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Abstract

Generating explanations for neural networks
has become crucial for their applications in
real-world with respect to reliability and trust-
worthiness. In natural language processing, ex-
isting methods usually provide important fea-
tures which are words or phrases selected from
an input text as an explanation, but ignore the
interactions between them. It poses challenges
for humans to interpret an explanation and con-
nect it to model prediction. In this work, we
build hierarchical explanations by detecting
feature interactions. Such explanations visual-
ize how words and phrases are combined at dif-
ferent levels of the hierarchy, which can help
users understand the decision-making of black-
box models. The proposed method is evalu-
ated with three neural text classifiers (LSTM,
CNN, and BERT) on two benchmark datasets,
via both automatic and human evaluations. Ex-
periments show the effectiveness of the pro-
posed method in providing explanations that
are both faithful to models and interpretable to
humans.

1 Introduction

Deep neural networks have achieved remark-
able performance in natural language processing
(NLP) (Devlin et al., 2018; Howard and Ruder,
2018; Peters et al., 2018), but the lack of under-
standing on their decision making leads them to
be characterized as blackbox models and increases
the risk of applying them in real-world applica-
tions (Lipton, 2016; Burns et al., 2018; Jumelet
and Hupkes, 2018; Jacovi et al., 2018).

Understanding model prediction behaviors has
been a critical factor in whether people will trust
and use these blackbox models (Ribeiro et al.,
2016). A typical work on understanding decision-
making is to generate prediction explanations for
each input example, called local explanation gen-
eration. In NLP, most of existing work on local

explanation generation focuses on producing word-
level or phrase-level explanations by quantifying
contributions of individual words or phrases to a
model prediction (Ribeiro et al., 2016; Lundberg
and Lee, 2017; Lei et al., 2016; Plumb et al., 2018).

Figure 1: Different explanations for a NEGATIVE
movie review a waste of good performance,
where the color of each block represents the contribu-
tion of the corresponding word/phrase/clause (feature)
to the model prediction. From the hierarchical expla-
nation, we obtain a set of features in each timestep (t),
where the most important one is waste of good.

Figure 1 (a) and (b) present a word-level and a
phrase-level explanation generated by the LIME
(Ribeiro et al., 2016) and the Contextual Decom-
position (CD) (Murdoch et al., 2018) respectively
for explaining sentiment classification. Both ex-
planations provide scores to quantify how a word
or a phrase contributes to the final prediction. For
example, the explanation generated by LIME cap-
tures a keyword waste and the explanation from
CD identifies an important phrase waste of.
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However, neither of them is able to explain the
model decision-making in terms of how words and
phrases are interacted with each other and com-
posed together for the final prediction. In this ex-
ample, since the final prediction is NEGATIVE, one
question that we could ask is that how the word
good or a phrase related to the word good con-
tributes to the model prediction. An explanation
being able to answer this question will give users a
better understanding on the model decision-making
and also more confidence to trust the prediction.

The goal of this work is to reveal prediction
behaviors of a text classifier by detecting feature
(e.g., words or phrases) interactions with respect to
model predictions. For a given text, we propose a
model-agnostic approach, called HEDGE (for Hi-
erarchical Explanation via Divisive Generation),
to build hierarchical explanations by recursively
detecting the weakest interactions and then divid-
ing large text spans into smaller ones based on the
interactions. As shown in Figure 1 (c), the hier-
archical structure produced by HEDGE provides a
comprehensive picture of how different granularity
of features interacting with each other within the
model. For example, it shows how the word good
is dominated by others in the model prediction,
which eventually leads to the correct prediction.
Furthermore, the scores of text spans across the
whole hierarchy also help identify the most im-
portant feature waste of good, which can be
served as a phrase-level explanation for the model
prediction.

The contribution of this work is three-fold: (1)
we design a top-down model-agnostic method of
constructing hierarchical explanations via feature
interaction detection; (2) we propose a simple and
effective scoring function to quantify feature con-
tributions with respect to model predictions; and
(3) we compare the proposed algorithm with sev-
eral competitive methods on explanation generation
via both automatic and human evaluations. The
experiments were conducted on sentiment clas-
sification tasks with three neural network mod-
els, LSTM (Hochreiter and Schmidhuber, 1997),
CNN (Kim, 2014), and BERT (Devlin et al., 2018),
on the SST (Socher et al., 2013) and IMDB (Maas
et al., 2011) datasets. The comparison with other
competitive methods illustrates that HEDGE pro-
vides more faithful and human-understandable ex-
planations.

