
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4843–4858
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

4843

Learning Constraints for Structured Prediction Using Rectifier Networks

Xingyuan Pan, Maitrey Mehta, Vivek Srikumar
School of Computing, University of Utah

{xpan,maitrey,svivek}@cs.utah.edu

Abstract

Various natural language processing tasks are
structured prediction problems where outputs
are constructed with multiple interdependent
decisions. Past work has shown that domain
knowledge, framed as constraints over the out-
put space, can help improve predictive accu-
racy. However, designing good constraints of-
ten relies on domain expertise. In this pa-
per, we study the problem of learning such
constraints. We frame the problem as that of
training a two-layer rectifier network to iden-
tify valid structures or substructures, and show
a construction for converting a trained net-
work into a system of linear constraints over
the inference variables. Our experiments on
several NLP tasks show that the learned con-
straints can improve the prediction accuracy,
especially when the number of training exam-
ples is small.

1 Introduction

In many natural language processing (NLP) tasks,
the outputs are structures which can take the form
of sequences, trees, or in general, labeled graphs.
Predicting such output structures (e.g. Smith, 2011)
involves assigning values to multiple interdepen-
dent variables. Certain joint assignments may be
prohibited by constraints designed by domain ex-
perts. As a simple example, in the problem of ex-
tracting entities and relations from text, a constraint
could disallow the relation “married to” between
two entities if one of the entity is not a “person”. It
has been shown that carefully designed constraints
can substantially improve model performance in
various applications (e.g., Chang et al., 2012; An-
zaroot et al., 2014), especially when the number of
training examples is limited.

Designing constraints often requires task-
specific manual effort. In this paper, we ask the
question: can we use neural network methods to

automatically discover constraints from data, and
use them to predict structured outputs? We provide
a general framework for discovering constraints in
the form of a system of linear inequalities over the
output variables in a problem. These constraints
can improve an already trained model, or be inte-
grated into the learning process for global training.

A system of linear inequalities represents a
bounded or unbounded convex polytope. We ob-
serve that such a system can be expressed as a two-
layer threshold network, i.e., a network with one
hidden layer of linear threshold units and an output
layer with a single threshold unit. This two-layer
threshold network will predict 1 or −1 depending
on whether the system of linear inequalities is sat-
isfied or not. In principle, we could try to train
such a threshold network to discover constraints.
However, the zero-gradient nature of the threshold
activation function prohibits using backpropagation
for gradient-based learning.

Instead, in this paper, we show that a construc-
tion of a specific two-layer rectifier network rep-
resents linear inequality constraints. This network
also contains a single linear threshold output unit,
but in the hidden layer, it contains rectified linear
units (ReLUs). Pan and Srikumar (2016) showed
that a two-layer rectifier network constructed in
such a way is equivalent to a threshold network,
and represents the same set of linear inequalities as
the threshold network with far fewer hidden units.

The linear constraints thus obtained can augment
existing models in multiple ways. For example, if a
problem is formulated as an integer program (e.g.,
Roth and Yih, 2004, 2005; Riedel and Clarke, 2006;
Martins et al., 2009), the learned constraints will
become additional linear inequalities, which can
be used directly. Alternatively, a structure can be
constructed using graph search (e.g., Collins and
Roark, 2004; Daumé et al., 2009; Doppa et al.,
2014; Chang et al., 2015; Wiseman and Rush,

4844

2016), in which case the learned constraints can
filter available actions during search-node expan-
sions. Other inference techniques that extend La-
grangian Relaxation (Komodakis et al., 2007; Rush
et al., 2010; Martins et al., 2011) can also employ
the learned constraints. Essentially, the learned
constraints can be combined with various existing
models and inference techniques and the frame-
work proposed in this paper can be viewed as a
general approach to improve structured prediction.

We report experiments on three NLP tasks to
verify the proposed idea. The first one is an entity
and relation extraction task, in which we aim to
label the entity candidates and identify relations be-
tween them. In this task, we show that the learned
constraints can be used while training the model to
improve prediction. We also show that the learned
constraints in this domain can be interpreted in
a way that is comparable to manually designed
constraints. The second NLP task is to extract ci-
tation fields like authors, journals and date from
a bibliography entry. We treat it as a sequence la-
beling problem and show that learned constraints
can improve an existing first-order Markov model
trained using a structured SVM method (Tsochan-
taridis et al., 2004). In the final experiment we
consider chunking, i.e., shallow parsing, which is
also a sequence labeling task. We train a BiLSTM-
CRF model (Huang et al., 2015) on the training set
with different sizes, and we show that learned con-
straints are particularly helpful when the number
of training examples is small.

In summary, the contributions of this paper are:

1. We propose that rectifier networks can be used
to represent and learn linear constraints for
structured prediction problems.

2. In tasks such as entity and relation extraction,
the learned constraints can exactly recover
the manually designed constraints, and can
be interpreted in a way similar to manually
designed constraints.

