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Abstract

Generating inferential texts about an event

in different perspectives requires reasoning

over different contexts that the event occurs.

Existing works usually ignore the context

that is not explicitly provided, resulting in

a context-independent semantic representation

that struggles to support the generation. To

address this, we propose an approach that au-

tomatically finds evidence for an event from

a large text corpus, and leverages the evi-

dence to guide the generation of inferential

texts. Our approach works in an encoder-

decoder manner and is equipped with a Vector

Quantised-Variational Autoencoder, where the

encoder outputs representations from a distri-

bution over discrete variables. Such discrete

representations enable automatically selecting

relevant evidence, which not only facilitates

evidence-aware generation, but also provides

a natural way to uncover rationales behind the

generation. Our approach provides state-of-

the-art performance on both Event2Mind and

ATOMIC datasets. More importantly, we find

that with discrete representations, our model

selectively uses evidence to generate different

inferential texts.

1 Introduction

Inferential text generation aims to understand daily-

life events and generate texts about their underlying

causes, effects, and mental states of event partici-

pants, which is crucial for automated commonsense

reasoning. Taking Figure 1 as an example, given an

event “PersonX reads PersonY’s diary”, the cause

of the participant “PersonX” is to “obtain Person
Y’s secrets” and the mental state of “PersonX” is

“guilty”. Standard approaches for inferential text

generation (Rashkin et al., 2018; Sap et al., 2019;

Bosselut et al., 2019; Du et al., 2019) typically only

∗ Work done while this author was an intern at Microsoft
Research.

PersonX stole PersonY’s

diary secretly
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to read his diary
know more about PersonY

PersonX feels

Event
Background

Inferences
obtain PersonY’s secrets

PersonX wants to

PersonX reads PersonY’s diary

guilty
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Figure 1: An examples of inferential text generation on

mental states of event participants. We show two kinds

of reasonable inferences for the event under different

background knowledge that is absent in the dataset.

take the event as the input, while ignoring the back-

ground knowledge that provides crucial evidence

to generate reasonable inferences. For example, if

the background knowledge of this example is “Per-
sonY invites PersonX to read his diary”, the outputs

should be different.

In this paper, we present an evidence-aware gen-

erative model, which first retrieves relevant evi-

dence from a large text corpus and then leverages

retrieved evidence to guide the generation of infer-

ential texts. Our model is built upon Transformer-

based (Vaswani et al., 2017) encoder-decoder ar-

chitecture, and is equipped with Vector Quantised-

Variational Autoencoder to map an event to a dis-

crete latent representation (van den Oord et al.,

2017). These discrete representations embody the

latent semantic distribution of inferences given the

event, thus supporting selection of relevant evi-

dence as background knowledge to guide the gen-

eration in different perspectives. Furthermore, our

model has two attractive properties: (1) it avoids

the problem of posterior collapse, caused by la-

tent variables being ignored, in traditional vari-

ational autoencoder with continuous latent vari-

ables (van den Oord et al., 2017), and more impor-

tantly (2) it uncovers the rationale of a generation

to some extent through tracing back the evidence

that guides the generation and the selected discrete

representation of the event.
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We evaluate our approach on Event2Mind

(Rashkin et al., 2018) and ATOMIC (Sap et al.,

2019) datasets, both of which focus on reason-

ing about causes and effects of events and men-

tal states of event participants. Experimental re-

sults show that our approach achieves state-of-

the-art performances on both datasets. Further

analysis shows that our approach can equip the

generation with an explicit control over the se-

mantics of latent variables and selected evidence

to generate inferential texts in different perspec-

tive. The source codes are available at https:

//github.com/microsoft/EA-VQ-VAE.

2 Task Definition and Datasets

Figure 1 shows an example of the task, which aims

to generate inferential texts about causes and ef-

fects of daily-life events and mental states of the

events participants. Formally, given an event x =
{x1, x2, .., xn} and an inference dimension r such

as causes of the event, the goal is to generate mul-

tiple inferential texts Y = {y(1), y(2), ..., y(m)}1,

where the background knowledge of the event is

absent in the dataset.

We conduct experiments on Event2Mind2

(Rashkin et al., 2018) and ATOMIC3 (Sap et al.,

2019) datasets. Both datasets contain about 25,000

unique events extracted from multiple data sources

and provide multiple inferences under different in-

ference dimensions by crowd-sourcing on Ama-

zon Mechanical Turk. Event2Mind and ATOMIC

contain 2.6 and 3.6 inferences on average per ex-

ample, respectively. Event2Mind focuses on three

inference dimensions related to mental states of

participants (i.e. intents and reactions of the events

participants), while ATOMIC has broader inference

dimensions including mental states, probable pre-

and post conditions of the event, and persona status.

