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Abstract

Maintaining a consistent personality in con-
versations is quite natural for human beings,
but is still a non-trivial task for machines.
The persona-based dialogue generation task
is thus introduced to tackle the personality-
inconsistent problem by incorporating explicit
persona text into dialogue generation mod-
els. Despite the success of existing persona-
based models on generating human-like re-
sponses, their one-stage decoding framework
can hardly avoid the generation of incon-
sistent persona words. In this work, we
introduce a three-stage framework that em-
ploys a generate-delete-rewrite mechanism to
delete inconsistent words from a generated re-
sponse prototype and further rewrite it to a
personality-consistent one. We carry out eval-
uations by both human and automatic metrics.
Experiments on the Persona-Chat dataset show
that our approach achieves good performance.

1 Introduction

In an open-domain conversation scenario, two
speakers conduct open-ended chit-chat from the
initial greetings and usually come to focus on their
characteristics, such as hobbies, pets, and occupa-
tions, etc., in the course of the conversation. For
humans, they can easily carry out conversations
according to their personalities (Song et al., 2019a),
but fulfilling this task is still a challenge for recent
neural dialogue models (Welleck et al., 2019).

One main issue is that these models are typically
trained over millions of dialogues from different
speakers, and the neural dialogue models have a
propensity to mimic the response with the maxi-
mum likelihood in the training corpus (Li et al.,
2016b), which results in the frequent inconsistency
in responses (Zhang et al., 2018). Another issue

∗This work was done when the first author was an intern at
Tencent AI Lab. Wei-Nan Zhang is the corresponding author.

I’m a recording engineer;  I live in California
Hi, Kevin here.  I love Mexican food.

Hi I am Tom. I am in Colorado. Where do you live?

Hi I am Tom. <mask> <mask> <mask><mask>. 
Where do you live?

Hi I am Tom. I’m an engineer in California. Where
do you live?

Generate

Delete

Rewrite

Inconsistent
Personality

Stage 1:

Stage 2:

Stage 3:

Query: 
Persona:

Figure 1: A common problem for persona-based dia-
logue models is that they can hardly avoid the genera-
tion of inconsistent persona words. Although the model
generates a response which looks good, it is an incon-
sistent one. With further rewriting, the model can focus
more on improving persona consistency.

is the user-sparsity problem (Qian et al., 2017) in
conventional dialogue corpora (Serban et al., 2015).
Some users have very few dialogue data, which
makes it difficult for neural models to learn mean-
ingful user representations (Li et al., 2016b).

To alleviate the above issues, Zhang et al. (2018)
introduced the Persona-Chat dataset to build more
consistent dialogue models. Different from con-
ventional dialogue corpora, this dataset endows di-
alogue models with predefined personas, which is
in the form of textually described profile (as shown
in the first line of Figure 1). The persona-based
dialogue models also adopt an encoder-decoder ar-
chitecture and are enhanced with persona encoding
components, such as memory network (Sukhbaatar
et al., 2015) and latent variable (Kingma and
Welling, 2013). These models turn out to produce
more consistent responses than the persona-free
ones (Zhang et al., 2018; Song et al., 2019a).

Despite the successful application of the encoder-
decoder framework in persona-based dialogue mod-
els, one concern is that they lack extra attention to
the key persona information. The model will learn
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to minimize the overall loss of every decoded word,
but this may lead to the neglect of the key personas:
change of one persona-related word may not signif-
icantly affect the overall loss, but could turn a good
response into a totally inconsistent one. As shown
in Stage 1 of Figure 1, only one improper word
“Colorado” leads the response to be inconsistent.