3. When manually designed constraints are not
available, we show via experiments that the
learned constraints can improve the original
model’s performance, especially when the
original model is trained with a small dataset.1

1The scripts for replaying the experiments are available at
https://github.com/utahnlp/learning-constraints

2 Representing Constraints

In this section, we formally define structured pre-
diction and constraints. In a structured prediction
problem, we are given an input x belonging to the
instance space, such as sentences or images. The
goal is to predict an output y ∈ Yx, where Yx is the
set of possible output structures for the input x. The
output y have a predefined structure (e.g., trees, or
labeled graphs), and the number of candidate struc-
tures in Yx is usually large, i.e., exponential in the
input size.

Inference in such problems can be framed as
an optimization problem with a linear objective
function:

y∗ = argmax
y∈Yx

α · φ(x,y), (1)

where φ(x,y) is a feature vector representation of
the input-output pair (x,y) and α are learned pa-
rameters. The feature representation φ(x,y) can
be designed by hand or learned using neural net-
works. The feasible set Yx is predefined and known
for every x at both learning and inference stages.
The goal of learning is to find the best parametersα
(and, also perhaps the features φ if we are training
a neural network) using training data, and the goal
of inference is to solve the above argmax problem
given parameters α.

In this paper, we seek to learn additional con-
straints from training examples {(x,y)}. Suppose
we want to learn K constraints, and the kth one
is some Boolean function2: ck(x,y) = 1 if (x,y)
satisfies the kth constraint, and ck(x,y) = −1 if
it does not. Then, the optimal structure y∗ is the
solution to the following optimization problem:

max
y∈Yx

α · φ(x,y), (2)

subject to ∀k, ck(x,y) = 1.

We will show that such learned constraints aid pre-
diction performance.

2.1 Constraints as Linear Inequalities
Boolean functions over inference variables may be
expressed as linear inequalities over them (Roth
and Yih, 2004). In this paper, we represent con-
straints as linear inequalities over some feature vec-
tor ψ(x,y) of a given input-output pair. The kth

constraint ck is equivalent to the linear inequality

wk ·ψ(x,y) + bk ≥ 0, (3)
2We use 1 to indicate true and −1 to indicate false.

https://github.com/utahnlp/learning-constraints

4845

whose weights wk and bias bk are learned. A
Boolean constraint is, thus, a linear threshold func-
tion,

ck(x,y) = sgn
(
wk ·ψ(x,y) + bk

)
. (4)

Here, sgn(·) is the sign function: sgn(x) = 1 if
x ≥ 0, and −1 otherwise.

The feature representations ψ(x,y) should not
be confused with the original featuresφ(x,y) used
in the structured prediction model in Eq. (1) or (2).
Hereafter, we refer to ψ(x,y) as constraint fea-
tures. Constraint features should be general proper-
ties of inputs and outputs, since we want to learn
domain-specific constraints over them. They are
a design choice, and in our experiments, we will
use common NLP features. In general, they could
even be learned using a neural network. Given a
constraint feature representation ψ(·), the goal is
thus to learn the parameters wk’s and bk’s for every
constraint.

2.2 Constraints as Threshold Networks
For an input x, we say the output y is feasible if
it satisfies constraints ck for all k = 1, . . . ,K. We
can define a Boolean variable z(x,y) indicating
whether y is feasible with respect to the input x:
z(x,y) = c1(x,y) ∧ · · · ∧ cK(x,y). That is, z is
a conjunction of all the Boolean functions corre-
sponding to each constraint. Since conjunctions
are linearly separable, we can rewrite z(x,y) as a
linear threshold function:

z(x,y) = sgn
(
1−K +

K∑
k=1

ck(x,y)
)
. (5)

It is easy to see that z(x,y) = 1 if, and only if, all
ck’s are 1—precisely the definition of a conjunction.
Finally, we can plug Eq. (4) into Eq. (5):

z = sgn
(
1−K +

K∑
k=1

sgn
(
wk ·ψ(x,y) + bk

))
(6)

Observe that Eq. (6) is exactly a two-layer thresh-
old neural network: ψ(x,y) is the input to the net-
work; the hidden layer contains K linear threshold
units with parameters wk and bk; the output layer
has a single linear threshold unit. This neural net-
work will predict 1 if the structure y is feasible
with respect to input x, and −1 if it is infeasible.
In other words, constraints for structured predic-
tion problems can be written as two-layer threshold

networks. One possible way to learn constraints
is thus to learn the hidden layer parameters wk

and bk, with fixed output layer parameters. How-
ever, the neural network specified in Eq. (6) is not
friendly to gradient-based learning; the sgn(·) func-
tion has zero gradients almost everywhere. To cir-
cumvent this, let us explore an alternative way of
learning constraints using rectifier networks rather
than threshold networks.

2.3 Constraints as Rectifier Networks

We saw in the previous section that a system of
linear inequalities can be represented as a two-layer
threshold network. In this section, we will see
a special rectifier network that is equivalent to a
system of linear inequalities, and whose parameters
can be learned using backpropagation.