More details about the two datasets are provided in

the Appendix A.

3 Overview of the Approach

We present our approach in this section, which first

retrieves relevant evidence from a large text corpus,

and then utilizes retrieved evidence as background

knowledge to generate inferences.

Figure 2 gives an overview of our approach.

1We use inference and inferential text interchangably
2https://uwnlp.github.io/Event2Mind/
3https://homes.cs.washington.edu/

˜msap/ATOMIC/

Event Text Corpus

Decoder

Evidence Retrieval

Evidence

VQ-VAE

Inferential Text

Figure 2: An overview of our approach.

First, our encoder takes an event as the input and

outputs a semantic representation z from a distribu-

tion over discrete latent variables, which is based

on Vector Quantised-Variational Autoencoder (VQ-

VAE) (van den Oord et al., 2017). We then use the

event as a query to retrieve top K evidence from a

large text corpus as background knowledge. Lastly,

the evidence-aware decoder takes the semantic rep-

resentation and evidence as the input and generates

the inference y, where the semantic representation

selectively uses relevant evidence as background

knowledge to guide the generation of inferences.

3.1 Vector Quantised-Variational
Autoencoder

Figure 3 illustrates the model architecture of our

approach. The model is based on encoder-decoder

framework equipped with Vector Quantised-

Variational Autoencoder (VQ-VAE) (van den Oord

et al., 2017), where the VQ-VAE is learned to

model the latent semantic distribution within in-

ferences given an event. Latent variables z from

the VQ-VAE will be used to calculate the relevant

of retrieved evidence in the semantic space to guide

the generation.

Compared with continuous VAEs, VQ-VAE

does not suffer from “posterior collapse” issues

that latent variables are often ignored with a pow-

erful decoder (van den Oord et al., 2017). VQ-

VAE mainly consists of three parts: a codebook for

modeling the latent semantic distribution within

inferences over discrete latent variables, a recogni-

tion network for modeling a posterior distribution

qφ(z|x, y), and a prior network for inferring a prior

distribution pθ(z|x).
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Figure 3: The model architecture of our approach.

Codebook A codebook aims to model the latent

semantic discrete distribution within inferences,

which is composed of k discrete latent variables

(i.e. k-way categorical). We define the codebook

as an embedding table T ∈ Rk×d, where d is the

dimension of latent variables. The semantic latent

variable z is indexed from the posterior distribu-

tion qφ(z|x, y) in the training phase and the prior

distribution pθ(z|x) in the inference phase over the

codebook, respectively.

Posterior Distribution We follow van den Oord

et al. (2017) to model a discrete posterior distribu-

tion qφ(z|x, y) over the codebook. First, we use

Transformer (Vaswani et al., 2017) with two layers

as our encoder, where the input sequence is the

concatenation of an event x and its inference y. In

order to obtain the representation of an example

(x, y), we add a special token in the last of the in-

put sequence and take the hidden state h(x,y) of the

special token as the representation of the example.

The posterior categorical probability distribution

qφ(z|x, y) is defined as one-hot as follows.

qφ(zk|x, y) =
⎧⎨
⎩
1 if k = argmin

j
||h(x,y) − zj ||2

0 otherwise
(1)

As we can see, the hidden state h(x,y) of the

example is mapped onto the nearest element z′

of the codebook under the posterior distribution

qφ(z|x, y).
z′ = zk where k = argmin

j
||h(x,y)−zj ||2 (2)

Prior Distribution In the inference phase, only

the event x is given, which requires a prior dis-

tribution estimator to infer the prior distribution

pθ(z|x). Since the prior distribution is crucial for

the inference phase, we use a powerful pre-trained

language model such as RoBERTa (Liu et al., 2019)

to encode the event into a hidden state h. Since

the prior distribution is categorical, we then use a

k-way classifier following a softmax function to

infer the prior distribution, where Wk ∈ Rd×k is

the model parameters.

pθ(z|x) = softmax(hWk) (3)

The training detail of the VQ-VAE will be intro-

duced in the Section 3.4.

3.2 Evidence Retrieval
In this section, we describe how to retrieve event-

related evidence as background knowledge. Given

an event, we expect that retrieved evidence can

contain the event and provide its context as a clue

to guide the generation.