A desirable solution should be able to capture
personas and automatically learn to avoid and re-
fine inconsistent words before the response. In
this paper, we present a Generate-Delete-Rewrite
framework, GDR, to mitigate the generation of in-
consistent personas. We design three stages specif-
ically for the goal of generating persona consis-
tent dialogues: The first Generate stage adopts a
transformer-based generator to produce a persona-
based response prototype. The second Delete stage
employs a consistency matching model to identify
inconsistencies and delete (by masking) the incon-
sistent words from the prototype. Finally, in the
Rewrite stage, a rewriter polishes the masked pro-
totype to be more persona consistent. To examine
the effectiveness of our GDR model, we carried out
experiments on the public available Persona-Chat
dataset (Zhang et al., 2018).

We summarize the main contributions as fol-
lows:

• A three-stage end-to-end generative frame-
work, GDR, was proposed for the generation
of persona consistent dialogues.

• A matching model was integrated into the gen-
eration framework to detect and delete incon-
sistent words in response prototype.

• Experimental results show the proposed ap-
proach outperforms competitive baselines on
both human and automatic metrics.

2 Related Work

End-to-end dialogue generation approaches are a
class of models for building open-domain dialogue
systems, which have seen growing interests in re-
cent years (Vinyals and Le, 2015; Shang et al.,
2015; Serban et al., 2016; Li et al., 2016c; Zhao
et al., 2017; Li et al., 2017). These dialogue models
adopted recurrent units in a sequence to sequence
(seq2seq) fashion (Sutskever et al., 2014). Since the
transformer has been shown to be on par with or su-
perior to the recurrent units (Vaswani et al., 2017),
some dialogue models began to take advantage of

this architecture for better dialogue modeling (Di-
nan et al., 2018; Su et al., 2019).

Besides the advancements in dialogue models,
the emergence of new dialogue corpus has also con-
tributed to the research field. Zhang et al. (2018)
introduced the Persona-Chat dataset, with explicit
persona texts to each dialogue. Based on seq2seq
model and memory network, they further proposed
a model named Generative Profile Memory Net-
work for this dataset. Following this line, Yavuz
et al. (2019) designed the DeepCopy model, which
leverages copy mechanism to incorporate persona
texts. Song et al. (2019a) integrated persona texts
into the Per-CVAE model for generating diverse re-
sponses. However, the persona-based models still
face the inconsistency issue (Welleck et al., 2019).
To model the persona consistency, Welleck et al.
(2019) annotated the Persona-Chat dataset and in-
troduced the Dialogue Natural Language Inference
(DNLI) dataset. This dataset converts the detection
of dialogue consistency into a natural language in-
ference task (Bowman et al., 2015).

Personalized dialogue generation is an active re-
search field (Li et al., 2016b; Qian et al., 2017;
Zhang et al., 2018; Zheng et al., 2019a,b; Zhang
et al., 2019). In parallel with this work, Song et al.
(2019b) leveraged adversarial training to enhance
the quality of personalized responses. Liu et al.
(2020) incorporated mutual persona perception to
build a more explainable (Liu et al., 2019) dia-
logue agent. Other relevant work lies in the area
of multi-stage dialogue models (Lei et al., 2020).
Some retrieval-guided dialogue models (Weston
et al., 2018; Wu et al., 2019; Cai et al., 2019a,b; Su
et al., 2020) also adopted a multi-stage framework,
but the difference from our work is obvious: we
generate the prototype rather than retrieve one. A
high-quality retrieved response is not always avail-
able, especially under the persona-based setting.

3 Model

3.1 Overview

In this work, we consider learning a generative
dialogue model to ground the response with explicit
persona. We focus on the persona consistency of
single-turn responses, and we leave the modeling
of multi-turn persona consistency as future work.

Formally, we use uppercase letters to represent
sentences and lowercase letters to represent words.
Let Q = q1, q2, ..., qn denotes the input query
with n words, and let P = {P (1), P (2), ..., P (k)}
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Figure 2: The overall architecture of our three-stage GDR model, including a prototype generator (Generate stage),
a consistency matching model (Delete stage), and a masked prototype rewriter (Rewrite stage). The italics denote
the inputs of each stage, and the boldfaces denote the outputs. All the attentions (attn) here refer to the multi-head
attention. For the sake of brevity, we omitted some layers of the transformer in this figure.

be the k different persona texts, where P (i) =

p
(i)
1 , p

(i)
2 , ..., p

(i)
mi is the i-th persona text with mi

words. Our goal is to learn a dialogue model M
to generate a response Ŷ = y1, y2, ..., yk, which is
consistent with the persona, based on both query
Q and persona P . In abbreviation, Ŷ = M(Q,P ).

