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Abstract

Given a sentence and its relevant answer, how
to ask good questions is a challenging task,
which has many real applications. Inspired
by human’s paraphrasing capability to ask
questions of the same meaning but with di-
verse expressions, we propose to incorporate
paraphrase knowledge into question genera-
tion(QG) to generate human-like questions.
Specifically, we present a two-hand hybrid
model leveraging a self-built paraphrase re-
source, which is automatically conducted by
a simple back-translation method. On the
one hand, we conduct multi-task learning with
sentence-level paraphrase generation (PG) as
an auxiliary task to supplement paraphrase
knowledge to the task-share encoder. On the
other hand, we adopt a new loss function for
diversity training to introduce more question
patterns to QG. Extensive experimental results
show that our proposed model obtains obvi-
ous performance gain over several strong base-
lines, and further human evaluation validates
that our model can ask questions of high qual-
ity by leveraging paraphrase knowledge.

1 Introduction

Question generation (QG) is an essential task for
NLP, which focuses on generating grammatical
questions for given paragraphs or sentences. It
plays a vital role in various realistic scenarios.
For educational purposes, QG can create read-
ing comprehension materials for language learn-
ers (Heilman and Smith, 2010). For business
use, QG can bring benefits to conversation sys-
tems and chat-bots for effective communication
with humans (Mostafazadeh et al., 2016). Be-
sides, automatically-generated questions can be
conversely used for constructing question answer-
ing datasets to enhance reading comprehension sys-
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Sentence:
the next three drives of the game would end in punts.
Answer:
punts
Reference question:
what did the next three drives result in?
Question generated by the baseline model:
the next three drives of the game would end in what?
Sentence:
in ring theory, the notion of number is generally replaced with
that of ideal.
Answer:
ring theory
Reference question:
in what theory is the idea of a number exchanged with that of
an ideal?
Question generated by the baseline model:
in what theory is the notion of number replaced with that of
ideal?

Table 1: Real examples of generated questions from
SQuAD. We highlight the paraphrase transitions be-
tween sentences and questions. Human creates good
questions by leveraging paraphrase knowledge, while
the automatically generated questions just copy the
original sentence, resulting in lower evaluation scores.

tems (Tang et al., 2017; Duan et al., 2017; Xu et al.,
2019; Zhang and Bansal, 2019).

Recent neural network-based methods have
achieved promising results on QG, most of which
are based on the seq2seq attention framework (Du
et al., 2017; Zhou et al., 2017; Gao et al., 2018;
Kim et al., 2018; Zhou et al., 2019b), enriched with
lexical features (Zhou et al., 2017; Sun et al., 2018;
Song et al., 2018) or enhanced by copy mechanism
(Du and Cardie, 2018; Sun et al., 2018; Zhou et al.,
2019a).

Although much progress has been made for QG,
existing approaches do not explicitly model the
“notorious” lexical and syntactic gaps in the gen-
eration process. That is, some parts of two texts
(e.g. the input sentence and reference question, the
reference question and generated question) may
convey the same meaning but use different words,
phrases or syntactic patterns. In real communica-



6131

Figure 1: A sketch of our design to leverage paraphrase
knowledge in QG.

tion, humans often paraphrase a source sentence
to ask questions which are grammatical and co-
herent. Take SQuAD (Rajpurkar et al., 2016) as
an example, which is a popular reading compre-
hension dataset and has been widely used for QG,
there is a large percentage of questions created by
paraphrasing (33.3% of the questions contain syn-
onymy variations and 64% of questions contain
syntactic variations (Rajpurkar et al., 2016)). Two
examples are shown in Table 1. Due to the lack
of paraphrase knowledge, the generated questions
simply copy certain words from the input sequence,
the quality of which is thus not competitive with
human-created questions.

