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Abstract

Cross-domain NER is a challenging yet prac-
tical problem. Entity mentions can be highly
different across domains. However, the corre-
lations between entity types can be relatively
more stable across domains. We investigate
a multi-cell compositional LSTM structure for
multi-task learning, modeling each entity type
using a separate cell state. With the help of
entity typed units, cross-domain knowledge
transfer can be made in an entity type level.
Theoretically, the resulting distinct feature dis-
tributions for each entity type make it more
powerful for cross-domain transfer. Empiri-
cally, experiments on four few-shot and zero-
shot datasets show our method significantly
outperforms a series of multi-task learning
methods and achieves the best results.

1 Introduction

Named entity recognition (NER) is a fundamental
task in information extraction, providing necessary
information for relation classification (Mooney and
Bunescu, 2006), event detection (Popescu et al.,
2011), sentiment classification (Mitchell et al.,
2013), etc. NER is challenging because entity men-
tions are an open set and can be ambiguous in the
context of a sentence. Due to relatively high cost in
manual labeling, cross-domain NER has received
increasing research attention. Recently, multi-task
learning methods (Yang et al., 2017; Wang et al.,
2018, 2019; Zhou et al., 2019; Jia et al., 2019)
have achieved great success for cross-domain NER.
Other methods such as fine-tuning (Rodriguez et al.,
2018), share-private (Cao et al., 2018; Lin and Lu,
2018) and knowledge distill (Yang et al., 2019) also
show effectivenesses for cross-domain NER.

There are three main source of challenges in
cross-domain NER. First, instances of the same
type entities can be different across domains. For
example, typical person names can include “Trump”

and “Clinton” in the political news domain, but
“James” and “Trout” in the sports domain. Sec-
ond, different types of entities can exhibit different
degrees of dissimilarities across domains. For ex-
ample, a large number of location names are shared
in the political news domain and the sports domain,
such as “Barcelona” and “Los Angeles”, but the
case is very different for organization names across
these domains. Third, even types of entities can
be different across domains. For example, while
disease names are a type of entities in the medical
domain, it is not so in the biochemistry domain.

We investigate a multi-cell compositional LSTM
structure to deal with the above challenges by sep-
arately and simultaneously considering the pos-
sibilities of all entity types for each word when
processing a sentence. As shown in Figure 1, the
main idea is to extend a standard LSTM structure
by using a separate LSTM cell to model the state
for each entity type in a recurrent step. Intuitively,
the model differs from the baseline LSTM by si-
multaneously considering all possible entity types.
A compositional cell (C cell) combines the entity
typed cells (ET cells) for the next recurrent state
transition by calculating a weighted sum of each
ET cell, where the weight of each ET cell corre-
sponds to the probability of its corresponding entity
type. Different from naive parameter sharing on
LSTM (Yang et al., 2017), source domain and tar-
get domain in our multi-task learning framework
share only the ET cells corresponding to the same
entity types and the same C cell, but not for the
domain-specific ET cells. In this way, our model
learns domain-invariant in the entity level.

Intuitively, our model addresses the above chal-
lenges by modeling entity type sequences more
explicity, which are relatively more robust across
domains compared with entity instances. For ex-
ample, the pattern “PER O PER O LOC” can exist
in both the political and sports domains, despite
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(a) Baseline LSTM unit. (b) Multi-cell compositional LSTM unit.
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Figure 1: Overall structures. The red, blue and purple in (c) represent target, source and shared parts, respectively.

that the specific PER instances can be different.
In addition, thanks to the merging operation at
each step, our method effectively encodes multiple
entity type sequences in linear time by having a
sausage shaped multi-cell LSTM. Thus it allows
us to learn distributional differences between en-
tity type chains across domains. This effectively
reduces the confusions of different entities when
source domain and target domain have different
entity types in few-shot transfer, where the target
domain has a few training data. In zero-shot trans-
fer where the target domain has no training data, a
target-domain LM transfers source-domain knowl-
edge. This knowledge transfer is also in the entity
level thanks to the compositional weights which are
supervised by gold-standard entity type knowledge
in source-domain training.

Theoretically, our method creates distinct fea-
ture distributions for each entity type across
domains, which can give better transfer learn-
ing power compared to representation networks
that do not explicitly differentiate entity types
(§3.4). Empirically, experiments on four few-
shot and zero-shot datasets show that our method
gives significantly better results compared to stan-
dard BiLSTM baselines with the same num-
bers of parameters. In addition, we obtain the
best resutls on four cross-domain NER datasets.
The code is released at https://github.com/

jiachenwestlake/Multi-Cell_LSTM.

2 Method

Given a sentence x = [x1, . . . , xm], the vector
representation wt for each word xt is the concate-
nation of its word embedding and the output of a
character level CNN, following Yang et al. (2018).
A bi-directional LSTM encoder is used to obtain
sequence level features h = [h1, . . . ,hm]. We use
the forward LSTM component to explain the de-

tails in the following subsections. Finally, a CRF
layer outputs the label sequence y = l1, . . . , lm.