More concretely, as shown in Figure 2, the pro-
posed model M consists of three parts:

1) Prototype generator G. This component takes
persona texts and query as input and generates a
response prototype for further editing. It adopts
an encoder-decoder architecture (Sutskever et al.,
2014), with the transformer (Vaswani et al., 2017)
applied in both the encoder and the decoder.

2) Consistency matching model D. This model
is designed to detect and delete those words in the
prototype that could lead to inconsistency. We train
this model in a natural language inference fashion
on the DNLI (Welleck et al., 2019) dataset.

3) Masked prototype rewriter R. The rewriter
learns to rewrite the response prototype to a more
consistent one. It is also a transformer decoder,
which adopts a similar architecture as the decoder
of G. The difference lies in that it takes the masked
prototype, rather than the query, as input.

3.2 Generate: Prototype Generator

We apply the encoder-decoder structure to build
our prototype generator G. For the encoder, we use
the self-attentive encoder in the transformer. For
the decoder, built upon the transformer decoder, we
propose a tuple-interaction mechanism to model
the relations among persona, query, and response.

Self-Attentive Encoder
As the persona P is composed of several sen-
tences, we unfold all words in P into a sequence
p
(1)
1 , p

(1)
2 , ..., p

(i)
mj , ..., p

(k)
mk .

Then we use the self-attentive encoder (Vaswani
et al., 2017) to compute the representations of the
persona texts and query separately. The multi-head
attention is defined as MultiHead(Q,K, V ), where
Q,K,V are query, key, and value, respectively. The
encoder is composed of a stack of NG identical lay-
ers. Take the first stack encoding of P for example:

V(1)
p = MultiHead(I(P ), I(P ), I(P )), (1)

O(1)
p = FFN(V(1)

p ), (2)

FFN(x) = max(0, xW1 + b1)W2 + b2, (3)

where V(1) is the first layer result of the multi-head
self-attention and I(·) is the embedding function
of the input. The input embedding for word wi

is the sum of its word embedding and position
embedding. O(1) denotes the output of the first
layer feed-forward network. For other layers:

V(n)
p = MultiHead(O(n−1)

p ),O(n−1)
p ),O(n−1)

p ),

(4)

O(n)
p = FFN(V(n)

p ), (5)

where n =2,...,NG. We applied layer normalization
to each sublayer by LayerNorm(x + Sublayer(x)).
Q is encoded in the same way. After NG iden-
tical layers, we can get the final representations
O(NG)
p and O(NG)

q , where O(NG)
p and O(NG)

q are the
encoded persona and encoded query, respectively.
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Tuple-Interaction Decoder
In the decoding phase, there are three types of
information, persona P , query Q, and response
Y , which make up a tuple (P ,Q,Y ). Accordingly,
three inter-sentence relations need to be considered:
(1) The alignment between Q and Y is beneficial
to yield better results (Bahdanau et al., 2014). (2)
As the persona is composed of several sentences
and describes different aspects, we need to find
the most relevant persona information according
to the relations between P and Y. (3) We also want
to know whether the query needs to be answered
with the given persona. Thus we should take the
relations between P and Q into account.

