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Abstract

Automatic question generation (QG) has
shown promise as a source of synthetic train-
ing data for question answering (QA). In
this paper we ask: Is textual diversity in

QG beneficial for downstream QA? Using
top-p nucleus sampling to derive samples from
a transformer-based question generator, we
show that diversity-promoting QG indeed pro-
vides better QA training than likelihood maxi-
mization approaches such as beam search. We
also show that standard QG evaluation metrics
such as BLEU, ROUGE and METEOR are in-
versely correlated with diversity, and propose
a diversity-aware intrinsic measure of overall
QG quality that correlates well with extrinsic
evaluation on QA.

1 Question Generation and Diversity

Besides areas such as dialog (Bordes et al., 2017)
and tutoring systems (Lindberg et al., 2013), auto-
matic question generation (QG) has recently been
applied with great success to generating synthetic
training examples for question answering (QA) (Al-
berti et al., 2019; Dong et al., 2019). Yet an im-
portant question has remained unexplored: Does

increased textual diversity in automatically gener-

ated questions lead to better QA?

In Figure 1 we show four questions generated by
one of our QG models (details in Section 2) from
a SQuAD (Rajpurkar et al., 2016) passage and an
answer span (the QG prompt). The questions are
different not only lexically, but also in what infor-
mation about the answer entity they draw upon and
even their use of world knowledge, e.g., Tesla’s
reputation as a “mad scientist”. Intuitively, such
sample diversity, if sufficiently accurate, could pro-
vide QA models with rich training signal.

Existing QG work has predominantly relied on
customary beam search decoding for generation
and n-gram similarity metrics such as BLEU for
evaluation (Du et al., 2017; Alberti et al., 2019;

On Tesla’s 75th birthday in 1931, Time magazine
put him on its cover. The cover caption “All the
world’s his power house” noted his contribution to
electrical power generation. He received congra-
tulatory letters from more than 70 pioneers in
science and engineering, including Albert Einstein.

✏ Who appeared on Time magazine’s cover on his 
75th birthday?

✏ Which famous scientist was in the cover of Time 
Magazine in 1931?

✏ Which mad scientist received more than a 70 
people congratulating him on his birthday?

✏ What famous scientist was also 75?

Figure 1: A passage with an underlined answer span
("Tesla"), and corresponding questions generated by
our model. The generated questions exhibit both lex-
ical and factual diversity.

Dong et al., 2019; Zhang and Bansal, 2019).1 Such
methods/metrics solely optimize/reward similarity
with human-generated reference questions treated
as the ground truth (GT). However, in many open-
ended generation tasks where only one or a few of
many possible GTs are available through human an-
notation, this approach directly penalizes diversity
by discouraging deviation from the GT(s).

In recent years, massively pre-trained neural lan-
guage models (LMs) (Devlin et al., 2019; Radford
et al., 2019; Liu et al., 2019) have revolutionized
NLP. In open-ended text generation, these mod-
els show remarkable robustness under sampling
(Radford et al., 2019; Holtzman et al., 2020). This
observation, coupled with the examples presented
in Figure 1, suggests that treating QG for QA as a
more open-ended generation problem and relying
on the power of modern text generators to produce
diverse yet accurate samples might yield better QA
results than the current approach of optimizing for
the “most likely” question.

We test this hypothesis by fine-tuning a pre-
trained transformer-based masked LM (Liu et al.,

1
http://aqleaderboard.tomhosking.co.uk/squad
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2019) for QG, and sampling questions from it
using top-p nucleus sampling (Holtzman et al.,
2020). Other diversity-promoting text generation
techniques exist—both at training time (e.g., VAEs
(Kingma and Welling, 2014)) and during inference
(e.g., top-k sampling and diverse beam search (Vi-
jayakumar et al., 2018))—that have been applied
to various NLP tasks: language modeling (Bowman
et al., 2016), dialog (Cao and Clark, 2017), visual
QG (Jain et al., 2017; Fan et al., 2018), image cap-
tioning (Vijayakumar et al., 2018) and so on. We
choose nucleus sampling because of its effective-
ness, simplicity and speed. Our experiments lead
to the following discoveries:

� Nucleus sampling indeed produces better QA
results than beam search, even when only one
question is generated per prompt.