2.1 Baseline LSTM

We adopt the standard LSTM (Graves and Schmid-
huber, 2005) for the baseline. At each time step
t (t ∈ [1, ...,m]), the baseline calculates a current
hidden vector h(t) based on a memory cell c(t). In
particular, a set of input gate i(t), output gate o(t)

and forget gate f (t) are calculated as follows:
i(t)

o(t)

f (t)

c̃(t)

=

 σ
σ
σ

tanh

(W[h(t−1);w(t)] + b
)

c(t) = i(t) � c̃(t) + f (t) � c(t−1)

h(t) = o(t) � tanh(c(t)),

(1)

where [W;b] are trainable parameters. σ repre-
sents the sigmoid activation function.

2.2 Multi-Cell Compositional LSTM

As shown in Figure 1 (b), we split cell computa-
tion in the baseline LSTM unit into l copies, each
corresponding to one entity type. These cells are
shown in black. A compositional cell (shown in
red) is used to merge the entity typed LSTM cells
into one cell state for calculating the final hidden
vector. In this process, a weight is assigned to each
entity type according to the local context.
Entity typed LSTM cells (ET cells). Given w(t)

and ĥ(t−1), the input gate i
(t)
k and the temporary

memory cell state c̃
(t)
k of the k-th (k ∈ [1, . . . , l])

entity typed cells (ET cells) are computed as:[
i
(t)
k

c̃
(t)
k

]
=

[
σ

tanh

](
Wk[ĥ(t−1);w(t)] + bk

)
, (2)

where the [Wk;bk] represent the trainable param-
eters specific to the k-th ET cell.

https://github.com/jiachenwestlake/Multi-Cell_LSTM
https://github.com/jiachenwestlake/Multi-Cell_LSTM
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Then a copy of the compositional memory cell
state ĉ(t−1) of the previous time step (t−1) is used
to update the temporary memory cell state.

c
(t)
k = i

(t)
k � c̃

(t)
k + (1− i

(t)
k )� ĉ(t−1) (3)

The above operations are repeated for l ET cells
with the same ĉ(t−1). We finally acquire a list of
ET cell states [c

(t)
1 , . . . , c

(t)
l ].

Compositional LSTM cell (C cell). For facilitat-
ing integration of ET cells, a input gate î(t) and a

temporary cell state ˜̂c(t)
of the compositional cell

(C cell) are computed similarly to those of the ET
cells, but another output gate ô(t) is added, which
are computed as follows:

 î(t)

ô(t)˜̂c(t)

=

 σ
σ

tanh

(Ŵ[ĥ(t−1);w(t)] + b̂
)
, (4)

where [Ŵ; b̂] are trainable parameters of the C
cell.
Merging. We use the temporary cell state of the

C cell ˜̂c(t)
to weigh the internal representations

of ET cells [c
(t)
1 , . . . , c

(t)
l ] for obtaining a composi-

tional representation. To this end, additive attention
(Dzmitry et al., 2015) is used, which achieves bet-
ter results in our development compared with other
attention mechanism (Vaswani et al., 2017). The
temporary memory cell state of the C cell ĉ(t)

α is a
weighted sum of [c

(t)
1 , . . . , c

(t)
l ]:

ĉ(t)
α =

l∑
k=1

α
(t)
k c

(t)
k s.t.

l∑
k=1

α
(t)
k = 1 (5)

The weight α(t)
k reflects the similarity between ˜̂c(t)

and the k-th ET cell state c
(t)
k . α(t)

k is computed as:

I
(t)
k = v> tanh(P˜̂c(t)

+ Qc
(t)
k )

α
(t)
k =

exp(I
(t)
k )∑l

j=1 exp(I
(t)
j )

,
(6)

where [P;Q;v] are trainable parameters. The
memory cell state of the C cell is updated as:

ĉ(t) = î(t) � ĉ(t)
α + (1− î(t))� ĉ(t−1) (7)

Finally, we obtain the hidden state ĥ(t):

ĥ(t) = ô(t) � tanh(ĉ(t)) (8)

2.3 Training Tasks
Below we discuss the two auxiliary tasks before
introducing the main NER task. The auxiliary tasks
are designed in addition to the main NER task in
order to better extract entity type knowledge from a
set of labeled training data for training ET cells and
C cell. Formally, denote a training set as Dent =
{(xn, en)}Nn=1, where each training instance con-
sists of word sequence x = [x1, . . . , xm] and its
corresponding entity types e = [e1, . . . , em]. Here
each entity type et is a label such as [PER, O,
LOC,. . . ] without segmentation tags (e.g., B/I/E).
Entity type prediction. Given the ET cell states
of xt: c(t) = [−→c (t)

1 ⊕
←−c (t)

1 , . . . ,−→c (t)
l ⊕

←−c (t)
l ], we

define the aligned entity distribution for xt:

p(ek|xt) =
exp{w>k c

(t)
k + bk}∑l

j=1 exp{w>j c
(t)
j + bj}

, (9)

Where [wk; bk] are parameters specific to the k-th
entity type ek. The negative log-likehood loss is
used for training on Dent :