To address this issue, we introduce paraphrase
knowledge in the QG process to generate human-
like questions. The sketch of our design is illus-
trated in Figure 1. To make our model easy to
implement and train the model in an end-to-end
fashion, we do not use any extra paraphrase gen-
eration (PG) dataset but just use a simple back-
translation method to automatically create para-
phrases for both the input sentences and reference
questions. Based on the high-quality expanded
data, we propose a two-hand hybrid model. On the
left hand, using the expanded sentence paraphrase
as the target of PG, we perform multi-task learning
with PG and QG, to optimize the task-share en-
coder with the paraphrase knowledge. On the right
hand, with the gold reference question and ques-
tion paraphrase as QG’s multi-targets, we adopt a
new min-loss function, to enable the QG module
to learn more diverse question patterns.

We conduct extensive experiments on SQuAD
and MARCO (Nguyen et al., 2016). Results
show that both separate modules, the PG auxiliary
task and the min-loss function, obviously improve
the performances of QG task, and combing them
achieves further improvements. Furthermore, hu-
man evaluation results show that our hybrid model
can ask better and more human-like questions by
incorporating paraphrase knowledge.

2 Related Work

For current mainstream neural network-based meth-
ods on QG, most approaches utilize the Seq2Seq
model with attention mechanism (Du et al., 2017;
Zhou et al., 2017; Zhao et al., 2018b; Zhou et al.,
2019a). To obtain better representations of the in-
put sequence and answer, the answer position and
token lexical features are treated as supplements
for the neural encoder (Zhou et al., 2017; Song
et al., 2018; Kim et al., 2018). Similar to other
text generation tasks, many works on QG also em-
ploy copy or pointer mechanism to overcome the
OOV problem (Du and Cardie, 2018; Sun et al.,
2018; Zhang and Bansal, 2019). Recently, Zhou
et al. (2019a) employ language modeling (LM) as
an auxiliary task to enrich the encoder representa-
tions. In this paper, we adopt this work as one of
the baseline models, since their universal model is
easy to implement and achieves promising results
for QG.

In order to make use of the context information
of paragraphs, Zhao et al. (2018b) propose a gated
self-attention network to encode context passage.
Based on this, Zhang and Bansal (2019) apply re-
inforcement learning to deal with semantic drift in
QG; Nema et al. (2019) use a passage-answer fu-
sion mechanism to obtain answer-focused context
representations; Li et al. (2019a) utilize gated atten-
tion to fuse answer-relevant relation with context
sentence. Besides, Chen et al. (2019) design differ-
ent passage graphs to capture structure information
of passage through graph neural networks. Dong
et al. (2019) propose a unified language model
pre-training method to obtain better context rep-
resentations for QG. All these works adopt a whole
paragraph as input to generate questions. Different
from this, our work only takes a sentence as input
and leaves paragraph-level QG for future research.

Paraphrase generation is also a challenging task
for NLP. Recent works usually obtain paraphrases
by reordering or modifying the syntax or lexicon
based on some paraphrase databases and rules
(Fader et al., 2013; Chen et al., 2016), or by em-
ploying some neural generation methods (Prakash
et al., 2016; Li et al., 2019b). In this paper, we em-
ploy a simple and effective paraphrasing method
to expand both input sentences and reference ques-
tions. Our method also can be replaced with more
sophisticated paraphrasing methods.

Paraphrase knowledge has been used to improve
many NLP tasks, such as machine translation, ques-
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tion answering, and text simplification. Callison-
Burch et al. (2006) use paraphrase techniques to
deal with unknown phrases to improve statisti-
cal machine translation. Fader et al. (2013) and
Dong et al. (2017) employ paraphrase knowledge
to enhance question answering models. Kriz et al.
(2018) utilize paraphrase and context-based lexical
substitution knowledge to improve simplification
task. Similarly, Zhao et al. (2018a) combine para-
phrase rules of PPDB (Ganitkevitch et al., 2013)
with Transformer (Vaswani et al., 2017) to perform
sentence simplification task. Guo et al. (2018a)
propose a multi-task learning framework with PG
and simplification. In addition, Yu et al. (2018)
and Xie et al. (2019) use paraphrase as data argu-
mentation for their primary tasks. Different from
these works, we leverage paraphrase knowledge for
question generation, by automatically constructing
a built-in paraphrase corpus without using any ex-
ternal paraphrase knowledge bases.