Our implementation is available at https://

github.com/UVa-NLP/HEDGE.

2 Related Work

Over the past years, many approaches have been
explored to interpret neural networks, such as
contextual decomposition (CD) for LSTM (Mur-
doch et al., 2018) or CNN model (Godin
et al., 2018), gradient-based interpretation meth-
ods (Hechtlinger, 2016; Sundararajan et al., 2017),
and attention-based methods (Ghaeini et al., 2018;
Lee et al., 2017; Serrano and Smith, 2019). How-
ever, these methods have limited capacity in real-
world applications, as they require deep under-
standing of neural network architectures (Murdoch
et al., 2018) or only work with specific models
(Alvarez-Melis and Jaakkola, 2018). On the other
hand, model-agnostic methods (Ribeiro et al., 2016;
Lundberg and Lee, 2017) generate explanations
solely based on model predictions and are appli-
cable for any black-box models. In this work, we
mainly focus on model-agnostic explanations.

2.1 Model-Agnostic Explanations

The core of generating model-agnostic explana-
tions is how to efficiently evaluate the importance
of features with respect to the prediction. So far,
most of existing work on model-agnostic expla-
nations focus on the word level. For example,
Li et al. (2016) proposed Leave-one-out to probe
the black-box model by observing the probabil-
ity change on the predicted class when erasing a
certain word. LIME proposed by Ribeiro et al.
(2016) estimates individual word contribution lo-
cally by linear approximation from perturbed ex-
amples. A line of relevant works to ours is Shapley-
based methods, where the variants of Shapley val-
ues (Shapley, 1953) are used to evaluate feature
importance, such as SampleShapley (Kononenko
et al., 2010), KernelSHAP (Lundberg and Lee,
2017), and L/C-Shapley (Chen et al., 2018). They
are still in the category of generating word-level
explanations, while mainly focus on addressing the
challenge of computational complexity of Shapley
values (Datta et al., 2016). In this work, inspired
by an extension of Shapley values (Owen, 1972;
Grabisch, 1997; Fujimoto et al., 2006), we design a
function to detect feature interactions for building
hierarchical model-agnostic explanations in sub-
section 3.1. While, different from prior work of
using Shapley values for feature importance evalu-
ation, we propose an effective and simpler way to

https://github.com/UVa-NLP/HEDGE
https://github.com/UVa-NLP/HEDGE
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evaluate feature importance as described in subsec-
tion 3.3, which outperforms Shapley-based meth-
ods in selecting important words as explanations in
subsection 4.2.

2.2 Hierarchical Explanations

Addressing the limitation of word-level explana-
tions (as discussed in section 1) has motivated the
work on generating phrase-level or hierarchical ex-
planations. For example, Tsang et al. (2018) gener-
ated hierarchical explanations by considering the
interactions between any features with exhaustive
search, which is computationally expensive.

Singh et al. (2019) proposed agglomerative con-
textual decomposition (ACD) which utilizes CD
scores (Murdoch et al., 2018; Godin et al., 2018) for
feature importance evaluation and employ a hier-
archical clustering algorithm to aggregate features
together for hierarchical explanation. Furthermore,
Jin et al. (2019) indicated the limitations of CD and
ACD in calculating phrase interactions in a formal
context, and proposed two explanation algorithms
by quantifying context independent importance of
words and phrases.

A major component of the proposed method on
feature interaction detection is based on the Shapley
interaction index (Owen, 1972; Grabisch, 1997; Fu-
jimoto et al., 2006), which is extended in this work
to capture the interactions in a hierarchical struc-
ture. Lundberg et al. (2018) calculated features
interactions via SHAP interaction values along a
given tree structure. Chen and Jordan (2019) sug-
gested to utilize a linguistic tree structure to capture
the contributions beyond individual features for
text classification. The difference with our work is
that both methods (Lundberg et al., 2018; Chen and
Jordan, 2019) require hierarchical structures given,
while our method constructs structures solely based
on feature interaction detection without resorting
external structural information. In addition, differ-
ent from Singh et al. (2019), our algorithm uses
a top-down fashion to divide long texts into short
phrases and words based on the weakest interac-
tions, which is shown to be more effective and
efficient in the experiments in section 4.