Lent = − 1

|Dent|

N∑
n=1

m∑
t=1

log(p(ent |xnt )) (10)

Attention scoring. Similar to the entity type pre-
diction task, given the attention scores between
the temporary C cell and ET cells in Equation 6:
I(t) = [(

−→
I

(t)
1 +

←−
I

(t)
1 )/2, . . . , (

−→
I

(t)
l +

←−
I

(t)
l )/2],

we convert the attention scores to entity aligned
distributions for xt using softmax:

p(ek|xt) =
exp(I

(t)
k )∑l

j=1 exp(I
(t)
j )

(11)

Similar to the loss of entity type prediction:

Latten = − 1

|Dent|

N∑
n=1

m∑
t=1

log(p(ent |xnt )) (12)

While entity type prediction brings supervised in-
formation to guide the ET cells, attention scoring
introduces supervision to guide the C cell.
NER. This is the main task across domains. Stan-
dard CRFs (Ma and Hovy, 2016) are used. Given
h = [

−→
h 1⊕

←−
h 1, . . . ,

−→
hm⊕

←−
hm], the output prob-

ability p(y|x) over labels y=l1, . . . , lm is:

p(y|x)=
exp{

∑
t(w

lt
CRF · ht + b

(lt−1,lt)

CRF )}∑
y′ exp{

∑
t(w

l′t
CRF · ht + b

(l′t−1,l
′
t)

CRF )}
, (13)

where y′ represents an arbitary labal sequence,
and wlt

CRF is a model parameter specific to lt, and
b
(lt−1,lt)
CRF is a bias specific to lt−1 and lt.
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Algorithm 1 Transfer learning
Input: Source-domain NER dataset Sner , target-domain NER
dataset Tner or raw data Tlm and entity dictionary De

Output: Target-domain model
1: while training steps not end do
2: for d in { Source, Target } do
3: for w(t) in [w(1), . . . ,w(m)] do
4: {c(t)

k }k∈Ed←{Ck(ĥ(t−1),w(t), ĉ(t−1))}k∈Ed˜̂c(t)
← Ĉ(ĥ(t−1),w(t))

{ĥ(t), ĉ(t)}←Atten
(˜̂c(t)

, {c(t)
k }k∈Ed

)
(eq.2-8)

5: end for
6: Compute Lda ← λentLent + λattenLatten
7: if d = Source then
8: Compute LSm ← LSner
9: else if d = Target then

10: if do SDA then
11: Compute LTm ← LTner
12: else if do UDA then
13: Compute LTm ← LTlm
14: end if
15: end if
16: L ← L+ λdLdm + Lda
17: end for
18: Update paremeters of networks based on L.
19: end while

A sentence-level negative log-likehood loss is
used for training on Dner={(xn,yn)}Nn=1:

Lner = − 1

|Dner|

N∑
n=1

log(p(yn|xn)) (14)

3 Transfer Learning

The multi-cell LSTM structure above is domain
agnostic, and can therefore be used for in-domain
NER too. However, the main goal of the model
is to transfer entity sequence knowledge across
domains, and therefore the ET cells and C cell
play more significant roles in the transfer learning
setting. Below we introduce the specific roles each
cell is assigned in cross-domain settings.

3.1 Multi-Task Structure

Following the common cross-domain setting, we
use source-domain NER dataset Sner and the target-
domain NER dataset Tner or raw data Tlm. The
entity type sets of source and target domains are
represented as Ed, where d ∈ {S, T}, respectively.

As shown in Figure 1 (c), our multi-task learn-
ing structure follows Yang et al. (2017), which
consists of shared embedding layer and shared BiL-
STM layer, as well as domain-specific CRF layers.
Our method replaces LSTM with multi-cell LSTM,
following we introduce the multi-task parameter
sharing mechanism in multi-cell LSTM.

ET cells. All ET cells {Ck}k∈ES∪ET in multi-
cell LSTM are a composion of entity-specific cells
from both source and target domains. For each
domain d ∈ {S, T}, the actually used ET cells are
the domain-specific subset {Ck}k∈Ed , aiming to
conserve domain-specific features.

C cell. In order to make the source and target
domains share the same feature space in a word
level, we use a shared C cell Ĉ across domains.

3.2 Unsupervised Domain Adaptation
To better leverage target-domain knowledge with-
out target-domain NER labeled data, we conduct
the auxiliary dictionary matching and language
modeling tasks on target-domain raw data Tlm =
{(xn)}Nn=1.

Auxiliary tasks. To better extract entity knowl-
edge from raw data, we use a pre-collected named
entity dictionary De by Peng et al. (2019) to label
Tlm and obtain a set of entity words D+

ent, which
are used to train entity prediction task and attention
scoring task jointly.

Language modeling. Follwing Jia et al. (2019),
we use sampling softmax to compute forward LM
probability pf (xt|x<t) and backward LM proba-
bility pb(xt|x>t), respectively:

pf (xt|x<t)=
1

Z
exp

(
w>xt
−→
h t−1+bxt

)
pb(xt|x>t)=

1

Z
exp

(
w>xt
←−
h t+1+bxt

)
,

(15)

where wx and bx are the target word vector and
bias, respectively. Z is the normalization item com-
puted by the target word and negative samples.

