
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6095–6104
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6095

Curriculum Learning for Natural Language Understanding
Benfeng Xu1∗, Licheng Zhang1∗ , Zhendong Mao1†, Quan Wang2 ,

Hongtao Xie1 and Yongdong Zhang1

1School of Information Science and Technology,
University of Science and Technology of China, Hefei, China

2Beijing Research Institute,
University of Science and Technology of China, Beijing, China

{benfeng,zlczlc}@mail.ustc.edu.cn, quanwang1012@gmail.com
{zdmao,htxie,zhyd73}@ustc.edu.cn

Abstract

With the great success of pre-trained lan-
guage models, the pretrain-finetune paradigm
now becomes the undoubtedly dominant solu-
tion for natural language understanding (NLU)
tasks. At the fine-tune stage, target task data
is usually introduced in a completely random
order and treated equally. However, examples
in NLU tasks can vary greatly in difficulty, and
similar to human learning procedure, language
models can benefit from an easy-to-difficult
curriculum. Based on this idea, we propose
our Curriculum Learning approach. By re-
viewing the trainset in a crossed way, we are
able to distinguish easy examples from diffi-
cult ones, and arrange a curriculum for lan-
guage models. Without any manual model ar-
chitecture design or use of external data, our
Curriculum Learning approach obtains signifi-
cant and universal performance improvements
on a wide range of NLU tasks.

1 Introduction

Natural Language Understanding (NLU), which re-
quires machines to understand and reason with hu-
man language, is a crucial yet challenging problem.
Recently, language model (LM) pre-training has
achieved remarkable success in NLU. Pre-trained
LMs learn universal language representations from
large-scale unlabeled data, and can be simply fine-
tuned with a few adjustments to adapt to various
NLU tasks, showing consistent and significant im-
provements in these tasks (Radford et al., 2018;
Devlin et al., 2018).

While lots of attention has been devoted to de-
signing better pre-training strategies (Yang et al.,
2019; Liu et al., 2019; Raffel et al., 2019), it is also
valuable to explore how to more effectively solve
downstream NLU tasks in the fine-tuning stage.

∗Equal contribution.
†Corresponding author.

Easy cases:
easy, comfortable positive
most purely enjoyable positive
most plain, unimaginative negative
badly edited negative

Hard cases:
why didn’t Hollywood think of this sooner positive
I simply can’t recommend it enough positive
supposedly funny movie negative
occasionally interesting negative

Table 1: Examples from SST-2 sentiment classification
task. Difficulty levels are determined by our review
method (detailed later).

Most current approaches perform fine-tuning in a
straightforward manner, i.e., all training examples
are treated equally and presented in a completely
random order during training. However, even in the
same NLU task, the training examples could vary
significantly in their difficulty levels, with some
easily solvable by simple lexical clues while others
requiring sophisticated reasoning. Table 1 shows
some examples from the SST-2 sentiment classifi-
cation task (Socher et al., 2013), which identifies
sentiment polarities (positive or negative) of movie
reviews. The easy cases can be solved directly by
identifying sentiment words such as “comfortable”
and “unimaginative”, while the hard ones further
require reasoning with negations or verb qualifiers
like “supposedly” and “occasionally”. Extensive
research suggests that presenting training examples
in a meaningful order, starting from easy ones and
gradually moving on to hard ones, would benefit
the learning process, not only for humans but also
for machines (Skinner, 1958; Elman, 1993; Peter-
son, 2004; Krueger and Dayan, 2009).

Such an organization of learning materials in
human learning procedure is usually referred to
as Curriculum. In this paper, we draw inspira-
tion from similar ideas, and propose our approach



6096

for arranging a curriculum when learning NLU
tasks. Curriculum Learning (CL) is first proposed
by (Bengio et al., 2009) in machine learning area,
where the definition of easy examples is established
ahead, and an easy-to-difficult curriculum is ar-
ranged accordingly for the learning procedure. Re-
cent developments have successfully applied CL
in computer vision areas (Jiang et al., 2017; Guo
et al., 2018; Hacohen and Weinshall, 2019). It is
observed in these works that by excluding the neg-
ative impact of difficult or even noisy examples
in early training stage, an appropriate CL strategy
can guide learning towards a better local minima in
parameter space, especially for highly non-convex
deep models. We argue that language models like
transformer, which is hard to train (Popel and Bojar,
2018), should also benefit from CL in the context
of learning NLU tasks, and such idea still remains
unexplored.