3 Method

This section explains the proposed algorithm on
building hierarchical explanations (subsection 3.1)
and two critical components of this algorithm: de-
tecting feature interaction (subsection 3.2) and

quantifying feature importance (subsection 3.3).

Algorithm 1 Hierarchical Explanation via Divisive
Generation

1: Input: text x with length n, and predicted
label ŷ

2: Initialize the original partition P0 ← {x(0,n]}
3: Initialize the contribution set C0 = ∅
4: Initialize the hierarchyH = [P0]
5: for t = 1, . . . , n− 1 do
6: Find x(si,si+1] and j by solving Equation 1
7: Update the partition

P ′t ← Pt−1\{x(si,si+1]}
Pt ← P ′t ∪ {x(si,j],x(j,si+1]}

8: H.add(Pt)
9: Update the contribution set C with

C′t ← Ct−1 ∪ {(x(si,j], ψ(x(si,j]))}
Ct ← C′t ∪ {(x(j,si+1], ψ(x(j,si+1]))}

10: end for
11: Output: Cn−1,H

3.1 Generating Hierarchical Explanations
For a classification task, let x = (x1, . . . , xn) de-
note a text with n words and ŷ be the prediction
label from a well-trained model. Furthermore,
we define P = {x(0,s1],x(s1,s2], . . . ,x(sP−1,n]}
be a partition of the word sequence with P text
spans, where x(si,si+1] = (xsi+1, . . . , xsi+1). For
a given text span x(si,si+1], the basic procedure of
HEDGE is to divide it into two smaller text spans
x(si,j] and x(j,si+1], where j is the dividing point
(si < j < si+1), and then evaluate their contribu-
tions to the model prediction ŷ.

Algorithm 1 describes the whole procedure of
dividing x into different levels of text spans and
evaluating the contribution of each of them. Start-
ing from the whole text x, the algorithm first di-
vides x into two segments. In the next iteration,
it will pick one of the two segments and further
split it into even smaller spans. As shown in algo-
rithm 1, to perform the top-down procedure, we
need to answer the questions: for the next timestep,
which text span the algorithm should pick to split
and where is the dividing point?

Both questions can be addressed via the follow-
ing optimization problem:

min
x(si,si+1]

∈P
min

j∈(si,si+1)
φ(x(si,j],x(j,si+1] | P),

(1)
where φ(x(si,j],x(j,si+1] | P) defines the interac-
tion score between x(si,j] and x(j,si+1] given the
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current partition P . The detail of this score func-
tion will be explained in subsection 3.2.

For a given x(si,si+1] ∈ P , the inner optimiza-
tion problem will find the weakest interaction point
to split the text span x(si,si+1] into two smaller ones.
It answers the question about where the dividing
point should be for a given text span. A trivial case
of the inner optimization problem is on a text span
with length 2, since there is only one possible way
to divide it. The outer optimization answers the
question about which text span should be picked.
This optimization problem can be solved by simply
enumerating all the elements in a partition P . A
special case of the outer optimization problem is
at the first iteration t = 1, where P0 = {x(0,n]}
only has one element, which is the whole input text.
Once the partition is updated, it is then added to
the hierarchyH.

The last step in each iteration is to evaluate the
contributions of the new spans and update the con-
tribution set C as in line 9 of the algorithm 1. For
each, the algorithm evaluates its contribution to the
model prediction with the feature importance func-
tion ψ(·) defined in Equation 5. The final output
of algorithm 1 includes the contribution set Cn−1
which contains all the produced text spans in each
timestep together with their importance scores, and
the hierarchyH which contains all the partitions of
x along timesteps. A hierarchical explanation can
be built based on Cn−1 and H by visualizing the
partitions with all text spans and their importance
scores along timesteps, as Figure 1 (c) shows.

Note that with the feature interaction function
φ(·, ·), we could also design a bottom-up approach
to merge two short text spans if they have the
strongest interaction. Empirically, we found that
this bottom-up approach performs worse than the
algorithm 1, as shown in Appendix A.