To retrieve event-related evidence, we use the

event as a query to search evidence from a large

text corpus. Specifically, we first remove stop

words in the given event and then concatenate the

words as a query to search evidence from the cor-

pus by Elastic Search engine4. The engine ranks

the matching scores between the query and all sen-

tences using BM25 and select top K sentences as

evidence C = {c1, c2, ..., cK}. To provide detailed

context about the event, we build our corpus upon

BooksCorpus (Zhu et al., 2015) that consists of

11,038 story books, since stories usually give a

detailed account of an event such as causes and

effects of the event.

3.3 Evidence-Aware Decoder
In this section, we propose an evidence-aware de-

coder, which consists of two components, evidence

selection and a generator, respectively. Evidence

selection aims to calculate a context distribution

4https://www.elastic.co/
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ps(c|z) given a latent variable z to model the rel-

evance of retrieved evidence, while the generator

pm(y|x, c) takes an event x and evidence c as the

input to generate the inferential text y.

3.3.1 Evidence Selection
The relevance of retrieved evidence is different

depending on the semantics of inference, which

requires a context distribution to model the rele-

vance. For examples, given an event “PersonX
reads PersonY’s diary” and its inference “PersonX
feels guilty”, the relevance of the evidence “Per-
sonX stole PersonY’s diary” should be higher than

that of the evidence “PersonY invites PersonX to
read his diary”. However, inferences are unseen

in the inference phase, thus we cannot use infer-

ences to model the context distribution. Instead,

we utilize semantic latent variables from the VQ-

VAE that models the latent semantic distribution of

inferences given an event to calculate the relevance

of retrieved evidence.

Evidence selection aims to calculate a context

distribution ps(c|z) over retrieved evidence given

a semantic latent variable z to model the relevance

of retrieved evidence. Considering that term-based

retrieval (i.e. BM25) may fail to retrieve relevant

evidences and all retrieved evidence cannot sup-

port the generation, we add an empty evidence cφ
into the set C of retrieved evidence as the place-

holder. We first use Transformer with two lay-

ers to encode retrieved evidence into context vec-

tors HC = {hc1 , hc2 , .., hcK , hcφ} in the semantic

space. Then, the context distribution ps(c|z) over

retrieved evidence given the semantic latent vari-

able z is calculated as one-hot as follows.

ps(ck|z) =
⎧⎨
⎩
1 if k = argmin

j
||hcj − z||2

0 otherwise
(4)

As we can see, the latent variable z is mapped onto

the nearest element cz of the retrieved evidence

under the context distribution ps(c|z).
cz = ck where k = argmin

j
||hcj − z||2 (5)

Another “soft” distribution such as using an at-

tention mechanism to calculate the relevance of

retrieved evidence can also model the context dis-

tribution, but we choose the one-hot distribution

as our context distribution since it maps the latent

variable z onto the nearest element of the retrieved

evidence, the property of which can help effectively

learn the model (described in the Section 3.4).

3.3.2 Generator

Recently, Transformer-based (Vaswani et al., 2017)

language models like GPT-2 (Radford et al., 2019)

have achieved strong performance in text genera-

tion, which is pre-trained from a large-scale text

corpus and then fine-tuned on downstream tasks. In

this work, we use the GPT-2 pm(y|x, c) as the back-

bone of our generator and further take retrieved

evidence into account.

A general approach to utilize evidence to guide

the generation is to calculate the context vector

hc =
∑K+1

i=1 ps(ci|z)hci as the input of GPT-2 ac-

cording to the relevance ps(c|z) of retrieved evi-

dence. However, this approach changes the archi-

tecture of GPT-2, invalidating the original weights

of pre-trained GPT-2. Instead, we sample an evi-

dence c from the context distribution ps(c|z) and

then concatenate the event and the selected evi-

dence as the input.

To make the paper self-contained, we briefly

describe the GPT-2, which takes an evidence and an

event as the input and generates the inference y =
{y1, y2, .., yn}. This model applies N transformer

layers over the input tokens to produce an output

distribution over target tokens:

h0 = [c;x; y<t]We +Wp

hl = transformerl−1(h
l−1)

p(yt) = softmax(hN−1
last W T

e )

(6)

where We is the token embedding matrix, Wp is the

position embedding matrix, and hN−1
last is the hidden

state of the last token on the top layer. Each trans-

former layer transformerl−1 contains an archi-

tecturally identical transformer block that applies a

masked multi-headed self-attention operation fol-

lowed by a feed forward layer over the input hl−1

in the l-th layer.