� QG metrics that only reward similarity with GT
are negatively correlated with diversity, and as a
result, are inaccurate predictors of downstream
QA performance of diversity-promoting QG.

� A measure of QG can be devised that combines
diversity with similarity to GT, showing strong
correlations with QA performance.

2 Question Generation using RoBERTa

We fine-tune a RoBERTa masked LM (Liu et al.,
2019) for QG given an answer span within a textual
context (as shown in Figure 1), and use nucleus
sampling (Holtzman et al., 2020) for generation.

Model: Various transformer architectures can be
used for text generation (Raffel et al., 2019). Fol-
lowing (Dong et al., 2019; Alberti et al., 2019),
we fine-tune a pre-trained masked LM as a prefix
LM (Raffel et al., 2019) to predict a question token
qt given (1) a prompt p1:N : a tokenized textual
context with special tokens delimiting an answer
span, and (2) question tokens q1:t�1, if any, that
have already been generated for the given prompt
in a left-to-right order. A special separator token
separates the question prefix from the prompt. The
prompt is encoded using bidirectional attention and
question tokens using causal (left-only) attention.
We choose RoBERTa as our pre-trained model be-
cause of its extended pre-training on large amounts
of text (Liu et al., 2019). Our implementation of
the QG model is based on Hugging Face’s (Wolf
et al., 2019) PyTorch implementation of RoBERTa.

Fine-Tuning: For each QG training example, the
model is asked to predict a single question token

qt given the prompt p1:N , the previous question
tokens q1:t�1 (teacher-forced), and the mask m at
timestep t. All questions end with an EOS token
that marks the end of generation. Training attempts
to minimize the masked LM loss, i.e., the negative
log-likelihood of the GT token qt as the prediction
for m in position t:

losst = � logP (qt | p1:N , q1:t�1,m)

Inference: During generation, the fine-tuned
RoBERTa QG model outputs a probability distri-
bution over the entire vocabulary at each question
timestep t. Top-p nucleus sampling (NS@p hence-
forth) samples from the (re-normalized) categori-
cal distribution PN of the nucleus N, which is the
smallest subset of vocabulary items that has (1) a
cumulative probability mass greater than p, and
(2) the highest probability among all such subsets:

q̂t ⇠ PN(qt | p1:N , q1:t�1,m)

By restricting the pool to a high-likelihood region
of the vocabulary, compared to top-k sampling, NS
reduces the chances of generating low-probability
items when the original distribution is peaked at
one or a few items. Our question generation works
by repeated nucleus sampling of question tokens
until q̂t = EOS.

3 Experiments and Results

To test the effect of QG diversity on QA, we generate
questions with both nucleus sampling and beam
search from a number of different QG models and
compare their performance.

General Setup: Considering that performances
of different generation methods may vary across
models of different capacities, we train eight QG
models, each uniquely characterized by: (1) its size
(# of parameters), and (2) the amount of train-
ing data it was fine-tuned on. The two model
sizes are those of RoBERTa: base (125M parame-
ters) and large (355M parameters). For fine-tuning
we use the train set of the SQuAD1 split by Du
et al. (2017).2 This is a three-way split of the public
portion of SQuAD1 widely adopted in QG literature,
with approximately 76k train, 18k dev and 12k test

(prompt, question) pairs. We draw varying amounts
of samples (ranging from 5% to 100%) at random
from the train set to fine-tune each model on, simu-
lating different points on the low- to high-resource

2
https://github.com/xinyadu/nqg/blob/master/data/raw/
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%train generator B1 R4 MT QA F1 B1 R4 MT QA F1

5

b = 5 33.9 7.9 39.1 81.1 35.9 8.5 40.7 83.2
p = .1 32.3 6.2 36.8 80.6 34.1 7.1 38.8 82.7
p = .5 32.0 6.1 36.4 81.0 33.8 7.0 38.3 82.8
p = .75 30.1 5.1 34.1 81.3 32.3 6.2 36.5 83.1
p = .95 26.5 3.9 29.7 81.6 28.7 4.6 31.9 83.1