Considering the above factors, we design a two-
layer tuple-interaction mechanism in the decoder,
as shown in the first part of Figure 2. There
are three attentions in two layers: query attention
(Q-Attn) and persona attention (P-Attn) in the first
layer, and persona-query attention (PQ-Attn) in the
second layer. NG such identical layers compose of
the decoder. For the first layer:

V(1)
y = MultiHead(I(Y ), I(Y ), I(Y )), (6)

E(1) = MultiHead(V(1)
y ,O(NG)

p ,O(NG)
p ), (7)

F(1) = MultiHead(V(1)
y ,O(NG)

q ,O(NG)
q ), (8)

T(1) = MultiHead(E(1),F(1),F(1)), (9)

O(1)
dec = FNN(mean(E(1),F(1),T(1))), (10)

where E(1) and F(1) are the results of the first layer
P-Attn and Q-Attn. T(1) is the result of the first
layer PQ-Attn. O(1)

dec denotes the first layer output.
Note that the Y here is masked to ensure depending
only on the known words (Vaswani et al., 2017).
Repeatedly, for other layers:

V(n)
y = MultiHead(O(n−1)

dec ),O(n−1)
dec ),O(n−1)

dec ),

(11)

O(n)
dec = FNN(mean(E(n),F(n),T(n))), (12)

where n =2,...,NG. After NG layers, the decoder
output O(NG)

dec is projected from hidden size to vo-
cabulary size, then followed up by a softmax func-
tion to get the words’ probabilities:

Prob(1) = SoftMax(O(NG)
dec W3 + b3), (13)

where W3 is a hidden size×vocabulary size weight
matrix and b3 is the bias term with vocabulary size
dimension. And Prob(1) denotes the output dis-
tribution of the first stage. Now we can get the
response prototype Ŷ (1) from the Prob(1).

… I love my cats
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  1. I have nine dogs
  2. I am a recording engineer
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  Hi there, I am Peter
  and I love my cats
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Figure 3: The architecture of our consistency matching
model. “·” and “−” denote element-wise product and
difference. The dotted line shows inference process,
including consistency matching and word deleting.

3.3 Delete: Consistency Matching Model
The goal of the consistency matching model D is to
reveal word-level consistency between the persona
texts and the response prototype, thus the inappro-
priate words can be deleted from the prototype.

This model is trained to estimate the sentence-
level entailment category (Bowman et al., 2015)
of a response for the given persona texts, which
includes entailment, neutral and contradiction. The
key is that if the category is not entailment, we can
delete the most contributing words by replacing
them with a special mask token, thus giving the
model a chance to rephrase. The attention weights
can measure each word’s contribution.

The architecture of our consistency matching
model is shown in Figure 3. From bottom to top
are the self-attentive encoding layer, cross attention
layer, and consistency matching layer.

As described in section 3.2, the self-attentive
encoder (SAE(·)) performs self-attention over the
input to get sentence representations. Because the
task of consistency matching is quite different from
dialogue generation, we did not share the encoders
between the generator G and matching model D:

Ā = SAED(P ), (14)

B̄ = SAED(Ŷ (1)), (15)

where Ā is a hidden size × n matrix. Ā =
[ā1, ā2, ..., ān] and B̄ = [b̄1, b̄2, ..., b̄m]. The n and
m are the number of words in persona P and re-
sponse prototype Ŷ (1). Here we applied average
pooling stragety (Liu et al., 2016; Chen et al., 2017)
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to get the summary representations:

ā0 =

n∑
i=1

āi
n
, (16)

and we can get the response attention weights and
attentive response representations by:

Wb = ā>0 B̄, (17)

B̃ = WbB̄
>
, (18)

where Wb is attention weights and B̃ is response
representations. Similarly, we can get Wa and Ã.

Once Ã and B̃ are generated, three matching
methods (Chen et al., 2017) are applied to ex-
tract relations: concatenation, element-wise prod-
uct, element-wise difference. The results of these
matching methods are concatenated to feed into a
multi-layer perceptron, which has three layers and
tanh activation in between. The output is followed
up by a SoftMax function to produce probabilities.

In the inference process, as shown in Figure 3,
the response attention weights Wb is leveraged to
illustrate the inconsistent words, which will be
deleted1. In practice, we use a simple heuristic
rule for deleting words: as long as the category is
not entailment, we will delete 10% of the words
(at least one word)2, with the highest attention
weight, in the prototype Ŷ (1). In this way, we
get the masked prototype Ŷ (2).