3 Model Description

In this section, we first describe two baseline mod-
els we used: feature-enriched pointer-generator and
language modeling enhanced QG. Then we explain
how to obtain paraphrase resources and show the
quality statistics. Furthermore, we describe in de-
tail two modules of utilizing paraphrase knowledge:
the PG auxiliary task and the min loss function, as
well as their combination. The overall structure of
our hybrid model is shown in Figure 2.

3.1 Baseline Models
3.1.1 Feature-enriched Pointer-generator
Sun et al. (2018) enhance pointer-generator (See
et al., 2017) model with rich features proposed
by Zhou et al. (2017). They adopt a bidirectional
LSTM as the encoder, which takes the feature-
enriched embedding ei as input:

ei = [wi; ai;ni; pi;ui] (1)

where wi, ai, ni, pi, ui respectively represents em-
beddings of word, answer position, name entity,
POS and word case.

Same as the decoder used by See et al. (2017),
another unidirectional LSTM with attention mech-
anism is used to obtain the decoder hidden state st
and context vector ct. Based on these, the pointer-
generator model will simultaneously calculate the
probabilities of generating a word from vocabulary
and copying a word from the source text. The final

probability distribution is the combination of these
two modes with a generation probability pg:

P (w) = pgPvocab + (1− pg)Pcopy (2)

The training objective is to minimize the nega-
tive log likelihood of the target sequence q:

Lqg = − 1

Tqg

Tqg∑
t=1

logP (yqgt = qt) (3)

3.1.2 Language Modeling Enhanced QG
Zhou et al. (2019a) enhance QG with language
modeling under a hierarchical structure of multi-
task learning. The language modeling aims at pre-
dicting the next and previous words in the input
sequence with forward and backward LSTMs, re-
spectively, which serves as a low-level task to pro-
vide semantic information for the high-level QG
task.

In general, the input sequence will firstly be fed
into the language modeling module to get the se-
mantic hidden states, then these states will be con-
catenated with the input sequence to obtain the
input of the feature-rich encoder:

ei = [wi; ai;ni; pi;ui;h
lm
i ] (4)

where hlmi is the semantic hidden state of LM mod-
ule. The loss function of language modeling is
defined as:

Llm = − 1

Tlm − 1

Tlm−1∑
t=1

log(P lm(wt+1|w<t+1))

− 1

Tlm − 1

Tlm∑
t=2

log(P lm(wt−1|w>t−1))

(5)

where P lm(wt+1|w<t+1) and P lm(wt−1|w>t−1)
represent the generation probabilities of the next
word and the previous word, respectively.

As a result, the total loss of language modeling
enhanced QG is formulated as:

Llqg = Lqg + βLlm (6)

where β is a hyper-parameter to control the relative
importance between language modeling and QG.
Follow the work of Zhou et al. (2019a), we set β
to 0.6. We re-implement this unified model to base
our method on a strong baseline.
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3.2 Paraphrase Expansion

The paraphrasing strategy is independent of the
neural-based QG model, and we can use any ad-
vanced methods to generate paraphrases. In our
work, we employ a simple back-translation method
to automatically create paraphrases of both sen-
tences and questions. Specially, we use a mature
translation tool Google Translate, which is a free
and accessible online service. We translate an orig-
inal text into German and then back to English to
get its paraphrase. As a result, we obtain s′ which
is the paraphrase of the input sentence s, and q′

which is the paraphrase of the golden reference
question q. In the following section, we will il-
lustrate the way to use (s, s′) as a training pair of
the auxiliary PG task, and adopt (q,q′) as multi-
references to conduct the diversity training module.
The way we expand paraphrases does not need ex-
tra PG datasets. Besides, it guarantees the PG and
QG tasks share the same input s, so we can op-
timize their sharing encoder simultaneously and
train the model end-to-end.