ĝl = MultiAttn(hl−1)

gl = LN(ĝl + hl−1)

ĥl = FFN(gl)

hl = LN(ĥl + gl)

(7)

where MultiAttn is a masked multi-headed self-

attention mechanism, which is similar to Vaswani

et al. (2017), FFN is a two layers feed forward

network, and LN represents a layer normalization

operation (Ba et al., 2016).
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3.4 Training
Our entire approach corresponds to the following

generative process. Given an event x, we first sam-

ple a latent variable z from the VQ-VAE pθ(z|x).
We then select relevant evidence c according to the

semantics of the latent variable from the context dis-

tribution ps(c|z). Finally, the generator pm(y|x, c)
takes the event x and the selected evidence c as the

input and generate the inference y. Therefore, the

probability distribution p(y|x) over inferences y
given the event x is formulated as follow.

p(y|x) =
∑
z∈T

∑
c∈C

pm(y|x, c)ps(c|z)pθ(z|x) (8)

A straightforward method for learning our model

might be maximizing the marginal likelihood by

joint learning, but it is computationally intractable.

Instead, we first learn the VQ-VAE with the prior

distribution pθ(z|x) in isolation, which can enable

the codebook to capture the latent semantics within

inferences. Then, we train the evidence-aware de-

coder under the posterior distribution qφ(z|x, y).
Training VQ-VAE To enable the codebook to

capture the latent semantics within inferences, we

train the VQ-VAE by reconstructing the inferen-

tial text y using the latent variable z. We use

the pre-trained language model GPT-2 (Radford

et al., 2019) as our decoder to generate the infer-

ence p(y|x, z), where the input is the sum of token

embedding, position embedding and the latent vari-

able z. To make reconstruction better conditioned

on the latent variable, we replace each query in

the multi-head self-attention mechanism with the

sum of the latent variable and the query, as well

for keys, values and hidden states on the top layer.

We follow van den Oord et al. (2017) to learn the

VQ-VAE by minimizing the loss function.

lossrec = −logp(y|x, h(x,y) + sg[z − h(x,y)])+

||sg[h(x,y)]− z||22 + β||h(x,y) − sg[z]||22
(9)

where sg stands for the stop gradient operator that

has zero partial derivatives during differentiation,

and β is a hyperparameter which controls the speed

to change the latent variable. We set the β as 0.25

in all experiments. The decoder optimizes the first

loss term (reconstruction) only, the encoder op-

timizes the first and the last loss terms, and the

codebook are updated by the middle loss term.

We obtain the posterior distribution qφ(z|x, y)
after optimizing the encoder and the codebook. Af-

terward, we learn the prior distribution estimator

to infer the prior distribution pθ(z|x). Since the

posterior distribution is categorical, we can calcu-

late approximate prior distributions as follow in the

training dataset D, where N(x) is the number of

examples that includes the event x.

p(z|x) =
∑

(x,yi)∈D

qφ(z|x, yi)
N(x)

(10)

Therefore, we can fit the prior distributions by

minimizing the KL divergence.

lossprior = KL(p(z|x)||pθ(z|x)) (11)

Training Evidence-Aware Decoder After train-

ing VQ-VAE, we jointly learn the context distribu-

tion ps(c|z) and the generator pm(y|x, c) by maxi-

mizing the following marginal likelihood under the

posterior distribution qφ(z|x, y).
logp(y|x) = Ez∼qφ [

∑
c∈C

logpm(y|x, c)ps(c|z)]
(12)

According to the Equation 2, the example (x, y)
is mapped onto the nearest element z′ of the code-

book under the posterior distribution qφ(z|x, y).
Meanwhile, according to the Equation 5, the latent

variable z′ is mapped onto the nearest element cz′

of retrieved evidence. Therefore, the objective in

Equation 12 can be simplified as follow.

logp(y|x) = logpm(y|x, cz′) + logps(cz′ |z′)
(13)

Since the ground truth evidence for the example

is unobserved, we cannot directly train the model

by maximizing the marginal likelihood. To rem-

edy this problem, we use reinforcement learning

algorithm to optimize the objective.