3.4 Rewrite: Masked Prototype Rewriter
The rewriter R takes the masked prototype and per-
sona texts as input and outputs the final response.

R is also a transformer decoder, which is similar
to the decoder of G in section 3.2, but with a minor
difference: the masked prototype is close to the
target response, thus the direct attention between
the prototype and target response is needless. The
architecture of R can be seen in the third part of
Figure 2, which can be formalized as:

O(NG)
mp = SAEG(Ŷ (2)), (19)

V(n) = MultiHead(O(n−1)
rw ),O(n−1)

rw ),O(n−1)
rw ),

(20)

S(n) = MultiHead(V(n),O(NG)
p ,O(NG)

p ), (21)

K(n) = MultiHead(S(n),O(NG)
mp ,O(NG)

mp ), (22)

O(n)
rw = FNN(mean(S(n),K(n))), (23)

1In this paper, “delete” a word means replacing this word
with a special mask token.

2In our experiments, we found that deleting more words
made it difficult for rewriter R to learn.

Data Train Valid Test

Persona Texts 74,522 5,843 4,483
Q-R Pairs 121,880 9,558 7,801

Table 1: Some statistics of Persona-Chat dataset. Valid
denotes Validate and Q-R denotes Query-Response.

Label Train Valid Test

Entailment 100,000 5,500 5,400
Neutral 100,000 5,500 5,400
Contradiction 110,110 5,500 5,700

Table 2: Key statistics of DNLI dataset.

where O(NG)
mp is the encoded masked prototype and

SAEG is the self-attentive encoder of G. O(NG)
p is

the encoded persona. After NR identical layers,
the same generation process as in G is applied to
the O(NR)

rw , and we can get the final response Ŷ (3).

3.5 Training

The consistency matching model D is trained sepa-
rately from the prototype generator G and rewriter
R. As forementioned, the matching model D is
trained in a natural language inference fashion on
the DNLI dataset (Welleck et al., 2019), which has
been well defined by the previous studies (Bowman
et al., 2015; Chen et al., 2017; Gong et al., 2018).
We minimize the CrossEntropy loss between the
outputs of D and the ground truth labels.

The G and R share the same training targets. We
trained them by the standard maximum likelihood
estimate. Notice that there are two different delet-
ing strategies in training: (1) In the warm-up phase,
because the G can hardly generate high-quality pro-
totypes at this period, we randomly delete each
word, with a 10% probability, from the prototype.
(2) After that, the trained consistency matching
model D is leveraged to delete words.

4 Experiments

4.1 Datasets

We carried out the persona-based dialogue genera-
tion experiments on the public available Persona-
Chat dataset (Zhang et al., 2018). Furthermore,
we trained the consistency matching model on the
recently released Dialogue Natural Language Infer-
ence (DNLI) dataset (Welleck et al., 2019).

We show the statistics of the Persona-Chat
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dataset in Table 1. The DNLI dataset (Welleck
et al., 2019) is an enhancement to the Persona-Chat.
It is composed of persona-utterance pairs from the
Persona-Chat, and these pairs are further labeled
as entailment, neutral, and contradiction. Some
statistics of this dataset are given in Table 2.

4.2 Compared Models
To the best of our knowledge, this is an early work
in modeling explicit persona consistency. To show
the effectiveness of our models, we mainly com-
pare it with the persona-based dialogue models:

• S2SA S2SA is an RNN-based attentive
seq2seq model (Bahdanau et al., 2014). It
only takes the query as input.

• Per-S2SA This is a seq2seq model that
prepends all persona texts to the query as in-
put (Zhang et al., 2018).

• GPMN Generative Profile Memory Network
is an RNN-based model that encodes persona
texts as individual memory representations in
a memory network (Zhang et al., 2018).