Synonym Syntactic Fluency
sentence-paraphrase 74% 7% 67%
question-paraphrase 58% 44% 67%

Table 2: Human evaluation of expanded paraphrases.

To assess the quality of expanded paraphrases,
we randomly select 100 paraphrases respectively
from sentences and questions, and ask two an-
notators to judge the Synonym conversions and
Syntactic transitions, as well as the paraphrase
Fluency. As shown in Table 2, 74% sentence para-
phrases and 58% question paraphrases have syn-
onym conversions with source sequences, 7% and
44% of them have sentence pattern transitions. Be-
sides, 67% of paraphrases have no grammar errors.
Two real expansion examples are shown in Table 3.
It indicates that our expansion method introduces
rich and high quality paraphrasing knowledge into
the original data.

3.3 Multi-task Learning with Paraphrase
Generation

3.3.1 Auxiliary PG Task
The multi-task learning mechanism with PG aims
at introducing paraphrase knowledge into QG. In
general, we employ a parallel architecture to com-
bine PG and QG, where QG is the main task and
PG serves as an auxiliary task. To make our model

Input Sentence:
the current basilica of the sacred heart is located on
the spot of fr.
Sentence Paraphrase:
the present basilica of the sacred heart is located in
the place of fr.
Input Question:
what structure is found on the location of the origi-
nal church of father sorin at notre dame?
Question Paraphrase:
what structure can be found at the location of the
original church of father sorin at notre dame?

Table 3: Real examples of our paraphrase expansion on
the sentences and reference questions respectively. We
mark paraphrase transitions with color.

easy to implement and can be trained end-to-end,
we conduct the multi-task learning in a simultane-
ous mode. In detail, feature-riched embeddings
will first be encoded by the task-share encoder and
then be fed into PG and QG decoders respectively.
The PG and QG decoders both have two layers and
they are identical in the structure but different in
parameters.

In the auxiliary PG task, the input is the original
sentence s, and the training objective is to minimize
the cross-entropy loss:

Lpg = − 1

Tpg

Tpg∑
t=1

logP (ypgt = s′t) (7)

where ypgt is the generated word of PG at time step
t and s′t is the t th word in the expanded sentence
paraphrase s′ .

3.3.2 Soft Sharing Strategy
To enhance the impact of auxiliary PG task so that
the paraphrase knowledge can be absorbed by the
question generation process more deeply, we em-
ploy a soft sharing strategy between the first layer
of PG and QG decoders. The soft sharing strategy
loosely couples parameters and encourages them
close to each other in representation space. Follow-
ing the work of Guo et al. (2018b), we minimize
the l2 distance between the shared layer of QG and
PG decoders as a regularization. The soft sharing
loss is defined as:

Lsf =
∑
d∈D
||θd − φd||2 (8)

where D is the set of shared decoder parameters, θ
and φ respectively represent the parameters of the
main QG task and the auxiliary PG task.
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Figure 2: Illustration of our proposed hybrid model.

3.4 Diversity Training with Min-loss
Function

For the QG task, a general training goal is to fit
the decoded results with the reference questions.
To provide more generation patterns, we adjust the
training target from one golden reference question
to several reference questions by using expanded
paraphrase resources. We adopt a min-loss function
among several references, and the loss function
defined by Equation 3 can be rewritten as:

Lqg = min
q∈Q

(− 1

Tqg

Tqg∑
t=1

logP (yqgt = qt)) (9)

where Q is the set of gold reference question and
expanded question paraphrase {q, q′}. Each gener-
ated question will separately calculate the negative
log-likelihood of its multiple references, and the
final loss is the minimum of them. Under this train-
ing process, our model can learn multiple question
expressions which are not in the original training
dataset, so that the generation can be more diverse.