20

b = 5 37.2 10.5 42.2 82.1 38.7 11.2 43.3 83.9
p = .1 35.9 9.0 40.9 82.8 37.6 9.8 42.3 84.3
p = .5 35.5 8.7 40.4 83.0 37.4 9.7 42.1 84.5
p = .75 33.8 7.7 38.1 83.7 35.8 8.7 40.0 84.9
p = .95 30.0 5.6 33.4 83.9 31.6 6.4 35.2 85.3

50

b = 5 39.1 11.9 44.4 82.8 40.6 12.6 45.4 84.3
p = .1 37.8 10.3 43.4 83.6 39.6 11.2 44.7 84.8
p = .5 37.4 10.0 42.9 83.8 39.4 11.1 44.4 84.9
p = .75 35.4 8.8 40.2 84.3 38.2 10.3 42.8 85.3
p = .95 31.4 6.3 35.2 84.8 33.6 7.5 37.2 85.7

100

b = 5 40.3 12.6 45.8 83.6 41.6 13.4 46.7 84.5
p = .1 38.9 11.0 44.6 83.9 40.6 12.1 46.1 84.9
p = .5 38.5 10.7 44.1 84.3 40.3 11.9 45.7 85.0
p = .75 36.7 9.6 41.7 84.8 38.8 10.8 43.7 85.5
p = .95 32.5 6.9 36.4 85.3 34.4 7.6 38.3 86.1

base model large model

Table 1: Performance of beam search (BEAM) (b = 5) and nucleus sampling (NS@p; p 2 {.1, .5, .75, .95}) on the
SQuAD-Du dataset. (Bold: best, underlined: worst). NS yields stronger QA results than BEAM but lower BLEU,
ROUGE and METEOR scores. Moreover, QA performance of NS improves with the nucleus probability mass p.

spectrum. Each model is trained for two epochs
with a learning rate of 2e-5 and a batch size of 96.

In-Domain Experiments: With each QG model,
we generate questions for all prompts in the
SQuAD1-Du dev set. These questions are first eval-
uated using existing generation metrics: BLEU,
ROUGE and METEOR. To extrinsically evaluate
on QA, we then (1) fine-tune a BERT (Devlin et al.,
2019) whole-word-masked (wwm) LM for QA on
the generated dev examples from each model, and
(2) evaluate on test.

For each of the eight QG models, we evaluate
beam search (BEAM henceforth) and NS@p for
different values of p. Our BEAM experiments with
the RoBERTa-base model did not show significant
performance differences between beam sizes 5 and
10, therefore we report results only for b = 5 in
this paper. An important point to note here is that
given paragraph-long input prompts in QG for QA,
where large numbers of synthetic examples may
also be needed in many practical use cases, large
beam sizes can become prohibitively expensive
from a computational standpoint for transformer-
based generators.

For NS, we evaluate with p 2 {.1, .5, .75, .95}.
Among these, p = .1 closely approximates greedy
decoding, as we observed for all models an average
nucleus size of practically 1 in this setup. We also
set the maximum number of vocabulary items in

a nucleus to 20, which even the largest p values
rarely reached in our experiments.

Table 1 shows performances (mean over five
different seeds) of all generators in BLEU-1 (B1),
ROUGE-4 (R4) and METEOR (MT), the variant in
each metric family that showed the highest corre-
lation with downstream QA performance. We also
show QA performances measured by SQuAD’s of-
ficial F1 score metric, which computes the degree
of lexical overlap between the predicted and the
target answer. As expected, model performance
improves with both model size and # of training
instances, both in intrinsic evaluation and on QA.
Importantly, however, while BEAM has the best in-
trinsic evaluation results for all eight models, it is
competitive in QA only in the lowest-resource setup
(5% training data). On the other hand, NS@.95 has
the lowest QG but the highest QA scores, especially
when sufficient training data is available (20% or
more). Note that in these experiments we generate
a single question per prompt; yet generation diver-
sity across different prompts yields higher-quality
QA training data for NS, which is also a faster al-
ternative to BEAM. Sampling five questions per
prompt from the large-100% model with NS@.95
provides additional improvement (F1 = 86.4).