R = δ(pm(y|x, cz′)− pm(y|x, cr))
logp(y|x) = logpm(y|x, cz′) +Rlogps(cz′ |z′)

(14)

where R is the reward designed to guide the model

training, δ(x) is 1 if x is larger than 0 otherwise −1,

and cr is a randomly selected evidence where cr �=
cz′ . The idea of designing the reward is that correct

evidence should increase the probability of the gold

inference compared with other evidence. Note that

there is no real gradient defined for ps(c|z), instead,

we approximate the gradient similar to the straight-

through estimator (Bengio et al., 2013).

logp(y|x) = logpm(y|x, cz′)−R||hcz′ − z′||22
(15)
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Methods xIntent xNeed xAttr xEffect xReact xWant oEffect oReact oWant Overall

Single Task

S2S 8.17 12.35 2.96 5.26 3.43 13.44 6.42 4.09 7.08 7.02
VRNMT 9.52 13.35 4.87 4.42 7.64 9.80 13.71 5.28 10.79 8.82
CWVAE 12.12 15.67 5.63 14.64 8.13 15.01 11.63 8.58 13.83 11.69

Multi Task

S2S* 24.53 23.85 5.06 9.44 5.38 24.68 7.93 5.60 21.30 14.20
COMET* 25.82 25.54 5.39 10.39 5.36 26.41 8.43 5.65 21.96 15.00
COMET - - - - - - - - - 15.10
EA-VQ-VAE 26.89 25.95 5.72 10.96 5.68 25.94 8.78 6.10 22.48 15.40

Table 1: BLEU score on nine inference dimensions of the ATOMIC test dataset with different approaches. For

inference dimensions, “x” and “o” refers to PersonX and others, respectively (e.g. “xAttr”: attribute of PersonX,

“oEffect”: effect on others). The tag (*) means re-implementation.

Thus, we can optimize the evidence-aware de-

coder by maximizing the marginal likelihood in

the Equation 15. Please see more details about the

model hyperparameters in Appendix B.

4 Experiment

4.1 Model Comparisons

Following Sap et al. (2019), we first use the average

BLEU-2 score between each sequence in the top

10 predictions and the gold generations to evaluate

the accuracy of generations. We report the result

of existing methods on ATOMIC and Event2Mind

datasets in the Table 1 and Table 2, respectively.

Methods xIntent xReact oReact Overall

Single Task

S2S 2.75 2.11 5.18 3.35
VRNMT 4.81 3.94 6.61 4.03
CWVAE 12.98 5.65 6.97 8.53

Multi Task

S2S* 19.18 4.81 4.29 9.43
COMET* 21.64 5.10 4.36 10.37
EA-VQ-VAE 23.39 5.74 4.81 11.31

Table 2: BLEU score on three inference dimensions of

the Event2Mind test dataset with different approaches.

For inference dimensions, “x” and “o” refers to Per-

sonX and others, respectively. The tag (*) means re-

implementation.

These approaches are divided into two groups.

The first group trains distinct models for each infer-

ence dimension separately, while the second group

trains a model in a multi-task learning way for

all inference dimensions. S2S is a RNN-based

sequence-to-sequence model (Sutskever et al.,

2014). VRNMT (Su et al., 2018) introduces a

sequence of recurrent latent variables to model the

semantic distribution of inferences. CWVAE pro-

pose a context-aware variational autoencoder (Du

et al., 2019) to acquire context information, which

is first pre-trained on the auxiliary dataset and then

fine-tuned for each inference dimension. COMET
(Bosselut et al., 2019) concatenate the event with an

inference dimension as the input and fine-tune the

pre-trained GPT-2. Since COMET does not report

the performance for each inference dimension, we

re-implement the model for better comparison. Our

approach is abbreviated as EA-VQ-VAE, short for

Evidence-Aware Vector Quantised Variational Au-

toEncoder.

As we can see in the Table 1 and Table 2, the

multi-task learning performs better than single-task

learning overall. Therefore, we train our model in

a multi-task way and compare our approach with

multi-task learning based methods. From the Table

1, we can see that our approach performs better on

the majority of inference dimensions, achieving the

state-of-the-art result on ATOMIC dataset. For the

Event2Mind dataset, results in the Table 2 show

that our approach brings a gain of 1% BLEU score

overall compared with the state-of-the-art method.

Methods
Event2Mind ATOMIC

dist-1 dist-2 dist-1 dist-2
S2S* 638 1,103 2,193 5,761
COMET* 1,794 4,461 3,629 12,826
EA-VQ-VAE 1,942 4,679 3,918 14,278

Table 3: The number of distinct n-gram (dist-1 and dist-

2) overall on Event2Mind and ATOMIC test dataset

with different multi-task learning based methods. The

tag (*) means re-implementation.

Besides, in order to evaluate the diversity of gen-

erations, we use the number of distinct unigrams

(dist-1) and bigrams (dist-2) as evaluation metrics

(Li et al., 2015). Since we train our model in a

multi-task way, we compare our approach with

multi-task learning based methods for fair compar-

ison. Results in the Table 3 show that our approach

could increase the diversity of generations overall

on both datasets.
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Since automatic evaluation of generated lan-

guage is limited (Liu et al., 2016), we also perform

a human evaluation on model performance. Follow-

ing the setup of (Sap et al., 2019), we evaluate 100

randomly selected examples from the test set and

use beam search to generate 10 candidates from

different models. Five human experts are asked

to identify whether a model generation is correct

given an event with an inference dimension. Table

4 shows the result of the human evaluation on both

datasets, where our approach achieves a gain of

1.5%∼2% accuracy compared with COMET.