Besides, inspired by the work of Kovaleva et al.
(2018), we have tried several loss strategies, such as
minimum loss, maximum loss, and weighted loss
to guide the diversity training. Among them, the
minimum is the best performing strategy. By em-
ploying minimum strategy, the QG decoder fits the
generated question with the most similar sequence
among gold reference question and question para-

phrase. In this way, more question patterns are
introduced into QG process.

3.5 Hybrid Model

Combining the above modules, we get our hybrid
model. During training, the feature-enriched in-
puts are first encoded by the task-share encoder.
Then the semantic hidden states are fed into PG
decoder and QG decoder, respectively. For PG
decoder, it has one fitting target (expanded sen-
tence paraphrase). For QG decoder, it calculates
the cross-entropy loss with both the gold reference
question and the question paraphrase and regards
the minimum loss of them as the QG loss. The
auxiliary PG task and diversity training strategy
simultaneously optimize the question generation
process. The combined training loss function can
be defined as:

Ltotal = Llqg + αLpg + λLsf (10)

where α and λ are both hyper-parameters. We will
describe the chosen of these hyper-parameters later.

4 Experimental Settings

4.1 Datasets

Our experiments are based on two reading com-
prehension datasets: SQuAD (2016) and MARCO
(2016). On SQuAD, since there are two different
splits that are most often used, we conduct exper-
iments on both two splits on sentence-level. For
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Zhou Split Du Split
Previous Works (conference-year) B1 B2 B3 B4 MET B1 B2 B3 B4 MET
s2s (ACL-2017) - - - - - 43.09 25.96 17.50 12.28 16.62
NQG++ (NLPCC-2017) - - - 13.29 - - - - - -
M2S+cp (NAACL-2018) - - - 13.91 - - - - 13.98 18.77
A-P-Hybrid (EMNLP-2018) 43.02 28.14 20.51 15.64 - - - - - -
s2sa-at-mp-gsa (EMNLP-2018) 44.51 29.07 21.06 15.82 19.67 43.47 28.23 20.40 15.32 19.29
ASs2s (AAAI-2019) - - - 16.17 - - - - 16.20 19.92
LM enhanced QG (EMNLP-2019) 42.80 28.43 21.08 16.23 - - - - - -
Q-type (EMNLP-2019) 43.11 29.13 21.29 16.31 - - - - - -
Sent-Relation (EMNLP-2019) 44.40 29.48 21.54 16.37 20.68 45.66 30.21 21.82 16.27 20.36
Our Models
baseline-1 +Data augmentation 38.16 24.35 17.60 13.28 17.73 38.91 24.80 17.83 13.36 17.97
baseline-1 41.06 26.63 19.65 14.71 19.12 41.04 27.05 19.92 15.21 19.19
baseline-1 +Min 42.03 27.61 20.27 15.48 19.61 42.97 28.52 21.02 16.06 19.93
baseline-1 + PG 42.76 28.26 20.89 16.09 20.11 43.68 28.99 21.39 16.37 20.23
baseline-1 +Min+PG (hybrid model-1) 43.61 28.67 21.09 16.23 20.29 42.66 28.68 21.39 16.55 20.44
baseline-2 42.39 28.11 20.86 16.13 19.95 42.76 28.80 21.47 16.57 20.38
baseline-2 +Min 43.38 28.92 21.49 16.61 20.40 42.94 29.06 21.73 16.88 20.60
baseline-2 +PG 43.56 28.98 21.57 16.74 20.58 43.73 29.53 22.06 17.08 20.78
baseline-2 +Min+PG (hybrid model-2) 43.63 29.21 21.79 16.93 20.58 44.32 29.88 22.28 17.21 20.96

Table 4: Experimental results of our models on SQuAD comparing with previous works and different baselines.
The results of previous works are copied from their original papers. Baseline-1 and Baseline-2 refer to Feature-
enriched Pointer-generator and LM enhanced QG respectively. Bn: BLEU-n, MET: METOER.