The LM loss function on Tlm is:

LTlm = − 1

2 |Tlm|

N,m∑
n,t=1

{
log(pf (xnt |xn<t))

+ log(pb(xnt |xn>t))
} (16)

3.3 Training Objective
Algorithm 1 is the transfer learning algorithm under
both supervised and unsupervised domain adapta-
tion settings. Both source- and target-domain train-
ing instances undertake auxiliary tasks and obtain
the loss La, which is a combination of Lent and
Latten weighted by λent and λatten, respectively
(line 6).
Supervised domain adaptation. The auxiliary
tasks as well as source- and target-domain NER
tasks (line 8, 11) form the final training objective:

LSDA =
∑

d∈{S,T}

{
λdLdner + Lda

}
+
λ

2
‖Θ‖2, (17)
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where λd (d ∈ {S, T}) are the domain weights for
NER tasks. λ is the L2 regularization parameters
and Θ represents the parameters set.
Unsupervised domain adaptation. The training
objective for UDA is similar to that of SDA, except
for using target-domain LM task (line 13) instead
of target-domain NER task:

LUDA = LSner + LTlm + LSa + LTa +
λ

2
‖Θ‖2 (18)

3.4 Theoretical Discussion

Below we show theoretically that our method in
§2.2 is stronger than the baseline method in §2.1
for domain adaptation. Following Ben-David et al.
(2010), a domain is defined as a pair of input dis-
tribution D on X and a labeling function y: X→Y ,
where Y is a (l − 1)-simplex1. According to this
definition, <DS , yS> and <DT , yT > represent
source and target domains, respectively. A hypoth-
esis is a function h: X→{1, ..., l}, which can be a
classification model.

Target-domain error is defined as the probabil-
ity hT disagrees with yT , ε(hT ) = ε(hT , yT ) =
Ex∼DT [|yT − hT (x)|]. The training target for h
is to minimize a convex weighted combination of
source and target errors, εα(h) = αεT (h) + (1 −
α)εS(h), where α ∈ [0, 1) is the domain weight,
when α = 0, it is the setting of UDA.
Theorem 1 Let h be a hypothesis in classH, then:

εT (h) ≤ εα(h) + (1− α)
(

1
2dH∆H (DS ,DT ) + λ

)
,

where

dH∆H (DS ,DT ) = 2 sup
h′,h′′∈H

∣∣∣Prx∼DS

[
h′(x) 6= h′′(x)

]
−Prx∼DT

[
h′(x) 6= h′′(x)

] ∣∣∣
Here λ is a constant that values the shared error

of the ideal joint hypothesis. In dH∆H(DS ,DT ),
sup denotes the supremum of the right term for
∀h′, h′′∈ H. Prx∼DS [h′(x) 6= h′′(x)] denotes the
probability according to the distribution DS that
h′ disagrees with h′′ and Prx∼DT [h′(x) 6= h′′(x)]
is similar. Intuitively, the theorem states the upper
bound of εT (h) based on εα(h) and the distance
between DS and DT in the H∆H space, which
is measured as the discrepancy between the two
classifiers h′ and h′′.

1l is the total number of entity types in the source and
target domains, such as {O, PER, LOC, ORG, MISC}. Our
discussion also makes sense in the case that source domain
and target domain have different entity types.

The original theorem, however, concerns only
one model h for transfer learning. In our supervised
settings, in contrast, their CRF layers are specific to
the source and target domains, respectively. Below
we use h∗ to denote our overall model with shared
multi-cell LSTM model and domain-specific CRF
layers. Further, we use h1 to denote the target
domain subsystem that consists of the shared multi-
cell LSTM model and the target-specific CRF layer,
and h2 to denote its source counterpart. Theorem 1
can be extended to our settings as follows:
Lemma 1 If εα(h∗) = αεT (h1) + (1− α)εS(h2), then:

εT (h1) ≤ 2εα(h∗) + (1− α)
(

3
2dH∆H (DS ,DT ) + λ∗

)
Proof. The proof is mainly based on trangle in-
equalities, see Appendix A for details. �

Considering that the upper bounds of εT (h)
(εT (h1)), εα(h) (εα(h∗)) and λ (λ∗) are small
when training converges, our goal is to reduce
dH∆H(DS ,DT ). In particular, we define a model h
is a composition function h = g ◦f , where f repre-
sents the multi-cell LSTM model and g represents
the CRF layer, ◦ denotes function composition. We
assume h′ and h′′ share the same multi-cell LSTM
model, namely h′= g′ ◦ f and h′′= g′′◦ f , we have

dH∆H(DS ,DT ) =2 sup
g′, g′′∈ G

∣∣∣Prx∼DS

[
g′◦f(x)6=g′′◦f(x)

]
− Prx∼DT

[
g′ ◦f(x)6=g′′ ◦f(x)