The key challenge in designing a successful CL
strategy lies in how to define easy/difficult exam-
ples. One straightforward way is to simply pre-
define the difficulty in revised rules by observing
the particular target task formation or training data
structure accordingly (Guo et al., 2018; Platanios
et al., 2019; Tay et al., 2019). For example, (Ben-
gio et al., 2009) utilized an easier version of shape
recognition trainset which comprised of less varied
shapes, before the training of complex one started.
More recently, (Tay et al., 2019) considered the
paragraph length of a question answering example
as its reflection of difficulty. However, such strate-
gies are highly dependent on the target dataset itself
and often fails to generalize to different tasks.

To address this challenge, we propose our Cross
Review method for evaluating difficulty. Specifi-
cally, we define easy examples as those well solved
by the exact model that we are to employ in the
task. For different tasks, we adopt their correspond-
ing golden metrics to calculate a difficulty score for
each example in the trainset. Then based on these
difficulty scores, we further design a re-arranging
algorithm to construct the learning curriculum in
an annealing style, which provides a soft transition
from easy to difficult for the model. In general, our
CL approach is not constrained to any particular
task, and does not rely on human prior heuristics
about the task or dataset.

Experimental results show that our CL approach
can greatly help language models learn in their
finetune stage. Without any task-tailored model

architecture design or use of external data, we are
able to obtain significant and universal improve-
ments on a wide range of downstream NLU tasks.
Our contributions can be concluded as follows:

• We explore and demonstrate the effectiveness
of CL in the context of finetuning LM on NLU
tasks. To the best of our knowledge, this is one
of the first times that CL strategy is proved to
be extensively prospective in learning NLU
tasks.

• We propose a novel CL framework that con-
sists of a Difficulty Review method and a
Curriculum Arrangement algorithm, which
requires no human pre-design and is very gen-
eralizable to a lot of given tasks.

• We obtain universal performance gain on a
wide range of NLU tasks including Machine
Reading Comprehension (MRC) and Natural
Language Inference. The improvements are
especially significant on tasks that are more
challenging.

2 Preliminaries

We describe our CL approach using BERT (De-
vlin et al., 2018), the most influential pre-trained
LM that achieved state-of-the-art results on a wide
range of NLP tasks. BERT is pretrained using
Masked Language Model task and Next sentence
Prediction task via large scale corpora. It consists
of a hierarchical stack of l self-attention layers,
which takes an input of a sequence with no more
than 512 tokens and output the contextual repre-
sentation of a H-dimension vector for each token
in position i, which we denote as hl

i ∈ RH . In
natural language understanding tasks, the input se-
quences usually start with special token 〈CLS〉, and
end with 〈SEP〉, for sequences consisting of two
segments like in pairwise sentence tasks, another
〈SEP〉 is added in between for separating usage.

For target benchmarks, we employ a wide range
of NLU tasks, including machine reading compre-
hension, sequence classification and pairwise text
similarity, etc.. Following (Devlin et al., 2018), we
adapt BERT for NLU tasks in the most straightfor-
ward way: simply add one necessary linear layer
upon the final hidden outputs, then finetune the
entire model altogether. Specifically, we brief the
configurations and corresponding metrics for dif-
ferent tasks employed in our algorithms as follows:



6097

Machine Reading Comprehension In this
work we consider the extractive MRC task. Given
a passage P and a corresponding question Q, the
goal is to extract a continuous span 〈pstart, pend〉
from P as the answer A, where the start and end
are its boundaries.

We pass the concatenation of the question and
paragraph [〈CLS〉, Q, 〈SEP〉, P, 〈SEP〉] to the pre-
trained LM and use a linear classifier on top of it
to predict the answer span boundaries.

For the i− th input token, the probabilities that
it is the start or end are calculated as:

[logitstarti , logitendi ]T = WT
MRChl

i

pstarti = softmax({logitstarti })
pendi = softmax({logitendi })

where WT
MRC ∈ R2×H is a trainable matrix. The

training objective is the log-likelihood of the true
start and end positions ystart and yend:

loss = −(log(pstartystart) + log(pendyend
))

For unanswerable questions, the probability is cal-
culated as sun = pstartcls + pendcls using 〈CLS〉 repre-
sentation. We classify a question into unanswerable
when sun > si,j = maxi≤j(p

start
i + pendj ). F1 is

used as the golden metric.