Methods Event2Mind ATOMIC
S2S* 0.3901 0.5174
COMET* 0.4874 0.6379
EA-VQ-VAE 0.5072 0.6528

Table 4: Human score (accuracy) of generations on

Event2Mind and ATOMIC test dataset. The tag (*)

means re-implementation.

4.2 Model Analysis
We conduct ablation analysis to better understand

how various components in our approach impact

overall performance. We remove evidence and VQ-

VAE, respectively, to analyze their contribution.

Methods xIntent xReact oReact Overall
EA-VQ-VAE 23.37 5.83 4.87 11.32
- w/o evidence 21.69 5.36 4.48 10.51
- w/o VQ-VAE 21.87 5.41 4.60 10.63
- w/o SL 21.95 5.54 4.57 10.69

Table 5: BLEU score on the Event2Mind dev dataset

with different approaches. SL is short for separately

learning.

Table 5 shows that the overall performance drops

from 11.3% to 10.5% on Event2Mind dev dataset

when removing the evidence totally (w/o evidence),

which reveals the importance of evidence for infer-

ential texts generation. After ablating the VQ-VAE

and selecting top-1 evidence as background (w/o

VQ-VAE), we can see that the performance drops

from 11.3% to 10.6%, which means VQ-VAE can

automatically select relevant and useful evidence.

In order to demonstrate the effectiveness of our

learning method, we also train our model by joint

learning (w/o SL). The overall BLEU score drops

from 11.3% to 10.7%, which shows that our learn-

ing method can effectively train our model.

We also study how the amount of evidence re-

trieved from the corpus impacts the performance.

From Figure 4, we can see that overall BLEU score

Figure 4: Overall performance with different number

of retrieved evidence on Event2Mind dev dataset.

increases as the number of retrieved evidence ex-

pands. This is consistent with our intuition that

the performance of our approach is improved by

expanding retrieved examples, since our approach

can select relevant and useful evidence from more

retrieved evidence. When the number of retrieved

evidence is larger than 20, the overall performance

does not improve. The main reason is that the qual-

ity and relevance of retrieved evidence decreases

as the number of retrieved evidence expands.

4.3 Case Study

We give a case study to illustrate the entire proce-

dure of our approach. Figure 5 provides an example

of the generations given an event “PresonX is away
from home” on the “xIntent” dimension (i.e. “Per-
sonX wants”). We first sample two latent variables

from the codebook (i.e. z29 and z125) according

to the prior distribution of VQ-VAE. We visual-

ize the semantics of latent variables by displaying

word cloud of examples that are under the same

latent assignment. As we can see, z29 captures the

positive semantics like “play” and “friend”, while

z125 captures the negative semantics like “devas-
tated” and “offended”. Then, two latent variables

are respectively used to select relevant evidence as

background knowledge. As we can see, the first

latent variable selects an evidence about “playing”,

which provides a clue for the model to generate

texts such as “to have fun” and “to spend time with
friends”. Another latent variable selects another

evidence in a quarrel scene, which can help the

model reason about “PersonX wants to be alone”.

The case study shows that our approach not only

equips the generation with an explicit control over

the semantics of evidence but select relevant evi-
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PersonX is away from home

Rog playing away from home, is he?

you ... could say that. 

where are you going? his voice is right 

behind me, buzzing intimately in my ear. 

I jump, and then hunch forward, away 

from him, away from his intense presence. 

to relax
to have fun
to take a break
to spend time with friends

to travel
to be alone
to be independent
to be somewhere else

���

����

Figure 5: An examples of Event2Mind dataset on the xIntent dimension (i.e. “PersonX wants”).

dence to guide the generation. Please find another

case on other inference dimension on Appendix C.

4.4 Error Analysis

We analyze 100 incorrectly predicted instances ran-

domly selected from the ATOMIC dataset, and

summary two main classes of errors. The first prob-

lem is that some examples cannot retrieve relevant

evidence since the scale of text corpus is limited.