3.2 Detecting Feature Interaction

For a given text span x(si,si+1] ∈ P and
the dividing point j, the new partition will be
N = P\{x(si,si+1]} ∪ {x(si,j],x(j,si+1]} =
{x(0,s1], . . . ,x(si,j],x(j,si+1], . . . ,x(sP−1,n]}. We
consider the effects of other text spans in N
when calculate the interaction between x(si,j]

and x(j,si+1], since the interaction between two
words/phrases is closely dependent on the context
(Hu et al., 2016; Chen et al., 2016). We adopt the
Shapley interaction index from coalition game the-
ory (Owen, 1972; Grabisch, 1997; Fujimoto et al.,

2006) to calculate the interaction. For simplicity,
we denote x(si,j] and x(j,si+1] as j1 and j2 respec-
tively. The interaction score is defined as (Lund-
berg et al., 2018),

φ(j1,j2 |P)=
∑

S⊆N\{j1,j2}

|S|!(P − |S| − 1)!

P !
γ(j1,j2,S),

(2)

where S represents a subset of text spans in
N\{j1, j2}, |S| is the size of S, and γ(j1, j2, S)
is defined as follows,

γ(j1,j2,S) = E[f(x′) |S ∪{j1,j2}]− E[f(x′) |S ∪{j1}]
− E[f(x′) | S ∪ {j2}] + E[f(x′) | S],

(3)

where x′ is the same as x except some missing
words that are not covered by the given subset (e.g.
S), f(·) denotes the model output probability on
the predicted label ŷ, and E[f(x′) | S] is the expec-
tation of f(x′) over all possible x′ given S. In prac-
tice, the missing words are usually replaced with
a special token <pad>, and f(x′) is calculated to
estimate E[f(x′)|S] (Chen et al., 2018; Datta et al.,
2016; Lundberg and Lee, 2017). We also adopt
this method in our experiments. Another way to
estimate the expectation is to replace the missing
words with substitute words randomly drawn from
the full dataset, and calculate the empirical mean
of all the sampling data (Kononenko et al., 2010;
Štrumbelj and Kononenko, 2014), which has a rel-
atively high computational complexity.

With the number of text spans (features) increas-
ing, the exponential number of model evaluations
in Equation 2 becomes intractable. We calculate an
approximation of the interaction score based on the
assumption (Chen et al., 2018; Singh et al., 2019;
Jin et al., 2019): a word or phrase usually has strong
interactions with its neighbours in a sentence. The
computational complexity can be reduced to poly-
nomial by only consideringm neighbour text spans
of j1 and j2 inN . The interaction score is rewritten
as

φ(j1,j2 |P)=
∑

S⊆Nm\{j1,j2}

|S|!(M − |S| − 2)!

(M − 1)!
γ(j1,j2,S),

(4)

where Nm is the set containing j1, j2 and their
neighbours, and M = |Nm|. In section 4, we set
m = 2, which performs well. The performance
can be further improved by increasing m, but at the
cost of increased computational complexity.
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3.3 Quantifying Feature Importance
To measure the contribution of a feature x(si,si+1]

to the model prediction, we define the importance
score as

ψ(x(si,si+1]) =fŷ(x(si,si+1])

− max
y′ 6=ŷ,y′∈Y

fy′(x(si,si+1]),
(5)

where fŷ(x(si,si+1]) is the model output on the pre-
dicted label ŷ; maxy′ 6=ŷ,y′∈Y fy′(x(si,si+1]) is the
highest model output among all classes excluding ŷ.
This importance score measures how far the predic-
tion on a given feature is to the prediction boundary,
hence the confidence of classifying x(si,si+1] into
the predicted label ŷ. Particularly in text classi-
fication, it can be interpreted as the contribution
to a specific class ŷ. The effectiveness of Equa-
tion 5 as feature importance score is verified in
subsection 4.2, where HEDGE outperforms several
competitive baseline methods (e.g. LIME (Ribeiro
et al., 2016), SampleShapley (Kononenko et al.,
2010)) in identifying important features.

4 Experiments

The proposed method is evaluated on text classifi-
cation tasks with three typical neural network mod-
els, a long short-term memories (Hochreiter and
Schmidhuber, 1997, LSTM), a convolutional neu-
ral network (Kim, 2014, CNN), and BERT (Devlin
et al., 2018), on the SST (Socher et al., 2013) and
IMDB (Maas et al., 2011) datasets, via both auto-
matic and human evaluations.