Sequence Classification We consider the final
contextual embedding of 〈CLS〉 token hl

0 as the
pooled representation of the whole input sequence
S. The probability that the input sequence belongs
to label c is calculated by a linear output layer
with parameter matrix WSC∈RK×H following a
softmax:

P (c|S) = softmax(hl
0WT

SC),

where K is the number of classes. The log-
likelihood is also used as the training objective
for this task. Accuracy is considered as the golden
metric.

Pairwise Text Similarity Similar to sequence
classification task, final embedding of 〈CLS〉 token
hl

0 is used to represent the input text pair (T1, T2).
A parameter vector WPTS ∈ RH is introduced to
compute the similarity score:

Similarity(T1, T2) = hl
0WT

PTS .

For this task, we use Mean Squared Error (MSE)
as the training objective and also the golden metric:

MSE = (y − Similarity(T1, T2))2,

where y is the similarity label in continuous score.

Figure 1: Our Cross Review method: the target dataset
is split into N meta-datasets, after the teachers are
trained on them, each example will be inferenced by all
other teachers (except the one it belongs to), the scores
will be summed as the final evaluation results.

3 Our CL Approach

We decompose our CL framework into two stages:
Difficulty Evaluation and Curriculum Arrange-
ment. For any target task, let D be the examples
set used for training, and Θ be our language model
which is expected to fit D. In the first stage, the
goal is to assign each example dj in D with a
score cj which reflects its difficulty with respect
to the model. We denote C as the whole diffi-
culty score set corresponding to trainset D. In the
second stage, based on these scores, D is orga-
nized into a sequence of ordered learning stages
{Si : i = 1, 2, . . . , N} with an easy-to-difficult
fashion, resulting in the final curriculum where the
model will be trained on. We will elaborate these
two stages in section 3.1 and 3.2 respectively.

3.1 Difficulty Evaluation

The difficulty of a textual example reflects itself
in many ways, e.g., the length of the context, the
usage of rare words, or the scale of learning tar-
get. Although such heuristics seems reasonable to
human, the model itself may not see it the same
way. So we argue that difficulty score as the intrin-
sic properties of an example should be decided by
the model itself, and the best metric should be the
golden metric of the target task, which can be accu-
racy, F1 score, etc., as we introduced in section 2.

To perform difficulty evaluation, we first scat-
ter our trainset D into N shares uniformly as
{D̃i : i = 1, 2, . . . , N}, and train N correspond-
ing models {Θ̃i : i = 1, 2, . . . , N} on them, which
are all identical to Θ (note that each model Θ̃i will
only see 1/N of the entire trainset). We refer to
these N models as teachers, and {D̃i} as meta-
datasets for that they are attended only to collect



6098

information (i.e. the extent of difficulty) about the
original trainset D. This preparing of teacher can
be formulated as:

Θ̃i = argmin
Θ̃i

∑
dj∈D̃i

L(dj , Θ̃i)

i = 1, 2, . . . , N

where L indicates the loss function. After every
teacher is respectively trained on its meta-dataset,
the evaluation of trainset D should begin.

For each example dj , it should be included in
one and only one meta-dataset, let’s assume it’s D̃k,
then we perform inference of dj on all teachers ex-
cept teacher k, because the inference from teacher
k is supposed to be isolated with the meta-dataset
D̃k it has already seen during training. After all
inferences finished, we calculate scores of dj in the
target task’s metric, resulting N − 1 scores from
N − 1 different teachers:

cji = M(Θ̃i(xj), yj)

where Θ̃i(•) represents the inference function, xj
and yj is the input and label of example dj respec-
tively, M is the metric calculation formula, which
can be either F1, Accuracy or MSE for different
tasks as introduced in section 2, and cji is the score
of dj from teacher Θ̃i. Finally, we define the dif-
ficulty score of dj as the integration of all N − 1
scores:

cj =
∑

i∈(1,...,N), i 6=k

cji

with all scores calculated, we obtain the final dif-
ficulty score set C as desired. We refer to our
difficulty evaluation method as Cross Review(see
Fig. 1)

In the proposed method, the teacher models per-
form their inferences in a crossed way, which pre-
vents the meta-dataset from contaminating the in-
ference set. Besides, each example gets its score
from multi teachers, thus the fluctuation of evalu-
ation results is greatly alleviated. In general, our
Cross Review method can address the difficulty
evaluation problem in an elegant design.