Du Split (Du et al., 2017), we use the same settings
with Li et al. (2019a) and there are 74689, 10427
and 11609 sentence-question-answer triples for
training, validation and test respectively. For Zhou
Split (Zhou et al., 2017), we use the data shared
by Zhou et al. (2017) and there are 86,635, 8,965
and 8,964 triples correspondingly. On MARCO,
there are 74,097, 4,539 and 4,539 sentence-answer-
question triples for train, development and test sets,
respectively (Sun et al., 2018).

We expand the datasets using the paraphrase
expansion approach described in Section 3.2. After
that, one sample of the expanded dataset is in the
form of ((sentence, sentence paraphrase), (question,
question paraphrase), answer).

4.2 Baselines and Metrics

For fair comparison, we report the following recent
works on sentence-level Du and Zhou Splits:

s2s (Du et al., 2017): an attention-based seq2seq
model.

NQG++ (Zhou et al., 2017): a feature-enriched
Seq2Seq model.

M2S+cp (Song et al., 2018): uses different
matching strategies to explicitly model the infor-
mation between answer and context.

A-P-Hybrid (Sun et al., 2018): generates an ac-
curate interrogative word and focuses on important
context words.

s2s-a-ct-mp-gsa (Zhao et al., 2018b): employs
a gated attention encoder and a maxout pointer
decoder to deal with long text inputs.

ASs2s (Kim et al., 2018): proposes an answer-
separated Seq2Seq model by replacing the answer
in the input sequence with some specific words.

LM enhanced QG (Zhou et al., 2019a): treats
language modeling as a low-level task to provide
semantic representations for the high-level QG.

Q-type (Zhou et al., 2019b): multi-task learning
framework with question word prediction and QG.

Sent-Relation (Li et al., 2019a): extracts
answer-relevant relations in sentence and encodes
both sentence and relations to capture answer-
focused representations.

We evaluate the performance of our models us-
ing BLEU (Papineni et al., 2002) and METEOR
(Denkowski and Lavie, 2014), which are widely
used in previous works for QG.

4.3 Implementation Details

We set the vocabulary as the most frequent 20,000
words. We use 300-dimensional GloVe word
vectors as initialization of the word embeddings.
Answer position and token lexical features are
randomly initialized to 32-dimensional vectors
through truncated normal distribution. The max-
imum lengths of input sequence and output se-
quence are 100 and 40, respectively. The hidden
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size of the encoder, decoder, and language model-
ing LSTMs are all 512. We use Adagrad optimiza-
tion with learning rate 0.15 for training. The batch
size is 32 and the beam search decoding size is 12.
To alleviate the volatility of the training procedure,
we get the average model of the 5 checkpoints clos-
est to the best-trained model on development set.

5 Results and Analysis

5.1 Main Results

The experimental results on two splits of SQuAD
are shown in Table 4. In terms of BLEU-4 that is
often regarded as the main evaluation metric for
text generation, our hybrid model-2 yields the best
results on both splits, with 16.93 on Zhou Split
and 17.21 on Du Split. We achieve state-of-the-art
results on Du Split for sentence-level QG.

Especially for baseline-1, the performance gains
of our model are more obvious. Our hybrid model-
1 outperforms baseline-1 by 1.52 points on Zhou
Split and 1.34 points on Du Split, which are large
margins for this challenging task. Even based on
this weak baseline, our method also achieves the
state-of-the-art, 16.55 BLEU-4 score on Du Split
for sentence-level QG.

The previous work of CGC-QG (Liu et al., 2019)
obtains a 17.55 BLEU-4 score on Zhou Split. But
their model relies on many heuristic rules and
ad-hoc strategies. In their full model with clue
prediction, they do graph convolutional network
(GCN) operations on dependency trees, while our
model does not use any hand-crafted rules and is
lightweight without graphs and trees.