Out-of-Domain Experiments: As we increase
p to make generation more diverse, the chances
of NS@p drawing less likely candidates and thus
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model-%train generator R1 QA F1

base-20

b = 5 34.6 56.6
p = .1 34.6 56.3
p = .5 34.2 57.1
p = .75 32.4 57.5
p = .95 28.9 58.4

base-100

b = 5 37.9 57.5
p = .1 37.9 58.4
p = .5 37.6 59.2
p = .75 35.7 60.4
p = .95 31.5 61.3

large-20

b = 5 36.3 60.4
p = .1 36.3 59.9
p = .5 36.1 59.7
p = .75 34.7 60.8
p = .95 30.9 60.6

large-100

b = 5 39.1 60.6
p = .1 39.2 61.5
p = .5 39.0 61.9
p = .75 37.5 62.1
p = .95 33.4 63.8

Table 2: Despite lower ROUGE scores, diverse QG
with nucleus sampling improves QA results over
beam search in zero-shot out-of-domain generation for
NewsQA.

generating incorrect questions also go up. In Table
1, the gains in QA due to QG diversity are generally
greater than any drop in performance likely due to
decreased accuracy. To find out if the same holds
in a more challenging out-of-domain setup, we per-
form a zero-shot application (i.e., with no further
fine-tuning) of four of the above SQuAD-trained
QG models to NewsQA, a reading comprehension
dataset of CNN news articles (Trischler et al., 2017).
Table 2 shows results on the answerable subset of
NewsQA, with 76k train (from which we extract
our QG prompts) and 4k test (used for QA evalua-
tion) samples: while the absolute scores are lower
than those in SQuAD, the relative performances
of BEAM and NS are similar both in intrinsic (the
best predictor of QA performance for NewsQA was
ROUGE-4) and extrinsic (QA F1) evaluation.

Comparison with and Augmentation of Human
Generation: To assess the quality of our gen-
erated questions in absolute terms, in Table 3 we
compare the QA performances of the best QG model
above (large-100%, NS@.95) and corresponding
human annotations (GT). Impressively, in-domain
model performance on QA is very similar to that
of GT, while zero-shot score on NewsQA is also
within roughly 4 points of GT.

We also evaluate the generator’s ability to aug-
ment human-generated questions. Taking an ap-
proach similar to prior augmentation experiments

dataset train source QA F1

SQuAD1-Du
GT (dev) 86.3
SYNTH 86.1

5⇥-SYNTH 86.4
SYNTH* + GT 88.6

NewsQA
GT (train) 67.9
SYNTH 63.8

SYNTH* + GT 69.2

Table 3: Diverse QG (SYNTH; NS@.95) shows impres-
sive QA results compared to human annotation (GT),
and in augmenting GT (SYNTH* + GT).

(Dong et al., 2019; Alberti et al., 2019), we gener-
ate a large synthetic dataset SYNTH* of 4 million
examples from Wikipedia passages. The answer
spans in these examples are extracted from their
corresponding passages using a separate QA model
which we train on ten SQuAD question types (in-
stead of full-length questions): what, which, where,
who, when, why, how, how many, how much, and
how long. SYNTH* is used to fine-tune a BERT-
wwm LM for QA, which is finally fine-tuned on
the target datasets (SQuAD1-Du, NewsQA). As
Table 3 shows, SYNTH* achieves 1.3–2.3 abso-
lute points improvements for the high-performance
large BERT-wwm model.

Summary of Results: The above results empiri-
cally show that given enough training data and suf-
ficiently powerful QG models: (1) diverse QG leads
to strong in-domain and out-of-domain QA training,
(2) asking the “most likely” question (i.e., beam
search) every time is less useful, and (3) existing
generation metrics are inadequate for evaluating di-
verse question generators as sources of QA training
examples.