3.2 Curriculum Arrangement
In this section we describe our method to arrange
the training examples D into a learning curricu-
lum according to their difficulty scores C. We
design our curriculum in a multi-stage setting
{Si : i = 1, 2, . . . , N}. Within each stage Si, the

examples are still shuffled to keep local stochastics,
and examples from different stages do not overlap
in order to prevent overfitting.

The sampling algorithm is built upon such prin-
ciple:

The proportion of difficult examples
in each stage should start with 0, and
gradually increase until it reachs how
much it accounts for in the original
dataset distribution.

We first sort all examples by their difficulty score
C, and divide them into N buckets: {Ci : i =
1, 2, . . . , N}, so the examples are now collected
into N different levels of difficulty, ranging from
C1 (the easiest) to CN (the hardest), with the pro-
portion distribution as:

num(C1) : num(C2) : · · · : num(CN )

For tasks with discrete metrics, such distribution
is naturally formed by the difficulty score hierar-
chy, and directly reflects the intrinsic difficulty
distribution of the dataset. For other tasks, we
manually divide C uniformly1. Based on these
buckets, we construct the learning curriculum one
stage after another. For each learning stage Si,
we sample examples from all antecedent buckets
{Cj : j = 1, 2, . . . , i} by the following proportion:

1

N
num(C1) :

1

N
num(C2) : · · · : 1

N
num(Ci)

and the final curriculum {Si : i = 1, 2, . . . , N}
is formed as such. We refer to the arrangement
algorithm as Annealing method for it provides a
soft transition through multi learning stages.

At each stage, the model is trained for one epoch.
When the training reached SN , the model should
be ready for the original distribution in trainset D,
so we finally add another stage SN+1 which covers
the entire trainset, and the model is trained on it
until converges.

4 Experiments

4.1 Datasets
In this section we briefly describe three popular
NLU benchmarks on which we evaluate our CL
approach: SQuAD 2.0 (Rajpurkar et al., 2018),
NewsQA (Trischler et al., 2016) and GLUE (Wang
et al., 2018), their scale and metrics are detailed in
Table 2.

1Please refer to our implementation detail for selected
tasks in section 4.2



6099

SQuAD2.0 NewsQA MNLI-m QNLI QQP RTE SST-2 MRPC CoLA STS-B

Train 130.3k 92.5k 392.7k 104.7k 363.8k 2.5k 67.3k 3.7k 8.6k 5.7k

Dev 11.9k 5.2k 9.8k 5.5k 40.4k 277 872 408 1.0k 1.5k

Test 8.9k 5.1k 9.8k 5.5k 39.1k 3.0k 1.8k 1.7k 1.0k 1.4k

Metrics F1/EM F1/EM Accuracy Accuracy Accuracy Accuracy Accuracy F1 Matthew Pearson

Table 2: The number of training, development, test examples and metrics of tasks used in this work.

SQuAD The Stanford Question Answering
Dataset (SQuAD), constructed using Wikipedia
articles, is a well known extractive machine
reading comprehension dataset with two tasks:
SQuAD1.1 (Rajpurkar et al., 2016) and SQuAD
2.0 (Rajpurkar et al., 2018). The latest 2.0 version
also introduced unanswerable questions, making it
a more challenging and practical task. In this paper,
We take SQuAD 2.0 as our testbed.

NewsQA NewsQA (Trischler et al., 2016) is also
a MRC dataset in extractive style but is much more
challenging, with human performance at 0.694 F1
score. NewsQA is collected from news articles of
CNN with two sets of crowdworkers, the ”ques-
tioners” is provided with the article’s headline only,
and ”answerers” is supposed to find the answer
in full article. We ignore examples flagged to be
without annotator agreement for better evaluation
following (Fisch et al., 2019).

GLUE The General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2018)
is a collection of nine2 diverse sentence or sentence
pair language understanding tasks including senti-
ment analysis, textual entailment, sentence similar-
ity, etc. It is considered as a well-designed bench-
mark that can evaluate the generalization and ro-
bustness of NLU algorithms. The labels for GLUE
test set is hidden, and users must upload their pre-
dictions to obtain evaluation results, the submission
is limited to protect test set from overfitting.