• DeepCopy An RNN-based hierarchical
pointer network, which leverages copy mecha-
nism to integrate persona (Yavuz et al., 2019).

• Per-CVAE This is a memory augmented
CVAE model to exploit persona texts for di-
verse response generation (Song et al., 2019a).

• Transformer Different from the RNN-based
models, transformer is a self-attention based
sequence transduction model (Vaswani et al.,
2017). The persona texts are concatenated to
the query to serve as its input.

4.3 Experimental Settings
For all the RNN-based baseline models, they are
implemented by two-layer LSTM networks with a
hidden size 512. For the Transformer, the hidden
size is also set to 512, and the layers of both en-
coder and decoder are 3. The number of heads in
multi-head attention is 8, and the inner-layer size of
the feedforward network is 2048. The word embed-
dings are randomly initialized, and the embedding
dimension of all models is set to 512.

Our model applies the same parameter settings
as the transformer. The number of layers NG =
ND = NR = 3. G and R share the word embed-
dings, but the matching model D uses independent

embeddings. We use token-level batching with a
size 4096. Adam is used for optimization, and the
warm-up steps are set to 10,000. We implemented
the model in OpenNMT-py (Klein et al., 2017).

4.4 Evaluation Metrics
In the evaluation, there are two essential factors
to consider: persona consistency and response
quality. We apply both human evaluations and
automatic metrics on these two aspects to compare
different models.

Human Evaluation We recruit five professional
annotators from a third-party company. These
annotators have high-level language skills but
know nothing about the models. We sampled 200
persona-query-response tuples per model for evalu-
ation. Duplicated queries (such as greetings which
appear more than once) will not be sampled twice.

First, we evaluate the persona consistency of
a response. The annotators are asked to decide
whether the response is consistent with the given
persona. 0 indicates irrelevant or contradictory and
1 indicates consistent (Const.).

Second, we evaluate the quality of a response
on three conventional criteria: fluency (Fluc.), rel-
evance (Relv.), and informativeness (Info.). Each
aspect is rated on five-scale, where 1, 3, and 5
indicate unacceptable, moderate, and excellent per-
formance, respectively. 2 and 4 are used for unsure.

Automatic Metrics Dziri et al. (2019) has shown
that natural language inference based entailment
ratio can be used as an indicator of dialogue con-
sistency. Here we trained two well-performed NLI
models, DIIN (Gong et al., 2018) and BERT (De-
vlin et al., 2019), to automatically predict the cate-
gory of persona-response pairs, and we calculated
the ratio of entailment as an additional reference to
the persona consistency. In our experiments, DIIN
and BERT achieved 88.78% and 89.19% accuracy
on the DNLI test set, respectively, compared with
previous best results 88.20%. The trained models
are then leveraged for calculating entailment ratios.
Two model-based entailment ratios are abbreviated
as Entdiin and Entbert.

For dialogue quality, we follow Zhang et al.
(2018) to use perplexity (PPL) to measure the flu-
ency of responses. Lower perplexity means better
fluency. Besides, we also use Dist-1 / Dist-2 (Li
et al., 2016a) to examine the model’s ability to
generate diverse responses, which is the ratio of
distinct uni-grams / bi-grams.
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Model Const. Fluc. Relv. Info. PPL Dist-1. Dist-2. Entdiin Entbert

S2SA 15.9% 3.17 2.84 2.63 34.8 1.92 4.86 9.80% 1.83%
GPMN 34.8% 3.78 3.57 3.76† 34.1 1.89 7.53 14.5% 7.36%
Per-S2S 35.3% 3.43 3.22 3.32 36.1 2.01 7.31 13.5% 6.15%
DeepCopy 36.0% 3.26 3.08 2.87 41.2 2.35 8.93 16.7% 8.81%
Transformer 38.8% 3.46 3.65† 3.54 27.9 3.12 15.8 14.2% 9.52%
Per-CVAE 42.7% 3.53 2.97 3.66 -∗ 3.83† 20.9 17.2% 7.36%