4 Intrinsic Evaluation of Diverse QG

To better understand the performance of existing
generation metrics as measures of diverse QG, we
take the set of all 32 samplers in Table 1 (e.g.,
base-100%-p@.75) and randomly generate a large
number (100k) of subsets, each consisting of n
samplers (2  n  32) to be evaluated. We as-
sign each n (# of samplers) to a bin and measure
performances of QG metrics separately in each bin.
The process is repeated for Table 2. Note that the
member sets of a given bin, say n = 5, all contain
the same number of generators (5), but the actual
selection of generators are generally different in
different members of a bin. This setup allows us to
evaluate a varying number of generators with dif-
ferent capacities and performance, and to average
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Figure 2: Performances of existing and proposed gen-
eration metrics as measures of diverse QG for QA. The
proposed metric shows strong correlations (Spearman’s
⇢ > 90%) with QA F1 in both in-domain and out-of-
domain evaluation.

over a large number of experiments.
Figure 2 shows for all bins a rather poor, for

some bins negative, median Spearman’s ⇢ score
between the best QG metric (SQuAD1-Du: ROUGE-
4, NewsQA: ROUGE-1) and downstream QA F1.
These results provide quantitative confirmation that
ROUGE and similar metrics are inadequate evalua-
tors of diverse QG for QA due to their sole focus on
accuracy with respect to available GTs. This leads
us to our final research question: How to intrin-

sically measure the overall quality of QG for QA
under diverse nucleus sampling?

Given the categorical distribution PN of vocab-
ulary items in a model’s nucleus N, we propose
to measure both its accuracy (relative to GT) and
diversity of generation.

Accuracy: Similarly to LM perplexity, for
timestep t of evaluation example s, we take the
probability PN(qs,t | p, qs,1:t�1) of the model
(more precisely, its nucleus N) generating the GT
token qs,t, given prompt p and GT history qs,1:t�1.
We then average over all evaluation (s, t) pairs to
compute model accuracy P (GT).

Diversity: An intuitive measure of the diversity
of a model’s nucleus N is the average entropy of
PN over all evaluation timesteps. However, entropy
is an unbounded measure, and has a non-linear
inverse growth relative to our proposed accuracy
metric, which makes their mathematical combina-
tion difficult. We instead rely on the observation
that as we increase p in NS@p to make generation

more diverse, the cardinality of N also goes up, on
average, and so does the probability P (GT 2 N)
that N contains the GT token. Our experiments on
both datasets showed that this measure of diver-
sity, computed as the proportion of times N was
found to include GT across all timesteps in the QG
evaluation data, has high positive correlations with
the entropy of PN (Pearson’s r: 98%–99%, Spear-
man’s ⇢: 87%–95%). Note that unlike the accuracy
metric P (GT), at each timestep t, the diversity met-
ric P (GT 2 N) is Boolean: the GT token is either
in N or it is not. But importantly, its average across
many evaluation timesteps is a probability mea-
sure of diversity, which enables a straightforward
convex combination with our proposed accuracy
metric.

Our final QG metric is a weighted sum of accu-
racy and diversity: w·P (GT)+(1�w)·P (GT 2 N),
where w 2 [0, 1] is a tunable parameter reflecting
the weight of accuracy relative to diversity. In our
experiments, this metric outperforms all existing
metrics by a large margin for a wide range of w
values. In Figure 2, the median Spearman’s ⇢ score
between this metric and QA F1 in both in-domain
(w=.7) and out-of-domain (w=.8) evaluation is
over 90% for all bins. We observe similar per-
formance differences between the proposed and
existing metrics with Pearson’s r.

Given the scope of this paper, we evaluate the
combined metric only on QG, but the underlying
ideas apply to diverse text generation in general.
Further experiments are necessary to evaluate the
metric on other generation tasks.

5 Conclusion

While diversity of generation has received signif-
icant attention in other text generation problems
(e.g., dialog), we show in this paper that it is also
an important and measurable dimension of qual-
ity in question generation for QA. We hope that
our work will encourage further exploration of
diversity-promoting QG and its evaluation. Pos-
sible future directions include a systematic study of
different aspects of QG diversity (e.g., lexical and
factual) and controlled diversification of individual
aspects in generation.
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