We also conduct experiments on MARCO, and
the results are shown in Table 5. Our hybrid models
obtain obvious improvements over two baselines,
achieving a state-of-the-art BLEU-4 score of 21.61.

Specifically, SQuAD and MARCO are built
in different ways. The questions in SQuAD are
generated by crowd-workers, while questions in
MARCO are sampled from real user queries. The
experimental results on two datasets validate the
generalization and robustness of our models.

Effect of Multi-task Learning with PG Task
As shown in Table 4, the auxiliary PG task brings
consistent improvements over both baseline mod-
els. On Zhou Split, it increases baseline-1 by 1.38
points and baseline-2 by 0.61 respectively. On
Du Split, it increases baseline-1 by 1.16 points
and baseline-2 by 0.51 points respectively. The

Previous Works BLEU-4
s2s(Du et al., 2017) 10.46
s2sa-at-mp-gsa(Zhao et al., 2018b) 16.02
A-P-Hybrid(Sun et al., 2018) 19.45
LM enhanced QG(Zhou et al., 2019a) 20.88
Q-type(Zhou et al., 2019b) 21.59
Our Models
baseline-1 20.13
hybrid model-1 21.15
baseline-2 20.79
hybrid model-2 21.61

Table 5: Main results of our models on MARCO.

reason is that the PG task provides abundant para-
phrase knowledge into the model and allows the
task-share encoder to learn more paraphrasing rep-
resentations.

Effect of Diversity Training with Min-loss Func-
tion From the results in Table 4, we can see the
min-loss strategy improves performances over both
baseline models. On Zhou Split, we get a 0.77 im-
provement over baseline-1 and 0.48 improvement
over baseline-2, respectively. On Du Split, we get
similar improvements.

Effect of Data Augmentation A straightforward
way to leverage paraphrase knowledge is data aug-
mentation. To test whether it works by simply
adding paraphrase data as external training data,
we also conduct an experiment based on the ques-
tion paraphrase resource. We add the (s, q′) pairs
into the training dataset, where s represents the in-
put sentence and q′ denotes the paraphrase of the
golden reference. Under this setting, we double the
training samples. Unfortunately, as shown in Table
4, the baseline-1 model yields much lower BLEU-
4 scores on both Zhou Split (13.28) and Du Split
(13.36) with such data augmentation. The main
reason is that for the same input sentence, there are
two different training targets (q and q′), making
the training process cannot easily converge.

5.2 Diversity Test
To investigate whether the paraphrase knowledge
introduces more diverse expressions, we conduct
evaluations on the distinct metric (Li et al., 2016),
which is calculated as the number of distinct uni-
grams (distinct-1) and bigrams (distinct-2) divided
by the total number of the generated words. The
experimental results are shown in Table 6. It shows
that our hybrid models obtain obvious gains over
baseline models on both distinct-1 and distinct-2
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metrics, validating that our models really generate
more diverse questions with the help of paraphrase
knowledge.

Models distinct-1 distinct-2
baseline-1 9.49 39.48
hybrid model-1 9.75 41.97
baseline-2 9.81 41.14
hybrid model-2 9.98 42.43

Table 6: Results of the distinct metric on zhou split.

5.3 Ablation Study of Soft Sharing

We also verify the effectiveness of the soft shar-
ing mechanism by removing it from the full hybrid
models. The results are displayed in Table 7. After
removing the soft sharing mechanism, both of our
models have varying degrees of performance degra-
dation. It demonstrates that the soft sharing strategy
enhances the influence of paraphrase knowledge
on QG decoder.

Models BLEU-4 METEOR
hybrid model-1 16.23 20.29
w/o soft sharing 15.87 20.04
hybrid model-2 16.93 20.58
w/o soft sharing 16.32 20.34

Table 7: Ablation studies of soft sharing on Zhou Split.