We can leverage more sources like Wikipedia to

retrieve evidence. Another cause of this problem

is that term-based retrieval (e.g. BM25) calculates

the matching score using words overlap and cannot

capture semantics of sentences. For examples, the

evidence“the lights began to shift away from the
fire, like a line of fireflies” will be retrieved for the

event “PersonX lights a fire” since of the high over-

lap, but the event does not occur in the evidence.

This problem might be mitigated by using better

semantic-based retrieval model. The second prob-

lem is that the model cannot effectively leverage

selected evidence. Although the selected evidence

is closely related to the event and the inference

can be obtained from the evidence, the model still

generate incorrect texts since lacking of supervised

information. A potential direction to mitigate the

problem is to annotate background knowledge of

events in the training dataset.

5 Related Work

5.1 Event-Related Text Understanding

Recently, event-related text understanding has at-

tracted much attention (Chambers and Jurafsky,

2008; Segers et al., 2016; Wang et al., 2017; Li

et al., 2018; Rashkin et al., 2018; Sap et al., 2019;

Guo et al., 2020), which is crucial to artificial in-

telligence systems for automated commonsense

reasoning. There are a variety of tasks that fo-

cus on event-related text understanding in different

forms. Script (Schank and Abelson, 1977) uses

a line to represent temporal and causal relations

between events, and the task of script event predic-

tion (Chambers and Jurafsky, 2008) requires mod-

els to predict the subsequent event given an event

context. Previous works on the task are mainly

based on event pairs (Chambers and Jurafsky, 2008;

Granroth-Wilding and Clark, 2016), event chains

(Wang et al., 2017), and event evolutionary graph

(Li et al., 2018) to predict script event. In addi-

tion, our task relates to story ending prediction

(Sharma et al., 2018; Mostafazadeh et al., 2016;

Zellers et al., 2018). Mostafazadeh et al. (2016) in-

troduce a dataset for story ending prediction, which

requires models to choose the most sensible end-

ing given a paragraph as context. In this work,

we study inferential text generation proposed by

Rashkin et al. (2018) and Sap et al. (2019), both

of which focus on generating texts about causes

and effects of events and mental states of event

participants.

5.2 Variational Autoencoder Based Text
Generation

Natural Language Generation, also known as text

generation (McKeown, 1992; Sutskever et al.,

2011), has recently become popular in NLP com-

munity (Feng et al., 2018; Duan et al., 2020). Re-

cently, Variational Autoencoder (VAE) (Kingma

and Welling, 2013) has achieved promising perfor-

mance on various text generation tasks, including

machine translation (Zhang et al., 2016; Su et al.,

2018), text summarization (Miao and Blunsom,

2016; Li et al., 2017), and dialogue generation (Ser-

ban et al., 2017; Zhao et al., 2017). For machine

translation, Zhang et al. (2016) and Su et al. (2018)

introduce a continuous latent variable to explicitly

model the semantics of a source sentence, which is

used to guide the translation. In dialogue genration,

Serban et al. (2017) apply a latent variable hierar-

chical encoder-decoder model to facilitate longer

response, while Zhao et al. (2017) uses latent vari-
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ables to capture potential conversational intents and

generates diverse responses. A recent work CW-

VAE (Du et al., 2019) on event-centered If-Then

reasoning is the most related to our work, which in-

troduces an additional context-aware latent variable

to implicitly guide the generation by a two-stage

training procedure. Different with previous works,

we introduce a discrete latent variable to capture un-

derlying semantics within inferences based on VQ-

VAE that does not suffer from “posterior collapse”

issues (van den Oord et al., 2017). These discrete

latent variables are used to selectively leverage evi-

dence as background knowledge to explicitly guide

the generation. Besides, our approach provides

a way to uncover the rationale of a generation to

some extent through tracing back the evidence that

supports the generation and the selected discrete

latent variable.

6 Conclusion

In this paper, we present an evidence-aware gener-

ative model based on VQ-VAE, which utilizes dis-

crete semantic latent variables to select evidence as

background knowledge to guide the generation. Ex-

perimental results show that our approach achieves

state-of-the-art performance on Event2Mind and

ATOMIC datasets. Further analysis shows that our

approach selectively uses evidence to generate dif-

ferent inferential texts from multiple perspectives.
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A Dataset Details

We show examples of Event2Mind (Rashkin et al.,

2018) and ATOMIC (Sap et al., 2019) dataset

in Table 6 and Table 7, respectively. The task

aims to generate multiple inferential texts given

an event with an inference dimension. Table 8
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Event Inference dim Description Target

PersonX runs away from home

xIntent because PersonX wanted to
to leave his home,
to be independent,
be away from a parent

xReact as a result, PersonX feels
lonely,
nervous,
regretful

oReact as a result, others feel
sad,
angry,
worried

Table 6: Examples of Event2Mind dataset, including three inference dimensions. For inference dimensions, “x”

and “o” refers to PersonX and others, respectively (e.g. description of “xIntent”: Because PersonX wants).