4.2 Experimental Setups
We use BERT Large (Devlin et al., 2018) as our
pre-trained language model to demonstrate the ef-

2The benchmark consists of: Multi-Genre NLI
(MNLI) (Williams et al., 2018), Quora Question Pairs
(QQP) (Shankar Iyer, 2016), Question NLI (QNLI) (Ra-
jpurkar et al., 2016), Stanford Sentiment Treebank
(SST) (Socher et al., 2013), Corpus of Linguistic Accept-
ability (CoLA) (Warstadt et al., 2019), Semantic Textual
Similarity Benchmark (STS-B) (Cer et al., 2017), Microsoft
Research Paragraph Corpus (MRPC) (Dolan and Brockett,
2005), Recognizing Textual Entailment (RTE) (Bentivogli
et al., 2009), Winograd NLI (WNLI) (Levesque et al., 2012)

Method SQuAD 2.0 NewsQA
EM F1 EM F1

BERT Base 73.66 76.30 - -
BERT Base∗ 73.66 76.78 47.70 60.10
BERT Base+CL 74.96 77.93 47.72 60.57

BERT Large 78.98 81.77 - -
BERT Large∗ 79.12 82.09 50.40 64.12
BERT Large+CL 79.43 82.66 50.50 64.42

Table 3: Results on SQuAD 2.0 and NewsQA, all
on development sets. Baseline on SQuAD 2.0 is ob-
tained from (Yang et al., 2019), ∗ indicates our re-
implementation.

fectiveness of our CL approach. For MRC, we also
test on BERT Base model for more comprehen-
sive results. Besides reported results from litera-
ture, we also provide our re-implementation on all
datasets, which form a more competitive baseline
for comparison. The only difference between our
re-implementation and our CL approach is the ar-
rangement of curriculum, i.e., the order of training
examples.

To obtain a more comparable and stable diffi-
culty score, we binarize the review results before
sum them together if possible. For accuracy as met-
ric, the score cji is already binary in instance level,
for F1 as metric, we count any review result cji > 0
as correct. For other continuous metrics (MSE in
this paper), we sum cji directly. We empirically
choose N = 10 as the number of meta-datasets
for most tasks (also the number of difficulty level
and the number of stages), for three datasets with
rather limited scale (RTE, MRPC, and STS-B), we
change it to N = 3. The scale of all datasets
employed in this work is provided in Table 2. In-
tuitively, we shall get better results by searching
for the best N , we leave it to future works due to
limited computation resource.

We implement our approach based on the Py-
Torch implementation of BERT (Wolf et al., 2019).
We use Adam (Kingma and Ba, 2014) optimizer



6100

MNLI-m QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg
results on dev
BERT Large 86.6 92.3 91.3 70.4 93.2 88.0 60.6 90.0 84.1
BERT Large∗ 86.6 92.5 91.5 74.4 93.8 91.7 63.5 90.2 85.5
BERT Large+CL 86.6 92.8 91.8 76.2 94.2 91.9 66.8 90.6 86.4
results on test
BERT Large 86.7 91.1 89.3 70.1 94.9 89.3 60.5 87.6 83.7
BERT Large∗ 86.3 92.2 89.5 70.2 94.4 89.3 60.5 87.3 83.7
BERT Large+CL 86.7 92.5 89.5 70.7 94.6 89.6 61.5 87.8 84.1

Table 4: Results on GLUE benchmark, ∗ indicates our re-implementation, baselines on dev sets are obtained
from (Liu et al., 2019), baselines on test sets are obtained from the leaderboard (https://gluebenchmark.
com/leaderboard) submitted by (Devlin et al., 2018), they may have taken different hyperparmeters. All results
are produced with single task and single model.

with eplison equals to 1e-8. The learning rates
warm up over the first 5% steps and then decay lin-
early to 0 for all experiments. To construct our re-
implementation, on both SQuAD 2.0 and NewsQA
we perform hyperparameter search with batch size
in {16, 32} and learning rate in {1e-5, 2e-5, 3e-5,
4e-5} for Base model, and {32, 48, 64}, {5e-5,
6e-5, 7e-5} for Large model. We reuse the best
parameter setting in SQuAD 2.0 on NewsQA. We
set the max length of input sequence to 512 for
NewsQA task because the paragraph is much more
longer. On GLUE, we implement the experiments
on Large model with batch size in {16, 32} and
learning rate in {1e-5, 2e-5, 3e-5}.

4.3 MRC Results

The results for MRC tasks are presented in Ta-
ble 3. In all experiments, our CL approach outper-
forms its baseline with considerable margin. On
SQuAD 2.0, we obtain +1.30 EM/+1.15 F1 im-
provements using base model and +0.31 EM/+0.57
F1 using large model compare to our competitive
re-implemented baseline. Note that the perfor-
mance gain is more significant with Base model.
On NewsQA, we also get +0.02 EM/+0.47 F1 and
+0.10 EM/+0.30 F1 improvements for base and
large model respectively.