] ∣∣∣
To obtain the supremum of the right term, we may
wish to assume that both g′ and g′′ can classify
correctly in the source domain, then

dH∆H(DS ,DT )≈2 sup
g′, g′′∈ G

∣∣∣Prx∼DT

[
g′◦f(x)6=g′′◦f(x)

] ∣∣∣
The optimization objective is as follows:

min
f∈F

sup
g′, g′′∈ G

∣∣∣Prx∼DT

[
g′ ◦ f(x) 6= g′′ ◦ f(x)

] ∣∣∣
Aiming to minf∈F dH∆H(DS ,DT ), we decom-
pose the unified feature space into several en-
tity typed distributions using multi-cell LSTM,
resulting in that source- and target-domain fea-
tures belonging to the same entity type are clus-
tered together. The proof is mainly based on
the cluster assumption (Chapelle and Zien, 2005),
which is equivalent to the low density separa-
tion assumption, states that the decision bound-
ary should lie on a low-density region. Accord-
ing to the cluster assumption, both g′ and g′′ tend
to cross the low-density regions in the shared
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Dataset Entity Type Size Train Dev Test

CoNLL-2003
PER, LOC #Sentence 15.0K 3.5K 3.7K
ORG, MISC #Entity 23.5K 5.9K 5.6K

Broad Twitter
PER, LOC #Sentence 6.3K 1.0K 2.0K
ORG #Entity 8.8K 1.7K 4.4K

Twitter
PER, LOC #Sentence 4.3K 1.4K 1.5K
ORG, MISC #Entity 7.5K 2.5K 2.5K

BioNLP13PC
CHEM, CC #Sentence 2.5K 0.9K 1.7K
GGP, etc. #Entity 7.9K 2.7K 5.3K

BioNLP13CG
CHEM, CC #Sentence 3.0K 1.0K 1.9K
GGP, etc. #Entity 10.8K 3.6K 6.9K

CBS News
PER, LOC #Sentence - - 2.0K
ORG, MISC #Entity - - 3.4K

Table 1: Statistic of datasets.

feature space of both source and target domains.
This results in Prx∼DT [g′ ◦ f(x)6=g′′ ◦ f(x)] ≈
Prx∼DS [g′ ◦ f(x)6=g′′ ◦ f(x)] ≈ 0, which well
meets the above optimization objecive.

4 Experiments

4.1 Experimental Settings

Datasets. We take six publicly available datasets
for experiments, including BioNLP13PC and
BioNLP13CG (Nédellec et al., 2013), CoNLL-
2003 English dataset (Sang and Meulder, 2003),
Broad Twitter dataset (Derczynski et al., 2016),
Twitter dataset (Lu et al., 2018) and CBS SciTech
News dataset (Jia et al., 2019). Statistics of the
datasets are shown in Table 1. In unsupervised do-
main adaptation experiments, 398,990 unlabeled
sentences from CBS SciTech News collected by
Jia et al. (2019) are used for target-domain LM
training, a named entity dictionary from Web re-
source collected by Peng et al. (2019) is used for
target-domain auxiliary tasks training.

The CoNLL-2003, Twitter and CBS News have
the same four types of entities, namely PER (per-
son), LOC (location), ORG (organization) and
MISC (miscellaneous). The Broad Twitter dataset
consists of three types: PER, LOC and ORG.
BioNLP13CG mainly consists of five types, namely
CHEM (simple chemical), CC (cellular component),
GGP (gene and gene product), SPE (species) and
CELL (cell), BioNLP13PC mainly consists of three
types: CHEM, CC and GGP.
Hyperparameters. We choose NCRF++ (Yang
and Zhang, 2018) for developing the models. The
multi-task baselines are based on Jia et al. (2019).
Our hyperparameter settings largely follow Yang
et al. (2018); word embeddings for all models are
initialized with PubMed 200-dimension vectors
(Chiu et al., 2016) in BioNLP experiments and
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Figure 2: Performances of the main NER and auxiliary
tasks against the total number of training iteratons.

GloVe 100-dimension vectors (Pennington et al.,
2014) in other experiments. All word embeddings
are fine-tuned during training. Character embed-
dings are randomly initialized.

4.2 Development Experiments

Figure 2 shows the performances of the main target-
domain NER task and the auxiliary entity predic-
tion and attention scoring tasks on the development
sets of BioNLP13CG and Twitter when the num-
ber of training iterations increases. As can be seen
from the figure, all the three tasks have the same
trend of improvement without potential conflicts
between tasks, which shows that all the three tasks
take the feature space of the same form.

