuInfer
beats the baselines. And on simpler JF17K (see
Section 5.1), NeuInfer gains more significant per-
formance improvement than on WikiPeople.

5.3.3 Simple Relation Inference
Since RAE is deliberately developed only for sim-
ple entity inference, we compare NeuInfer only
with NaLP on simple relation inference. Table 3
demonstrates the experimental results of simple re-
lation inference. From the table, we can observe
that NeuInfer outperforms NaLP consistently. De-
tailedly, on JF17K, the performance improvement
of NeuInfer on MRR and Hits@1 is 0.036 and
7.0%, respectively; on WikiPeople, they are 0.030

and 9.1%, respectively. It is ascribed to the rea-
sonable modeling of n-ary facts, which not only
improves the performance of simple entity infer-
ence but also is beneficial to pick the exact right
relations/attributes out.

Method JF17K WikiPeople
MRR Hits@1 MRR Hits@1

NaLP 0.825 0.762 0.735 0.595
NeuInfer 0.861 0.832 0.765 0.686

Table 3: Experimental results of simple relation infer-
ence.

5.4 Ablation Study

We perform an ablation study to look deep into the
framework of NeuInfer. If we remove the compati-
bility evaluation component, NeuInfer is reduced
to a method for binary but not n-ary facts. Since we
handle knowledge inference on n-ary facts, it is in-
appropriate to remove this component. Thus, as an
ablation, we only deactivate the validity evaluation
component, denoted as NeuInfer−. The experimen-
tal comparison between NeuInfer and NeuInfer−

is illustrated in Figure 2. It can be observed from
the figure that NeuInfer outperforms NeuInfer−

significantly. It suggests that the validity evalua-
tion component plays a pivotal role in our method.
Thus, each component of our method is necessary.

5.5 Flexible Knowledge Inference

The newly proposed flexible knowledge inference
focuses on n-ary facts of arities greater than 2. It
includes flexible entity inference and flexible rela-
tion inference. For an n-ary fact, they infer one of
the entities/the relation in the primary triple given
any number of its auxiliary description(s) or infer
the attribute value/attribute in an auxiliary descrip-
tion given the primary triple and any number of
other auxiliary description(s). In existing knowl-
edge inference methods on n-ary facts, each n-ary
fact is represented as a group of peer attributes and
attribute values. These methods have not poured
attention to the above flexible knowledge inference.
Thus, we conduct this new type of task only on
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Figure 2: The experimental comparison between NeuInfer and NeuInfer−.

Dataset Flexible entity inference Flexible relation inference
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1

JF17K 0.398 0.348 0.422 0.494 0.616 0.599
WikiPeople 0.200 0.161 0.208 0.276 0.477 0.416

Table 4: Experimental results of flexible knowledge inference.

NeuInfer. Before elaborating on the experimental
results, let us look into the new test set used in this
section first.

5.5.1 The New Test Set
We generate the new test set as follows:

• Collect the n-ary facts of arities greater than 2
from the test set.

• For each collected n-ary fact, compute all the
subsets of the auxiliary description(s). The
primary triple and each subset form a new
n-ary fact, which is added to the candidate set.

• Remove the n-ary facts that also exist in the
training/validation set from the candidate set
and then remove the duplicate n-ary facts. The
remaining n-ary facts form the new test set.

The size of the resulting new test set on JF17K is
34,784, and that on WikiPeople is 13,833.

5.5.2 Flexible Entity and Relation Inference
The experimental results of flexible entity and rela-
tion inference on these new test sets are presented
in Table 4. It can be observed that NeuInfer well
tackles flexible entity and relation inference on
partial facts, and achieves excellent performance.
We also attribute this to the reasonable modeling
of n-ary facts. For each n-ary fact, NeuInfer dis-
tinguishes the primary triple from other auxiliary

description(s) and models them properly. Thus,
NeuInfer well handles various types of entity and
relation inference concerning the primary triple
coupled with any number of its auxiliary descrip-
tion(s).

5.6 Performance under Different Scenarios

To further analyze the effectiveness of the proposed
NeuInfer method, we look into the breakdown of
its performance on different arities, as well as on
primary triples and auxiliary descriptions. Without
loss of generality, here we report only the experi-
mental results on simple entity inference.