4.4 GLUE Results

We summarize our GLUE results in Table 4. Re-
sults on dev sets show that our CL method consis-
tently outperforms their competitive baseline on
all 8 tasks, which proves that our CL is not only
robustly effective but also generalizable on a wide
range of NLU tasks. Because the model architec-
ture and hyper-parameters setting are identical, all

the performance gains can be attributed to our CL
approach alone.

Specifically, we observe that our CL approach is
doing better on more challenging tasks. For CoLA
and RTE, the margin is up to +3.3 and +1.8 in re-
spective metrics, which is relatively larger than less
challenging tasks where the model performance
already reached a plateau. Such results are under-
standable: when learning harder tasks, the model
can be overwhelmed by very difficult examples at
early stages, and a well-arranged curriculum thus
can be more helpful. And for tasks where the base-
lines are already approaching the human perfor-
mance like SST-2, our CL approach is still able to
provide another +0.4 improvements, which demon-
strates the robustness of our approach. Overall, our
CL approach obtains +0.9 average score gain on
GLUE benchmark compare to our re-implemented
baseline.

Results on test sets further demonstrate the effec-
tiveness of our approach. We obtain +0.4 average
score gain compare to our re-implementation and
the baseline on the leaderboard.

4.5 Ablation Study
In this section, we delve into our approach on a
series of interesting topics including: (i) what is
the best CL design strategy for NLU tasks, (ii)
can Cross Review really distinguish easy examples
from difficult ones, (iii) the best choice of N . We
choose SQuAD 2.0 task in most experiments for
generality, and all experiments are performed with
BERT Base model.

Comparison with Heuristic CL Methods To
demonstrate our advantage over manually designed
CL methods, we compare our approach with sev-

https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard


6101

Method SQuAD 2.0
∆EM F1

No Curriculum - 76.30 -
No Curriculum∗ 73.66 76.78 -

Rarity+Annealing 73.75 76.90 +0.12
Answer+Annealing 74.02 77.15 +0.37
Question+Annealing 74.35 77.37 +0.59
Paragraph+Annealing 74.45 77.54 +0.76
Cross-Review+Naive order 74.31 77.29 +0.51

Cross-Review+Annealing 74.96 77.93 +1.15

Table 5: Comparisions with heuristic CL design (writ-
ten in italic). ∗ indicates our re-implementation, ∆ in-
dicates absolute improvements on F1.

Figure 2: Statistical illustration on different levels of
difficulty examples in SQuAD 2.0. Four line respec-
tively indicate average answer length, question length,
paragraph length and the proportion of unanswerable
examples with respect to level of difficulty. Bar in-
dicates the number of examples in each bucket. Best
viewed in color mode.

eral heuristic curriculum design in Table 5. For
Difficulty Review methods, we adopt word rar-
ity, answer length, question length, and paragraph
length as difficulty metrics similar to (Tay et al.,
2019; Platanios et al., 2019). We calculate word rar-
ity as the average word frequency of the question,
where the frequency is count from all questions in
trainset. We define difficult examples as those with
lower words frequencies, longer answer, question,
and paragraph length. We first sort all examples us-
ing these metrics, and divide them evenly to obtain
10 example buckets with a corresponding level of
difficulty, and the Curriculum Arrangement strat-
egy remains unchanged as Annealing. For Curricu-
lum Arrangement method, we try Naive order for
comparison. We directly implement the curriculum
as {Ci} (instead of {Si}) without any sampling
algorithm, only that SN+1 is still retained for fair
comparison. In the meantime, the Difficulty Eval-

uation method remains unchanged as Cross Re-
view. The results show that these intuitive design
indeed works well with various improvements rang-
ing from +0.12 to +0.76 on F1 score. But they are
all outperformed by our Cross Review + Annealing
approach.

Case study: Easy VS Difficult In our Cross-
Review method, the dataset was divided into N
buckets {Ci} with different levels of difficulty.
Here we further explore what do these easy/difficult
examples in various tasks actually look like. Earlier
in the introduction (see Table 1), we have provided
a straightforward illustration of easy cases versus
hard cases in SST-2 dataset. Among ten different
levels of difficulty, these cases are sampled from
the most easy bucket (C1) and the most difficult
bucket (C10), respectively. The results are very
clear and intuitive.