4.3 Supervised Domain Adaptation

We conduct supervised domain adaptation on
BioNLP dataset, Broad Twitter dataset and Twit-
ter dataset, respectively. In particular, for the
BioNLP dataset, BioNLP13CG is used as the
target-domain NER dataset and BioNLP13PC as
the source-domain dataset. These two datasets have
some different entity types. In the Broad Twitter
dataset, Broad Twitter is used as the target-domain
dataset and the CoNLL-2003 as the source-domain
dataset. These two datasets have a different entity
type MISC. In the Twitter dataset, Twitter is used
as the target-domain dataset and the CoNLL-2003
as the source-domain dataset. These two datasets
have the same entity types. The overall results are
listed in Table 2.
Target-domain only settings. In comparison with
target-domain only models BILSTM and MULTI-
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Methods
Datasets

BioNLP Broad Twitter Twitter
F1 #Params F1 #Params F1 #Params

Crichton et al. (2017) 78.90 - - - - -
Lu et al. (2018) - - - - 80.75 -
Wang et al. (2019) 82.48 - - - - -
Jia et al. (2019) 79.86 - - - - -
BILSTM+ELMO (Peters et al., 2018) - - 76.48 94,590K 82.83 94,631K
BILSTM+BIOELMO (Peters et al., 2018) 85.61 94,605K - - - -
BERT-BASE (Devlin et al., 2019) - - 77.28 108M 83.77 108M
BIOBERT-BASE (Lee et al., 2020) 85.72 108M - - - -
BILSTM 79.24 304K 72.98 210K 77.18 211K
MULTI-CELL LSTM 78.76 2,704K 72.54 641K 77.05 743K
MULTI-TASK (LSTM) 81.06 309K 73.84 214K 79.55 215K
MULTI-TASK (LSTM)[REPRO]∗ 81.45 312K 73.82 214K 79.90 215K
MULTI-TASK+PGN 81.17 4,533K 73.70 3,238K 80.07 3,239K
MULTI-TASK+GRAD 81.63 447K 74.12 342K 79.72 344K
OURS 83.12† 2,929K 74.82† 827K 81.37† 828K
OURS+ELMO/BIOELMO 86.65 105M 76.36 97,090K 84.31 97,091K
OURS+BERT-BASE/BIOBERT-BASE 86.96†‡ 117M 78.43†‡ 111M 85.80†‡ 111M

Table 2: Results on three few-shot datasets. ∗ indicates that we reproduce the baseline bi-directional LSTM in
a similar way to our model for fair comparisons. † indicates statistical significance compared to target-domain
settings and cross-domain settings with p < 0.01 by t-test. ‡ indicates statistical significance compared to LM
pre-training based methods with p < 0.01 by t-test.

CELL LSTM, all of the multi-task models obtain sig-
nificantly better results on all of the three datasets.
This shows the effectiveness of multi-task learning
in few-shot transfer.

Cross-domain settings. We make comparisons
with the traditional parameter sharing mechanism
MULTI-TASK(LSTM) (Yang et al., 2017) together
with two improved methods, MULTI-TASK+PGN

(Jia et al., 2019), which adds an parameter genera-
tion networks (PGN) to generate parameters for
source- and target-domain LSTMs and MULTI-
TASK+GRAD (Zhou et al., 2019), which adds a gen-
eralized resource-adversarial discriminator (GRAD)
and leverages adversarial training. The results show
that our method can significantly outperform these
multi-task methods on the same datasets, which
shows the effectiveness of our multi-cell structure
in cross-domain settings.

Comparison with the state-of-the-art models.
Results show that our model outperforms cross-
domain method of Jia et al. (2019), cross-type
method of Wang et al. (2019) and methods us-
ing addition features (Crichton et al., 2017; Lu
et al., 2018). Recently, LM pre-training based
methods such as ELMO/BIOELMO (Peters et al.,
2018), BERT (Devlin et al., 2019) and BIOBERT

(Lee et al., 2020) achieve state-of-the-art results
on NER. However, these methods use additional
large-scale language resources, thus it is unfair to
make direct comparisons with our method. Thus
we leverage the outputs of LM pre-training meth-

Methods F1 #Params #Raw
Jia et al. (2019) 73.59 12,916K 18,474K
BERT-BASE (Devlin et al., 2019) 74.23 108M 3,700M
BILSTM 70.73 211K -
MULTI-CELL LSTM 70.03 743K -
BILSTM+LM 71.30 211K 1,931K
BILSTM+LM+DICT 72.49 212K 1,931K
MULTI-CELL LSTM+LM 72.81 743K 1,931K
MULTI-CELL LSTM+LM(ALL) 73.56 743K 8,664K
MULTI-CELL LSTM+LM+DICT 75.19† 743K 1,931K

Table 3: Results on CBS News datasets. #Raw indic-
tates number of words in raw data used in the experi-
ment. † indicates statistical significance compared with
all of the baselines with p < 0.01 by t-test.

ods as contextualized word embeddings. In par-
ticular, we use the same batch size as our method
and the Adam optimizer with an initial learning
rate 3e-5 in BERT fine-tuning baselines. Results
show that our method benifits from these LM pre-
training output features and outperforms these LM
pre-training based methods.