GDR (ours) 49.2% 3.86 3.68 3.77 16.7 3.66 22.7 21.5% 13.0%

Table 3: Results of human evaluations (on the left) and automatic metrics (on the right). The Dist-1.& 2. are scaled
by 10−2. Significant tests (t-test) are performed, and our method is significantly better than all methods on most
metrics (p-value<0.05), with the exceptions marked by †. We also present two model-based ratios, the Entdiin and
the Entbert, as an additional reference for persona consistency assessments. Note that the automatic metrics are
calculated on the whole test set. * The sampling process in CVAE leads to very unstable PPL.

GDR vs Win(%) Tie(%) Lose(%)

S2SA 48.0 38.2 13.8
Per-CVAE 46.1 29.8 24.1
DeepCopy 43.8 35.5 20.7
Per-S2S 41.3 36.1 22.6
GPMN 35.0 31.0 34.0
Transformer 34.7 32.1 33.2

Table 4: GDR response quality gains over other base-
line methods on a pairwise human judgment.

4.5 Main Results

We report the main evaluation results in Table 3.
Compared with baseline methods, our GDR model
obtains the highest consistency score of 49.2% in
human evaluation, which is significantly better than
other methods. The target responses in the sampled
data are also annotated, and 65.4% of them ex-
pressed persona information. Moreover, the two
model-based entailment ratios, which are calcu-
lated on the whole test set, also prove the effective-
ness of our GDR model. Although the two NLI
models differ in results, our GDR model ranks first
under the evaluation of both DIIN and BERT.

For dialogue quality, our proposed model has a
remarkably lower perplexity of 16.7 than all other
baseline methods. An analysis can be seen in Sec-
tion 4.6. Besides, our distinct-2 metric is even sig-
nificantly better than the Per-CVAE model, which
is designed to generate diverse responses.

Additionally, we carried out pairwise response
comparison to see the dialogue quality gains. We
report the results in Table 4. While the GDR model
significantly improves persona consistency, it can

still generate high-quality responses like the trans-
former and GPMN.

4.6 More Analysis

As the proposed model achieves better performance
than baseline methods, we turn to ablation tests to
further quantify the contributions made by different
components. We ablated our model through several
different approaches:

• GR It removes the matching model D, i.e.,
generates a prototype and rewrites it directly.

• GRdR This approach replaces the matching
model D with 10% random deleting (Rd), thus
to see if the masked prototype, extracted by
our matching model D, is beneficial.

• G Our model’s generator, without further con-
sistency matching and rewriting.

• T It is a transformer generator but removes
the tuple-interaction in section 3.2 and directly
concatenates persona texts to the query. This
model is equivalent to the vanilla transformer.

We report the results in Table 5. First, we look
into which components contribute to the consis-
tency. As seen, from T, G, GR to GDR, every step
has an observable improvement in Const., indicat-
ing the effectiveness of our model’s design. Both
the tuple-interaction in G and the rewriting process
in R contribute to the improvements of persona
consistency. The GRdR approach, with nothing
different from GDR but a random deleting strategy,
serves as a foil to our GDR model, which indicates
a well-learned consistency matching model is of
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Model Const. Fluc. Relv. Info. PPL

GDR 49.2% 3.86 3.68 3.77 16.7

GR 42.4% 3.72 3.40 3.66 18.0
GRdR 40.0% 3.60 3.29 3.56 20.6
G 40.1% 3.69 3.35 3.55 26.3
T 38.8% 3.46 3.65‡ 3.54 27.9

Table 5: Results of the ablation study. GDR is signifi-
cantly better than the ablated approaches, with an only
exception marked by ‡.

GDR vs Win(%) Tie(%) Lose(%)

GRdR 41.7 39.5 18.8
GR 39.9 40.9 19.2
G 38.1 35.8 26.1

Table 6: Pairwise human judgment on response quality.

great benefit to our three-stage generation frame-
work to generate persona consistent dialogues.