Event Inference dim Description Target

PersonX visits friends

xIntent because PersonX wanted to
to enjoy their time,
to catch up with them

xNeed before that, PersonX needed to
to go to their location,
to call them

xAttr PersonX is seen as
friendly,
sociable

xEffect has an effect on PersonX
have a nice party,
have good dinner

xWant as a result, PersonX wants
have fun,
enjoy and spend time

xReact as a result, PersonX feels
happy,
comfortable

oReact as a result, others feel
happy,
pleased

oWant as a result, others want
to wind down,
to clean their home

oEffect has an effect on others
make the relation stronger,
bring a guest into their home

Table 7: Examples of ATOMIC dataset, including nine inference dimensions. For inference dimensions, “x” and

“o” refers to PersonX and others, respectively (e.g. description of “xIntent”: Because PersonX wants)..

lists statistics of Event2Mind and ATOMIC dataset.

Both datasets contain about 25,000 unique events

(# unique events) extracted multiple data sources,

where the events has 5 words on average (# average

words of events). Event2Mind focuses on three in-

ference dimensions shown in Table 6 and contains

about 2.6 inferences on average, while ATOMIC

focuses on nine inference dimensions shown in Ta-

ble 7 and contains about 3.6 inferences on average.

Beside, we list the number of distinct unigram (#

dist-1 of inferences) and bigram (# dist-2 of infer-

ences) to evaluate the diversity of inferences.

B Model Training

The text corpus is built upon BooksCorpus (Zhu

et al., 2015). We extract about 24.2M paragraphs

from the corpus, where a paragraph has about 50

words. We retrieve 45 evidence from the corpus

for all experiments. We initialize GPT-2 with 12

layers, 768 dimensional hidden states and 12 atten-

tion heads using the original pre-trained weights

(Radford et al., 2019). For VQ-VAE, the codebook

is composed of 400 discrete latent variables and

the dimension of latent variable is 768. We set the

max length of evidence, events and inferences as

64, 64, and 32, respectively. Model parameters

except GPT-2 are initialized with uniform distribu-

tion. We use the Adam optimizer to update model

parameters. The learning rate and the batch size is

set as 5e-5 and 64, respectively. In the multi-task

learning way, we concatenate events and special to-

kens of inference dimensions as the input to guide

the generation in different dimension. We tune hy-

perparameters and perform early stopping on the

development set.

C Additional Case Study

Figure 6 provides an example of the generations

given an event “PerxonX dreams last night” on

the “xReact” dimension (i.e. “PersonX feels”). We

first sample two latent variables from the codebook

(i.e. z330 and z371) according to the prior distri-

bution of VQ-VAE (van den Oord et al., 2017).

We visualize the semantics of latent variables by
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Dataset
# inference
dimension

# unique
events

# average words
of events

# inferences
per example

# dist-1
of inferences

# dist-2
of inferences

Event2Mind 3 24716 5.1 2.6 10,929 52,830
ATOMIC 9 24313 5.2 3.6 27,169 20,5659

Table 8: Statistic of Event2Mind and ATOMIC Dataset.

PersonX dreams last night

I had the strangest dreams last night as a 

result and not a single nightmare. What 

kind of dreams? Harmony asked gently. 

Its all fading now, aria frowned. There 

seemed to be a ton of singing in it though.

I wanted ... that night she cried herself to 

sleep ... for the first time , if not the last. 

Even in her dreams she found no peace.

excited
happy 
satisfied
good

scared
nervous
anxious
worried

����

��	�

Event Latent Variable and Visualization Selected Evidence Generation

Figure 6: An examples of Event2Mind dataset on the xReact dimension (i.e. “PersonX feels”).

displaying word cloud of examples that are under

the same latent assignment. As we can see, z330
captures the positive semantics like “excitied” and

“friend”, while z371 captures the negative seman-

tics like “scared” and “noise”. Then, two latent

variables are respectively used to select relevant

evidence as background knowledge. As we can see,

the first latent variable selects an evidence about a

sweet dream “There seems to be a ton of singing
in it though”, which provides a clue for the model

to generate positive emotion such as “excited” and

“happy”. Another latent variable select another ev-

idence in a nightmare “Even in her dreams she
found no peace”, which can help the model reason

about the emotion of “PersonX” such as “scared”
and “nervous”.