4.4 Unsupervised Domain Adaptation

We conduct unsupervised domain adaptation on the
CBS SciTech News test set, using CoNLL-2003 as
the source-domain dataset. The overall results are
listed in Table 3.
Adding target-domain LM training. Only using
the source-domain NER data, BILSTM and MULTI-
CELL LSTM give comparable results, 70.73% F1

and 70.03% F1, respectively. In comparison with
the source-domain only models, all of the models
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Figure 3: t-SNE visualization of ET cell states {ck}lk=1

on the CoNLL-2003 test set and Broad Twitter test set,
differentiated by signal star and dot, respectively. Dif-
ferent entity types are represented by different colours.

using LM obtain significantly better results, which
shows the effectiveness of using target-domain LM
in zero-shot transfer. When using the same amount
of target-domain raw data as Jia et al. (2019), The
result of MULTI-CELL LSTM+LM(ALL) is com-
parable to the state-of-the-art (Jia et al., 2019)
(73.56% F1 v.s. 73.59% F1), which uses both
source-domain LM and target-domain LM. This
shows the effectiveness of multi-cell structure for
zero-shot transfer.
Adding a named entity dictionary. With the
named entity dictionary collected by Peng et al.
(2019), the results show a significant improvement
(75.19% F1 v.s. 72.81% F1). To make fair com-
parison, we add the entity dictionary information
to BILSTM+LM by doing an entity type predic-
tion task together with the target-domain LM. BIL-
STM+LM+DICT achieves better result than BIL-
STM+LM (72.49% F1 v.s. 71.30% F1), but it still
cannot be comparable to our results. This shows
that the auxiliary tasks can help learn entity knowl-
edge from raw data, even if the named entity dic-
tionary can not label all entities in a sentence.

4.5 Analysis

Visualization. In the proposed multi-cell LSTM,
both ET cells and C cell play important roles in con-
structing a shared feature spaces across domains.
We visualize feature spaces of ET cells and C cell
in the Broad Twitter experiments.

Figure 3 uses t-SNE (Maaten and Hinton, 2008)
to visualize the ET cell states {ck}lk=1. From the
figure we can see that different ET cells can gen-
erate different feature distributions (gathering in
different clusters of different colours), and states

Entity group CHEM CC GGP CELL SPE All
Is in Source? X X X × × -

LSTM
F1 69.13 78.29 82.79 85.00 79.08 79.23
∆ - - - - - -

MULTI
F1 73.57 79.67 85.83 85.14 79.47 81.05
∆ +4.44 +1.38 +3.04 +0.14 +0.39 +1.82

Ours
F1 74.95 80.00 86.67 87.10 81.92 82.70
∆ +5.82 +1.71 +3.88 +2.10 +2.84 +3.47

Table 4: Fine-grained comparisons on BioNLP.

of the same ET cell gather together across do-
mains. This indicates that our model can learn
cross-domain entity typed knowledge with the help
of ET cells, which are more robust across domains.

Figure 4 visualize the hidden vectors of the
target-domain only baseline, the multi-task base-
line and the proposed model. From the figure, we
can see that both the multi-task baseline and ours
can obtain similar feature distributions across do-
mains compared with the target-domain only base-
line. In comparison with the multi-task baseline,
our model also shows strong matches across do-
mains in an entity type level, which can better nar-
row the gap between source and target domains as
discussed in §3.4.
Fine-grained comparison. We make fine-grained
comparisons between our model and the multi-task
baseline on the BioNLP dataset, aiming to show
how our model achieves better results on the en-
tity type level. Following Crichton et al. (2017)
and Jia et al. (2019), we study five well studied
entity groups (not including all entity types) in
BioNLP13CG. As shown in Table 4, both MULTI

(Multi-Task baseline) and Ours achieve significant
F1 improvement over the target-domain only base-
line LSTM on the biochemistry entity groups that
appear in both the target and the source datasets,
such as CHEM, CC and GGP, which is consistent
with intuition.

But for biology entity groups not appearing
in the source dataset, such as CELL and SPE,
MULTI using traditional parameter sharing hardly
improves the performances (+0.14% F1 for CELL

and +0.39% F1 for SPE v.s. +1.82% F1 for All). In
contrast, Ours achieves relatively strong improve-
ments (+2.10% F1 for CELL and +2.84% F1 for
SPE). This benefits from the distinct feature distri-
butions across entity types by the multi-cell LSTM
structure, which can effectively prevent the confu-
sions drawn in a unified feature space.
Ablation study. We conduct ablation studies on
auxiliary tasks and model parameters. The results
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Figure 4: t-SNE visualization of hidden vectors on the CoNLL-2003 test set and Broad Twitter test set, represented
by signal star and dot, respectively. Different entity types are represented by different colours.

Methods
Datasets

BioNLP Broad Twitter CBS News
F1 ∆ F1 ∆ F1 ∆

OURS 83.15 - 74.82 - 75.19 -
−Lent 82.71 -0.44 73.97 -0.85 74.95 -0.24
−Latten 81.65 -1.50 73.25 -1.57 73.04 -2.15
−Lent−Latten 81.74 -1.41 73.64 -1.18 72.59 -2.60

BILSTM-BASED 81.06 -2.09 73.84 -0.98 72.49 -2.70
STACKED BILSTMS 80.61 -2.54 73.86 -0.96 69.62 -5.57
HIDDEN EXPANSION 80.32 -2.83 72.34 -2.48 73.17 -2.02

Table 5: Ablation studies on BioNLP, Broad Twitter
and CBS SciTech News datasets.

are listed in Table 5.
Auxiliary tasks. When we only ablate Lent, the

results on all of the three datasets suffer significant
decline (-0.44% F1 on BioNLP dataset, -0.85%
F1 on Broad Twitter dataset and -0.24% F1 on
CBS News dataset, respectively). When we only
ablate Latten, the results on all of the three datasets
suffer significant decline (over -1.5% F1 on all
of the three datasets). When we both ablate Lent
and Latten, our model achieves similar results as
the BILSTM-BASED baseline. This indicates that
domain transfer of our model depends heavily on
both auxiliary tasks.