4.1 Setup
Datasets. We adopt the SST-2 (Socher et al.,
2013) which has 6920/872/1821 examples in the
train/dev/test sets with binary labels. The IMDB
(Maas et al., 2011) also has binary labels with
25000/25000 examples in the train/test sets. We
hold out 10% of the training examples as the devel-
opment set.

Models. The CNN model (Kim, 2014) includes a
single convolutional layer with filter sizes ranging
from 3 to 5. The LSTM (Hochreiter and Schmidhu-
ber, 1997) has a single layer with 300 hidden states.
Both models are initialized with 300-dimensional
pretrained word embeddings (Mikolov et al., 2013).
We use the pretrained BERT model1 with 12 trans-

1https://github.com/huggingface/
pytorch-transformers

former layers, 12 self-attention heads, and the hid-
den size of 768, which was then fine-tuned with
different downstream tasks to achieve the best per-
formance. Table 1 shows the best performance of
the models on both datasets in our experiments,
where BERT outperforms CNN and LSTM with
higher classification accuracy.

Models
Dataset

SST IMDB

LSTM 0.842 0.870
CNN 0.850 0.901
BERT 0.924 0.930

Table 1: The classification accuracy of different models
on the SST and IMDB datasets.

4.2 Quantitative Evaluation
We adopt two metrics from prior work on evalu-
ating word-level explanations: the area over the
perturbation curve (AOPC) (Nguyen, 2018; Samek
et al., 2016) and the log-odds scores (Shrikumar
et al., 2017; Chen et al., 2018), and define a new
evaluation metric called cohesion-score to evaluate
the interactions between words within a given text
span. The first two metrics measure local fidelity
by deleting or masking top-scored words and com-
paring the probability change on the predicted label.
They are used to evaluate Equation 5 in quantify-
ing feature contributions to the model prediction.
The cohesion-score measures the synergy of words
within a text span to the model prediction by shuf-
fling the words to see the probability change on the
predicted label.

AOPC. By deleting top k% words, AOPC cal-
culates the average change in the prediction prob-
ability on the predicted class over all test data as
follows,

AOPC(k) =
1

N

N∑
i=1

{p(ŷ | xi)− p(ŷ | x̃(k)
i )}, (6)

where ŷ is the predicted label, N is the number
of examples, p(ŷ | ·) is the probability on the pre-
dicted class, and x̃

(k)
i is constructed by dropping

the k% top-scored words from xi. Higher AOPCs
are better, which means that the deleted words are
important for model prediction. To compare with
other word-level explanation generation methods
under this metric, we select word-level features
from the bottom level of a hierarchical explana-
tion and sort them in the order of their estimated
importance to the prediction.

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
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Datasets Methods
LSTM CNN BERT

AOPC Log-odds AOPC Log-odds AOPC Log-odds

SST

Leave-one-out 0.441 -0.443 0.434 -0.448 0.464 -0.723
CD 0.384 -0.382 - - - -
LIME 0.444 -0.449 0.473 -0.542 0.134 -0.186
L-Shapley 0.431 -0.436 0.425 -0.459 0.435 -0.809
C-Shapley 0.423 -0.425 0.415 -0.446 0.410 -0.754
KernelSHAP 0.360 -0.361 0.387 -0.423 0.411 -0.765
SampleShapley 0.450 -0.454 0.487 -0.550 0.462 -0.836
HEDGE 0.458 -0.466 0.494 -0.567 0.479 -0.862

IMDB

Leave-one-out 0.630 -1.409 0.598 -0.806 0.335 -0.849
CD 0.495 -1.190 - - - -
LIME 0.764 -1.810 0.691 -1.091 0.060 -0.133
L-Shapley 0.637 -1.463 0.623 -0.950 0.347 -1.024
C-Shapley 0.629 -1.427 0.613 -0.928 0.331 -0.973
KernelSHAP 0.542 -1.261 0.464 -0.727 0.223 -0.917
SampleShapley 0.757 -1.597 0.707 -1.108 0.355 -1.037
HEDGE 0.783 -1.873 0.719 -1.144 0.411 -1.126

Table 2: AOPCs and log-odds scores of different interpretation methods in explaining different models on the SST
and IMDB datasets.