5.4 Parameters Selection

The soft sharing coefficient hyper-parameter λ is
1×10−6, intuitively chosen by balancing the cross-
entropy and regularization losses according to Guo
et al. (2018b). The other hyper-parameter α which
is to control the balance of QG and PG is tuned by
grid search. We set α to different values to explore
the best proportion of two tasks. The experimental
results of different α are shown in Figure 3. Con-
sequently, we set α to 0.3 for our hybrid model.

Figure 3: The influence of α on BLEU-4 scores on de-
velopment set of Zhou Split.

5.5 Human Evaluation
To further assess the quality of generated questions,
we perform human evaluation to compare our hy-
brid model-2 with the strong baseline of language
modeling enhanced QG. We randomly select 100
samples from SQuAD (Zhou Split) and ask three
annotators to score these generated questions ac-
cording to three aspects:

Fluency: which measures whether a question is
grammatical and fluent;

Relevancy: which measures whether the ques-
tion is relevant to the input context;

Answerability: which indicates whether the
question can be answered by the given answer.

The rating score is set to [0, 2]. The evaluation
results are shown in Table 8. The Spearman cor-
relation coefficients between annotators are high,
which guarantees the validity of human evaluation.
Our hybrid model receives higher scores on all
three metrics, indicating that our generated ques-
tions have higher quality in different aspects.

Models Fluency Relevancy Answerability
baseline-2 1.785 1.535 1.134
hybrid model-2 1.874 1.682 1.333
Spearman 0.722 0.693 0.861

Table 8: Human evaluation results.

5.6 Case Study
We list two examples of generated questions in Ta-
ble 9. By introducing paraphrase knowledge into
generation, the generated questions well capture
the paraphrase transitions between contexts and ref-
erences. Obviously, the questions generated by our
hybrid model are more grammatical and coherent.

5.7 Different Paraphrasing Methods
To further test the generalization of our proposed
methods, we use other paraphrasing methods to
construct the paraphrase dataset.

PPDB: for each non-stop word and phrase, look-
ing it up in PPDB (2013) and replacing it with its
synonyms.

NMT: another back-translation method using a
pre-trained Transformer (2017) model.

Mixed: expanding input sentences with Google
Trans and expanding reference questions with
PPDB.

The results are shown in Table 10. Our hybrid
model-2 still achieves excellent performances on
both BLEU and METEOR. From the results, we
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Sentence:
his lab was torn down in 1904, and its contents
were sold two years later to satisfy a debt.
Answer:
torn down
Reference Question:
what happened to his lab?
Baseline Model-2:
what was [UNK] ’s lab?
Hybrid Model-2:
what happened to his lab in 1904?
Sentence:
newcastle has a horse racing course at gosforth
park.
Answer:
gosforth park
Reference Question:
where is newcastle ’s horse racing course located?
Baseline Model-2:
where does newcastle have a horse racing course?
Hybrid Model-2:
where is newcastle ’s horse racing course located?

Table 9: Examples of generated questions.

Paraphrasing Methods BLEU-4 METEOR
baseline-2 16.13 19.95
PPDB 16.65 20.57
NMT 16.76 20.44
Google Trans 16.93 20.58
Mixed 17.05 20.75

Table 10: Hybrid model-2 performances using different
paraphrase expansion methods on SQuAD(Zhou Split).

can observe that the Mixed paraphrase method even
obtain better results than the mature Google Trans-
late. It proves that our proposed architecture is ef-
fective across different paraphrasing methods and
has potential for improvement.

6 Conclusion and Future Work

In this paper, we propose a two-hand hybrid model
leveraging paraphrase knowledge for QG. The ex-
perimental results of independent modules and hy-
brid models prove that our models are effective and
transferable. Besides, human evaluation results
demonstrate that the paraphrase knowledge bene-
fits our model to ask more human-like questions of
high quality. In the future, we will explore more di-
verse and advanced paraphrase expanding methods
for both sentence and paragraph level QG. More-
over, we will apply our methods to other similar
tasks, such as sentence simplification.
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