Number of parameters. We use two strategies
to make the number of parameters of BILSTM-
BASED baseline comparable to that of our model:
(i) STACKED BILSTMS, stacking multi-layer BiL-
STMs and enlarging the hidden size. (ii) HIDDEN

EXPANSION, with similar model structure, just en-
larging the hidden size. Our model still signifi-
cantly outperforms these baselines, which shows
that the effects of our model do not arise from a
larger number of parameters.
Case study. Table 6 shows a case study, “WHO”
is an organization and “Nipah” is a virus. With-
out using target-domain raw data, BI-LSTM base-
line miclassifies “Nipah” as ORG. Both Ours and

Sentence
The World Health Organization ( WHO ) describes Nipah infection as a

“newly emerging zoonosis that causes severe disease in both animals and humans.”

BILSTM The World Health Organization ( WHO O) describes Nipah ORG

BILSTM+LM The World Health Organization ( WHO O) describes Nipah MISC

Ours The World Health Organization ( WHO ORG) describes Nipah MISC

Table 6: Example from CBS News test. Red and green
represent incorrect and correct entities, respectively.

BILSTM+LM give the correct results because this
entity is mentioned in raw data. Using the multi-
cell structure, our method learns the pattern “ORG,
O, ORG, O” from source data without confusions
by target-domain specific entities, thus Ours recog-
nizes “WHO” correctly.

5 Conclusion

We have investigated a multi-cell compositional
LSTM structure for cross-domain NER under the
multi-task learning strategy. Theoretically, our
method benefits from the distinct feature distri-
butions for each entity type across domains. Re-
sults on a range of cross-domain datasets show that
multi-cell compositional LSTM outperforms BiL-
STM under the multi-task learning strategy.
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A Proof of Lemma 1

Proof. Given the precondition εα(h∗) = αεT (h1)+
(1 − α)εS(h2), we use the trangle inequality as
follows:

εT (h1)− εα(h∗) ≤
∣∣εα(h∗)− εT (h1)

∣∣
=(1− α)

∣∣εS(h2)− εT (h1)
∣∣

≤(1− α)
[∣∣εS(h2)− εS(h1, h2)

∣∣
+
∣∣εS(h1, h2)− εT (h1, h2)

∣∣
+
∣∣εT (h1, h2)− εT (h1)

∣∣]
The trangle inequality in Crammer et al. (2008)
states that for a class of models F and expected
error function ε if for all g1, g2, g3 ∈ F , we have
ε(g1, g2) ≤ ε(g1, g3) + ε(g2, g3). Following the
above formular and the definition of dH∆H(·, ·),
we can further obtain:
εT (h1)− εα(h∗)

≤(1− α)
[
εS(h1) + εT (h2)

+
∣∣εS(h1, h2)− εT (h1, h2)

∣∣]
≤(1− α)

[
εS(h1) + εT (h2) +

1

2
dH∆H(DS ,DT )

]
Given the precondition εα(h∗) = αεT (h1) + (1−
α)εS(h2), we consider two UDA settings: (i) do-
main T with hypothesis h1 as the source; (ii) do-
main S with hypothesis h2 as the source. Using
Theorem 1 under α = 0, we can obtain:

εS(h1) ≤ εT (h1) +
1

2
dH∆H(DS ,DT ) + λ1

εT (h2) ≤ εS(h2) +
1

2
dH∆H(DS ,DT ) + λ2
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As the common setting of transfer learning, we
set 1>α ≥ 1

2 and then α
1−α ≥ 1, further obtaining:

εS(h1) ≤ α

1− α
εT (h1) +

1

2
dH∆H(DS ,DT ) + λ1

Using these conclusions to the previous inequal-
ities, we have:

(1− α)

[
εS(h1) + εT (h2) +

1

2
dH∆H(DS ,DT )

]
≤αεT (h1) + (1− α)εS(h2)

+ (1− α)

[
3

2
dH∆H(DS ,DT ) + λ1 + λ2

]
Setting λ∗ = λ1 + λ2, which is the shared error

of ideal joint hypothesis and use the precondition,
εα(h∗) = αεT (h1) + (1− α)εS(h2), we have

εT (h1)− εα(h∗)

≤(1− α)

[
εS(h1) + εT (h2) +

1

2
dH∆H(DS ,DT )

]
≤εα(h∗) + (1− α)

[
3

2
dH∆H(DS ,DT ) + λ∗

]
Finally, we obtain the Lemma 1:

εT (h1) ≤2εα(h∗)

+ (1− α)

[
3

2
dH∆H(DS ,DT ) + λ∗

]
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