Log-odds. Log-odds score is calculated by aver-
aging the difference of negative logarithmic prob-
abilities on the predicted class over all of the test
data before and after masking the top r% features
with zero paddings,

Log-odds(r) =
1

N

N∑
i=1

log
p(ŷ | x̃(r)

i )

p(ŷ | xi)
. (7)

The notations are the same as in Equation 6 with the
only difference that x̃(r)

i is constructed by replacing
the top r% word features with the special token
〈pad〉 in xi. Under this metric, lower log-odds
scores are better.

Cohesion-score. We propose cohesion-score to
justify an important text span identified by HEDGE.
Given an important text span x(a,b], we ran-
domly pick a position in the word sequence
(x1, . . . , xa, xb+1, . . . , xn) and insert a word back.
The process is repeated until a shuffled version
of the original sentence x̄ is constructed. The
cohesion-score is the difference between p(ŷ | x)
and p(ŷ | x̄). Intuitively, the words in an important
text span have strong interactions. By perturbing
such interactions, we expect to observe the output
probability decreasing. To obtain a robust evalua-
tion, for each sentence xi, we construct Q different
word sequences {x̄(q)

i }
Q
q=1 and compute the aver-

age as

Cohesion-score =
1

N

N∑
i=1

1

Q

Q∑
q=1

(p(ŷ | xi)− p(ŷ | x̄(q)
i )),

(8)

where x̄
(q)
i is the qth perturbed version of xi, Q is

set as 100, and the most important text span in the
contribution set C is considered. Higher cohesion-
scores are better.

4.2.1 Results
We compare HEDGE with several competitive base-
lines, namely Leave-one-out (Li et al., 2016),
LIME (Ribeiro et al., 2016), CD (Murdoch et al.,
2018), Shapley-based methods, (Chen et al., 2018,
L/C-Shapley), (Lundberg and Lee, 2017, Ker-
nelSHAP), and (Kononenko et al., 2010, Sample-
Shapley), using AOPC and log-odds metrics; and
use cohesion-score to compare HEDGE with an-
other hierarchical explanation generation method
ACD (Singh et al., 2019).

The AOPCs and log-odds scores on different
models and datasets are shown in Table 2, where
k = r = 20. Additional results of AOPCs and log-
odds changing with different k and r are shown
in Appendix B. For the IMDB dataset, we tested
on a subset with 2000 randomly selected samples
due to computation costs. HEDGE achieves the
best performance on both evaluation metrics. Sam-
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Methods Models
Cohesion-score
SST IMDB

HEDGE

CNN 0.016 0.012
BERT 0.124 0.103
LSTM 0.020 0.050

ACD LSTM 0.015 0.038

Table 3: Cohesion scores of HEDGE and ACD in inter-
preting different models on the SST and IMDB datasets.
For ACD, we adopt the existing application from the
original paper (Singh et al., 2019) to explain LSTM on
text classification.

(a) HEDGE for LSTM on the SST.

(b) ACD for LSTM on the SST.

Figure 2: Compare HEDGE with ACD in interpreting
the LSTM model on a negative movie review from the
SST dataset, where LSTM makes a wrong prediction
(POSITIVE). The importance scores of HEDGE and CD
scores are normalized for comparison.

pleShapley also achieves a good performance with
the number of samples set as 100, but the com-
putational complexity is 200 times than HEDGE.
Other variants, L/C-Shapley and KernelSHAP, ap-
plying approximations to Shapley values perform
worse than SampleShapley and HEDGE. LIME
performs comparatively to SampleShapley on the

LSTM and CNN models, but is not fully capable
of interpreting the deep neural network BERT. The
limitation of context decomposition mentioned by
Jin et al. (2019) is validated by the worst perfor-
mance of CD in identifying important words. We
also observed an interesting phenomenon that the
simplest baseline Leave-one-out can achieve rela-
tively good performance, even better than HEDGE

when k and r are small. And we suspect that is
because the criteria of Leave-one-out for picking
single keywords matches the evaluation metrics.
Overall, experimental results demonstrate the ef-
fectiveness of Equation 5 in measuring feature im-
portance. And the computational complexity is
only O(n), which is much smaller than other base-
lines (e.g. SampleShapley, and L/C-Shapley with
polynomial complexity).