We further choose SQuAD 2.0 as a more com-
plex task to perform in-depth analysis. Under the
N = 10 setting, we reveal the statistical distinc-
tions of all buckets {Ci} in Fig 2. With three
monotonically increasing curve, it is very clear that
difficult examples tend to entail longer paragraph,
longer questions, and longer answers. Such con-
clusions conforms to our intuition that longer text
usually involves more complex reasoning patterns
and context-dependency. And these challenging ex-
amples are now successfully excluded in the early
stages attributing to our CL approach. Another
interesting result is that the percentage of unan-
swerable examples drops consistently from 40%
to 20% along the difficulty axis. We assume that
simply doing classification is easier than extracting
the exact answer boundaries.

On Different Settings of N One argument that
needs to be specified ahead in our approach is N ,
which decides the number of meta-datasets, learn-
ing stages, and also the granularity of our difficulty
score. Assume the metric is between 0 and 1, which
fits almost all the cases, then the difficulty score cji
should range from 0 (when all teacher models fail)
to N − 1 (when all teacher models succeed), so
all examples can be distinguished into N different
levels. With N becoming larger, the granularity is
also finer.

To examine the impact of different settings, we
perform ablation study on SQuAD 2.0 task given
a wide range of choices: from 2 to 20 (see Fig 3).
It is obvious that under all settings our approach



6102

Figure 3: F1 score on SQuAD 2.0 with respect to
N . Dotted line is the baseline, solid line is our re-
implementation, best viewed in color mode.

outperforms the baseline by at least +0.5 F1 score
(even including N = 2, where the difficulty evalu-
ation results may be affected by the fluctuation of
single-teacher review). We also experiment with
extremely large N value. For N = 100, the re-
sult is 74.10 on F1 score (2.68 below our baseline),
which is as expected because the meta-dataset is
too small to prepare a decent teacher that is capa-
ble of evaluating. In general, our approach is very
robust with the settings of N .

5 Related Works

The idea of training a neural network in an easy-
to-difficult fashion can be traced back to (Elman,
1993). (Krueger and Dayan, 2009) revisited the
idea from a cognitive perspective with the shap-
ing procedure, in which a teacher decomposes a
complete task into sub-components. Based on
these works, Curriculum Learning is first proposed
in (Bengio et al., 2009). They designed several toy
experiments to demonstrate the benefits of curricu-
lum strategy both in image classification and lan-
guage modeling. They also propose that curriculum
can be seen as a sequence of training criteria, and
at the end of it, the reweighting of examples should
be uniform with the target distribution, which in-
spired the design of our Curriculum Arrangement
algorithm.

Although CL has been successfully applied to
many areas in computer vision (Supancic and Ra-
manan, 2013; Chen and Gupta, 2015; Jiang et al.,
2017), it was not introduced to solve NLU tasks
until (Sachan and Xing, 2016). By experimenting
with several heuristics, they migrated the success of
CL (Kumar et al., 2010) to machine reading com-

prehension tasks. (Sachan and Xing, 2018) further
extended this work to question generation. More
recently, (Tay et al., 2019) employed CL strategy to
solve reading comprehension over long narratives.
Apart from them, there aren’t very many works that
discuss CL in the context of NLU to the best of our
knowledge.

On the methodology of designing CL algorithms,
our approach is closely related to (Guo et al., 2018;
Wang et al., 2019; Platanios et al., 2019; Tay et al.,
2019), where a curriculum is formed via two steps:
evaluating the difficulty first, then sampling the ex-
amples into batches accordingly. For different tar-
get tasks, the evaluation methods also vary greatly.
(Guo et al., 2018) first examined the examples in
their feature space, and define difficulty by the dis-
tribution density, which successfully distinguished
noisy images. (Wang et al., 2019) incorporated
category information into difficulty metric to ad-
dress imbalanced data classification. In language
tasks, (Platanios et al., 2019) and (Tay et al., 2019)
propose to consider the length of context as extent
of difficulty. Another line of works see curriculum
construction as an optimization problem (Kumar
et al., 2010; Graves et al., 2017; Fan et al., 2018),
which usually involves sophisticated design and is
quite different from our approach.

6 Conclusion

In this work we proposed a novel Curriculum
Learning approach which does not rely on human
heuristics and is simple to implement. With the
help of such a curriculum, language models can
significantly and universally perform better on a
wide range of downstream NLU tasks. In the fu-
ture, we look forward to extend CL strategy to the
pretraining stage, and guide deep models like trans-
former from a language beginner to a language
expert.