The test sets are grouped into binary and n-ary
(n > 2) categories according to the arities of the
facts. Table 5 presents the experimental results of
simple entity inference on these two categories of
JF17K and WikiPeople. From the tables, we can
observe that NeuInfer consistently outperforms the
baselines on both categories on simpler JF17K. On
more difficult WikiPeople, NeuInfer is comparable
to the best baseline NaLP on the binary category
and gains much better performance on the n-ary
category in terms of the fine-grained MRR and
Hits@1. In general, NeuInfer performs much better
on JF17K than on WikiPeople. We attribute this to
the simplicity of JF17K.

Where does the above performance improve-
ment come from? Is it from inferring the head/tail
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Dataset Method MRR Hits@1 Hits@3 Hits@10
Binary N-ary Binary N-ary Binary N-ary Binary N-ary

JF17K
RAE 0.115 0.397 0.050 0.294 0.108 0.434 0.247 0.618
NaLP 0.118 0.477 0.058 0.394 0.121 0.512 0.246 0.637

NeuInfer 0.267 0.628 0.173 0.554 0.300 0.666 0.462 0.770

WikiPeople
RAE 0.169 0.187 0.096 0.126 0.178 0.198 0.323 0.306
NaLP 0.351 0.283 0.291 0.187 0.374 0.322 0.465 0.471

NeuInfer 0.350 0.349 0.278 0.303 0.385 0.364 0.473 0.439

Table 5: Experimental results of simple entity inference on binary and n-ary categories of JF17K and WikiPeople.

Dataset Method MRR Hits@1 Hits@3 Hits@10
Binary N-ary Overall Binary N-ary Overall Binary N-ary Overall Binary N-ary Overall

JF17K NaLP 0.118 0.456 0.313 0.058 0.369 0.237 0.121 0.491 0.334 0.246 0.625 0.464
NeuInfer 0.267 0.551 0.431 0.173 0.467 0.342 0.300 0.588 0.466 0.462 0.720 0.611

WikiPeople NaLP 0.351 0.237 0.337 0.291 0.161 0.276 0.374 0.262 0.361 0.465 0.384 0.455
NeuInfer 0.350 0.280 0.342 0.278 0.225 0.272 0.385 0.299 0.382 0.473 0.375 0.463

Table 6: Detailed experimental results on inferring head/tail entities.

Method JF17K WikiPeople
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

NaLP 0.510 0.432 0.545 0.655 0.345 0.223 0.402 0.589
NeuInfer 0.746 0.687 0.787 0.848 0.443 0.408 0.453 0.516

Table 7: Experimental results on inferring attribute values.

entities in primary triples or the attribute values
in auxiliary descriptions? To go deep into it, we
study the performance of NeuInfer on inferring the
head/tail entities and the attribute values and com-
pare it with the best baseline NaLP. The detailed
experimental results are demonstrated in Tables 6
and 7. It can be observed that NeuInfer brings more
performance gain on inferring attribute values. It
indicates that combining the validity of the primary
triple and the compatibility between the primary
triple and its auxiliary description(s) to model each
n-ary fact is more effective than only considering
the relatedness of attribute-value pairs in NaLP,
especially for inferring attribute values.

6 Conclusions

In this paper, we distinguished the information in
the same n-ary fact and represented each n-ary fact
as a primary triple coupled with a set of its aux-
iliary description(s). We then proposed a neural
network model, NeuInfer, for knowledge inference
on n-ary facts. NeuInfer combines the validity eval-
uation of the primary triple and the compatibility
evaluation of the n-ary fact to obtain the validity
score of the n-ary fact. In this way, NeuInfer has
the ability of well handling simple knowledge in-
ference, which copes with the inference on whole

facts. Furthermore, NeuInfer is capable of deal-
ing with the newly proposed flexible knowledge
inference, which tackles the inference on partial
facts consisting of a primary triple coupled with
any number of its auxiliary descriptive attribute-
value pair(s). Experimental results manifest the
merits and superiority of NeuInfer. Particularly, on
simple entity inference, NeuInfer outperforms the
state-of-the-art method significantly in terms of all
the metrics. NeuInfer improves the performance of
Hits@3 even by 16.2% on JF17K.

In this paper, we use only n-ary facts in the
datasets to conduct knowledge inference. For fu-
ture works, to further improve the method, we will
explore the introduction of additional information,
such as rules and external texts.
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