Table 3 shows the cohesion-scores of HEDGE

and ACD with different models on the SST and
IMDB datasets. HEDGE outperforms ACD with
LSTM, achieving higher cohesion-scores on both
datasets, which indicates that HEDGE is good at
capturing important phrases. Comparing the results
of HEDGE on different models, the cohesion-scores
of BERT are significantly higher than LSTM and
CNN. It indicates that BERT is more sensitive to
perturbations on important phrases and tends to
utilize context information for predictions.

4.3 Qualitative Analysis

For qualitative analysis, we present two typical ex-
amples. In the first example, we compare HEDGE

with ACD in interpreting the LSTM model. Fig-
ure 2 visualizes two hierarchical explanations,
generated by HEDGE and ACD respectively, on
a negative movie review from the SST dataset.
In this case, LSTM makes a wrong prediction
(POSITIVE). Figure 2(a) shows HEDGE correctly
captures the sentiment polarities of bravura and
emptiness, and the interaction between them
as bravura exercise flips the polarity of in
emptiness to positive. It explains why the
model makes the wrong prediction. On the other
hand, ACD incorrectly marks the two words with
opposite polarities, and misses the feature interac-
tion, as Figure 2(b) shows.

In the second example, we compare HEDGE

in interpreting two different models (LSTM and
BERT). Figure 3 visualizes the explanations on a
positive movie review. In this case, BERT gives the
correct prediction (POSITIVE), while LSTM makes



5585

(a) HEDGE for LSTM on SST.

(b) HEDGE for BERT on SST.

Figure 3: Compare HEDGE in interpreting different
models (LSTM and BERT) on a positive movie review
from the SST dataset, where BERT makes the correct
prediction (POSITIVE), while LSTM makes a wrong
prediction (NEGATIVE). HEDGE explains that BERT
captures the important phrase not a bad for mak-
ing the correct prediction, while LSTM ignores it and
is misled by the negative word bad.

a wrong prediction (NEGATIVE). The comparison
between Figure 3(a) and 3(b) shows the difference
of feature interactions within the two models and
explains how a correct/wrong prediction was made.
Specifically, Figure 3(b) illustrates that BERT cap-
tures the key phrase not a bad at step 1, and
thus makes the positive prediction, while LSTM
(as shown in Figure 3(a)) misses the interaction
between not and bad, and the negative word bad
pushes the model making the NEGATIVE predic-
tion. Both cases show that HEDGE is capable of ex-
plaining model prediction behaviors, which helps
humans understand the decision-making. More
examples are presented in Appendix C due to the
page limitation.

4.4 Human Evaluation

We had 9 human annotators from the Amazon Me-
chanical Turk (AMT) for human evaluation. The
features (e.g., words or phrases) with the highest
importance score given by HEDGE and other base-
lines are selected as the explanations. Note that
HEDGE and ACD can potentially give very long
top features which are not user-friendly in human
evaluation, so we additionally limit the maximum
length of selected features to five. We provided the
input text with different explanations in the user in-
terface (as shown in Appendix D) and asked human
annotators to guess the model’s prediction (Nguyen,
2018) from {“Negative”, “Positive”, “N/A”} based
on each explanation, where “N/A” was selected
when annotators cannot guess the model’s predic-
tion. We randomly picked 100 movie reviews from
the IMDB dataset for human evaluation.

There are two dimensions of human evaluation.
We first compare HEDGE with other baselines us-
ing the predictions made by the same LSTM model.
Second, we compare the explanations generated by
HEDGE on three different models: LSTM, CNN,
and BERT. We measure the number of human an-
notations that are coherent with the actual model
predictions, and define the coherence score as the
ratio between the coherent annotations and the total
number of examples.

4.4.1 Results
Table 4 shows the coherence scores of eight differ-
ent interpretation methods for LSTM on the IMDB
dataset. HEDGE outperforms other baselines with
higher coherence score, which means that HEDGE

can capture important features which are highly
consistent with human interpretations. LIME is
still a strong baseline in providing interpretable ex-
planations, while ACD and Shapley-based methods
perform worse. Table 5 shows both the accuracy
and coherence scores of different models. HEDGE

succeeds in interpreting black-box models with rel-
atively high coherence scores. Moreover, although
BERT can achieve higher prediction accuracy than
the other two models, its coherence score is lower,
manifesting a potential tradeoff between accuracy
and interpretability of deep models.