Acknowledgments

We thank all anonymous reviewers for their
valuable comments. This work is supported
by the National Natural Science Foundation of
China, Grant No.U19A2057, No.61876223, the
National Science Fund for Distinguished Young
Scholars No.61525206, the Fundamental Re-
search Funds for the Central Universities, Grant
No.WK3480000008, and the grant of Tianjin New
Generation Artificial Intelligence Major Program
No.19ZXZNGX00110.



6103

References
Yoshua Bengio, Jérôme Louradour, Ronan Collobert,

and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48. ACM.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing tex-
tual entailment challenge. In TAC.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 1–14.

Xinlei Chen and Abhinav Gupta. 2015. Webly super-
vised learning of convolutional networks. In Pro-
ceedings of the IEEE International Conference on
Computer Vision, pages 1431–1439.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Jeffrey L Elman. 1993. Learning and development in
neural networks: The importance of starting small.
Cognition, 48(1):71–99.

Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-
Yan Liu. 2018. Learning to teach. arXiv preprint
arXiv:1805.03643.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eu-
nsol Choi, and Danqi Chen. 2019. MRQA 2019
shared task: Evaluating generalization in reading
comprehension. In Proceedings of 2nd Machine
Reading for Reading Comprehension (MRQA) Work-
shop at EMNLP.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi
Munos, and Koray Kavukcuoglu. 2017. Automated
curriculum learning for neural networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1311–1320.
JMLR. org.

Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan
Zhuang, Dengke Dong, Matthew R Scott, and Din-
glong Huang. 2018. Curriculumnet: Weakly super-
vised learning from large-scale web images. In Pro-
ceedings of the European Conference on Computer
Vision (ECCV), pages 135–150.

Guy Hacohen and Daphna Weinshall. 2019. On the
power of curriculum learning in training deep net-
works. arXiv preprint arXiv:1904.03626.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li,
and Li Fei-Fei. 2017. Mentornet: Learning data-
driven curriculum for very deep neural networks on
corrupted labels. arXiv preprint arXiv:1712.05055.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kai A Krueger and Peter Dayan. 2009. Flexible shap-
ing: How learning in small steps helps. Cognition,
110(3):380–394.

M Pawan Kumar, Benjamin Packer, and Daphne Koller.
2010. Self-paced learning for latent variable models.
In Advances in Neural Information Processing Sys-
tems, pages 1189–1197.

Hector Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Thirteenth International Conference on the Princi-
ples of Knowledge Representation and Reasoning.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Gail B Peterson. 2004. A day of great illumination:
Bf skinner’s discovery of shaping. Journal of the
experimental analysis of behavior, 82(3):317–328.

Emmanouil Antonios Platanios, Otilia Stretcu, Gra-
ham Neubig, Barnabas Poczos, and Tom M Mitchell.
2019. Competence-based curriculum learning
for neural machine translation. arXiv preprint
arXiv:1903.09848.

Martin Popel and Ondřej Bojar. 2018. Training tips
for the transformer model. The Prague Bulletin of
Mathematical Linguistics, 110(1):43–70.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/langu-
age understanding paper. pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.



6104

Mrinmaya Sachan and Eric Xing. 2016. Easy questions
first? a case study on curriculum learning for ques-
tion answering. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 453–463.

Mrinmaya Sachan and Eric Xing. 2018. Self-training
for jointly learning to ask and answer questions. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 629–640.

Kornl Csernai Shankar Iyer, Nikhil Dandekar. 2016.
Diy corpora: the www and the translator.

Burrhus F Skinner. 1958. Reinforcement today. Amer-
ican Psychologist, 13(3):94.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

James S Supancic and Deva Ramanan. 2013. Self-
paced learning for long-term tracking. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 2379–2386.

Yi Tay, Shuohang Wang, Luu Anh Tuan, Jie Fu,
Minh C Phan, Xingdi Yuan, Jinfeng Rao, Siu Che-
ung Hui, and Aston Zhang. 2019. Simple and ef-
fective curriculum pointer-generator networks for
reading comprehension over long narratives. arXiv
preprint arXiv:1905.10847.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2016. Newsqa: A machine compre-
hension dataset. arXiv preprint arXiv:1611.09830.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Yiru Wang, Weihao Gan, Jie Yang, Wei Wu, and Jun-
jie Yan. 2019. Dynamic curriculum learning for im-
balanced data classification. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 5017–5026.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