Second, we investigated the improvement of
our perplexity. As we can see, the one-stage
transformer approaches G and T have a perplex-
ity higher than 26. In contrast, after we add the
rewriter R, the perplexity of all approaches has a
significant decline, no matter whether there is a
matching model D. Lower perplexity means lower
cross-entropy, which indicates the responses from
the models have more ground truth words. To some
extent, perplexity verifies the human evaluation re-
sults of the consistency. One reason for this im-
provement could be that the rewriter works like a
denoising autoencoder (Vincent et al., 2008), and it
can focus more on the reconstruction of the missing
information of sequence itself, rather than learning
to map a sequence to an entirely different one.

We observed that the relevance scores of GR,
GRdR, and G are a little inferior to the T. Even the
GDR model is not significantly better than T on
the relevance score. One plausible explanation is
that all these models are specially designed for inte-
grating persona information, although they obtain
much better consistency score, it may come at the
cost of relevance score.

Moreover, we compared the GDR’s response
quality with three ablated models and reported it in
Table 6. As we can see, the deleting and rewriting,
which are designed for improving consistency, also
have a positive effect on the dialogue quality.

At last, we presented some generated examples

Persona i. My mother is a dentist
ii. I’m currently looking for a job

Query I want to become a physical therapist.

Gen&Del I wish I could be a nurse .
Rewrite I want to be a dentist like my mom.

w/o Delete I want to become a nurse like you.

Transfmr I hear you. I am a nurse and a mom.
Per-S2S What kind of business?
GPMN I’m a professional painter, you?

DeepCopy What do you do for a living?
Per-CVAE I guess I would buy you one

Persona i. Gymnastics is my favorite sport
ii. I’m a gold medalist olympian

Query I’m a minivan driver. I drive around.

Gen&Del That’s awesome . I love to ski .
Rewrite That’s cool. I am a champion gymnast.

w/o Delete That’s awesome. I am going to ski.

Transfmr Oh. I am still in high school .
Per-S2S I drive a big van, but around the house.
GPMN I drive a FIAT. I love it.

DeepCopy What do you do for a living?
Per-CVAE That is why you like dogs? Tell me.

Persona i. I like to grill outdoors
ii. I have been retired for years

Query Too old to work in construction. You?

Gen&Del I’m retired . I spend time outdoors .
Rewrite I’m retired. I spend most time outdoors.

w/o Delete I’m retired. I spend most time outdoors.

Transfmr I am a boy and work in the construction.
Per-S2S No, I am a student.
GPMN I am a teacher, I love to be a teacher.

DeepCopy I work in the construction industry.
Per-CVAE I am a retired officer I love my bike ride.

Table 7: Example responses from different mod-
els, with a visualization of the consistency matching
weights. Strikethrough words are the masked words in
Delete stage. The w/o Delete is the ablated model GR
in section 4.6, and Transfmr is short for Transformer.

in Table 7, together with the visualization of atten-
tion weights from match module D. In the first case,
although the generated prototype is neutral regard-
ing the persona, the word “nurse” is still masked
according to our strategy. And after the rewriting
stage, the final response expresses persona. In the
second case, the prototype is potentially contradic-
tory to the persona, and the keyword is successfully
deleted by the matching model D. In the third case,
the prototype is consistent with the persona, and
no word is deleted. As a result, the final output
response is the same as the output of no deletion
model GR. In these cases, both consistency and
quality are improved after the final rewriting.
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5 Conclusion and Future Work

In this paper, we presented a three-stage framework,
Generate-Delete-Rewrite, for persona consistent di-
alogue generation. Our method adopts transformer
architecture and integrates a matching model to
delete the inconsistent words. Experiments are car-
ried out on public-available datasets. Both human
evaluations and automatic metrics show that our
method achieves remarkably good performance. In
the future, we plan to extend our approach to im-
prove the consistency of multi-turn dialogues.
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