5 Conclusion

In this paper, we proposed an effective method,
HEDGE, building model-agnostic hierarchical in-
terpretations via detecting feature interactions. In
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Methods Coherence Score

Leave-one-out 0.82
ACD 0.68
LIME 0.85
L-Shapley 0.75
C-Shapley 0.73
KernelSHAP 0.56
SampleShapley 0.78
HEDGE 0.89

Table 4: Human evaluation of different interpretation
methods with LSTM model on the IMDB dataset.

Models Accuracy Coherence scores

LSTM 0.87 0.89
CNN 0.90 0.84
BERT 0.97 0.75

Table 5: Human evaluation of HEDGE with different
models on the IMDB dataset.

this work, we mainly focus on sentiment classifi-
cation task. We test HEDGE with three different
neural network models on two benchmark datasets,
and compare it with several competitive baseline
methods. The superiority of HEDGE is approved
by both automatic and human evaluations.
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A Comparison between Top-down and
Bottom-up Approaches

Given the sentence a waste of good
performance for example, Figure 4 shows the
hierarchical interpretations for the LSTM model
using the bottom-up and top-down approaches
respectively. Figure 4(a) shows that the interaction
between waste and good can not be captured
until the last (top) layer, while the important
phrase waste of good can be extracted in the
intermediate layer by top-down algorithm. We can
see that waste flips the polarity of of good to
negative, causing the model predicting negative
as well. Top-down segmentation performs better
than bottom-up in capturing feature interactions.
The reason is that the bottom layer contains more
features than the top layer, which incurs larger
errors in calculating interaction scores. Even
worse, the calculation error will propagate and
accumulate during clustering.

(a) Bottom-up clustering.

(b) Top-down segmentation.

Figure 4: Hierarchical interpretations for the LSTM
model using the bottom-up and top-down approaches
respectively. Red and blue colors represent the nega-
tive and positive sentiments respectively.

B Results of AOPCs and log-odds
changing with different k and r

(a) AOPCs of LSTM on the SST dataset.

(b) Log-odds of LSTM on the SST dataset.

Figure 5: The AOPC and log-odds for LSTM on the
SST dataset.
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(a) AOPCs of LSTM on the IMDB dataset.

(b) Log-odds of LSTM on the IMDB dataset.

Figure 6: The AOPC and log-odds for LSTM on the
IMDB dataset.

(a) AOPCs of CNN on the SST dataset.

(b) Log-odds of CNN on the SST dataset.

Figure 7: The AOPC and log-odds for CNN on the SST
dataset.



5590

(a) AOPCs of CNN on the IMDB dataset.

(b) Log-odds of CNN on the IMDB dataset.

Figure 8: The AOPC and log-odds for CNN on the
IMDB dataset.

(a) AOPCs of BERT on the SST dataset.

(b) Log-odds of BERT on the SST dataset.

Figure 9: The AOPC and log-odds for BERT on the
SST dataset.
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(a) AOPCs of BERT on the IMDB dataset.

(b) Log-odds of BERT on the IMDB dataset.

Figure 10: The AOPC and log-odds for BERT on the
IMDB dataset.

C Visualization of Hierarchical
Interpretations

Figure 11: HEDGE for BERT on a positive movie re-
view from the SST dataset. BERT makes the correct
prediction because it captures the interaction between
never and fails.

Figure 12: HEDGE for LSTM on a positive movie re-
view from the SST dataset. LSTM makes the wrong
prediction because it misses the interaction between
never and fails.

Figure 13: ACD for LSTM on a positive movie review
from the SST dataset, on which LSTM makes wrong
prediction.

Figure 14: HEDGE for BERT on a positive movie re-
view from the SST dataset, on which BERT makes cor-
rect prediction.
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Figure 15: HEDGE for LSTM on a positive movie
review from the SST dataset, on which LSTM makes
wrong prediction.

Figure 16: ACD for LSTM on a positive movie review
from the SST dataset, on which LSTM makes wrong
prediction.

D Human Evaluation Interface
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Figure 17: Interfaces of Amazon Mechanical Turk where annotators are asked to guess the model’s prediction
based on different explanations.