Denote the rectifier (ReLU) activation function
as R(x) = max(0, x). Consider the following two-
layer rectifier network:

z = sgn
(
1−

K∑
k=1

R
(
wk ·ψ(x,y) + bk

))
(7)

The input to the network is still ψ(x,y). There are
K ReLUs in the hidden layer, and one threshold
unit in the output layer. The decision boundary
of this rectifier network is specified by a system
of linear inequalities. In particular, we have the
following theorem (Pan and Srikumar, 2016, Theo-
rem 1):

Theorem 1. Consider a two-layer rectifier net-
work with K hidden ReLUs as in Eq. (7). Define
the set [K] = {1, 2, . . . ,K}. The network output
z(x,y) = 1 if, and only if, for every subset S of
[K], the following linear inequality holds:

1−
∑
k∈S

(
wk ·ψ(x,y) + bk

)
≥ 0 (8)

The proof of Theorem 1 is given in the supple-
mentary material.

To illustrate the idea, we show a simple exam-
ple rectifier network, and convert it to a system of
linear inequalities using the theorem. The rectifier
network contains two hidden ReLUs (K = 2):

z = sgn
(
1−R

(
w1 ·ψ+ b1

)
−R

(
w2 ·ψ+ b2

))
Our theorem says that z = 1 if and only if the fol-
lowing four inequalities hold simultaneously, one

4846

per subset of [K]:
1 ≥ 0

1−
(
w1 ·ψ + b1

)
≥ 0

1−
(
w2 ·ψ + b2

)
≥ 0

1−
(
w1 ·ψ + b1

)
−
(
w2 ·ψ + b2

)
≥ 0

The first inequality, 1 ≥ 0, corresponding to the
empty subset of [K], trivially holds. The rest are
just linear inequalities over ψ.

In general, [K] has 2K subsets, and when S is
the empty set, inequality (8) is trivially true. The
rectifier network in Eq. (7) thus predicts y is a
valid structure for x, if a system of 2K − 1 linear
inequalities are satisfied. It is worth mentioning
that even though the 2K − 1 linear inequalities
are constructed from a power set of K elements,
it does not make them dependent on each other.
With general choice of wk and bk, these 2K − 1
inequalities are linearly independent.

This establishes the fact that a two-layer recti-
fier network of the form of Eq. (7) can represent a
system of linear inequality constraints for a struc-
tured prediction problem via the constraint feature
function ψ.

3 Learning Constraints

In the previous section, we saw that both threshold
and rectifier networks can represent a system of lin-
ear inequalities. We can either learn a threshold net-
work (Eq. (6)) to obtain constraints as in (3), or we
can learn a rectifier network (Eq. (7)) to obtain con-
straints as in (8). The latter offers two advantages.
First, a rectifier network has non-trivial gradients,
which facilitates gradient-based learning3. Second,
since K ReLUs can represent 2K − 1 constraints,
the rectifier network can express constraints more
compactly with fewer hidden units.

We will train the parameters wk’s and bk’s of the
rectifier network in the supervised setting. First,
we need to obtain positive and negative training
examples. We assume that we have training data
for a structured prediction task.

Positive examples can be directly obtained from
the training data of the structured prediction prob-

3The output threshold unit in the rectifier network will not
cause any trouble in practice, because it can be replaced by
sigmoid function during training. Our theorem still follows,
as long as we interpret z(x,y) = 1 as σ(x,y) ≥ 0.5 and
z(x,y) = −1 as σ(x,y) < 0.5. We can still convert the
rectifier network into a system of linear inequalities even if
the output unit is the sigmoid unit.

lem. For each training example (x,y), we can ap-
ply constraint feature extractors to obtain positive
examples of the form (ψ(x,y),+1).

Negative examples can be generated in several
ways; we use simple but effective approaches. We
can slightly perturb a structure y in a training exam-
ple (x,y) to obtain a structure y′ that we assume to
be invalid. Applying the constraint feature extractor
to it gives a negative example (ψ(x,y′),−1). We
also need to ensure that ψ(x,y′) is indeed different
from any positive example. Another approach is to
perturb the feature vector ψ(x,y) directly, instead
of perturbing the structure y.

In our experiments in the subsequent sections,
we will use both methods to generate negative
examples, with detailed descriptions in the sup-
plementary material. Despite their simplicity, we
observed performance improvements. Exploring
more sophisticated methods for perturbing struc-
tures or features (e.g., using techniques explored by
Smith and Eisner (2005), or using adversarial learn-
ing (Goodfellow et al., 2014)) is a future research
direction.

To verify whether constraints can be learned as
described here, we performed a synthetic experi-
ment where we randomly generate many integer
linear program (ILP) instances with hidden shared
constraints. The experiments show that constraints
can indeed be recovered using only the solutions of
the programs. Due to space constraints, details of
this synthetic experiment are in the supplementary
material. In the remainder of the paper we focus
on three real NLP tasks.

4 Entity and Relation Extraction
Experiments

In the task of entity and relation extraction, we are
given a sentence with entity candidates. We seek
to determine the type of each candidate, as in the
following example (the labels are underlined):

[Organization Google LLC] is
headquartered in [Location Mountain
View, California].

We also want to determine directed relations
between the entities. In the above example, the
relation from “Google LLC” to “Mountain View,
California” is OrgBasedIn, and the opposite di-
rection is labeled NoRel, indicating there is no
relation. This task requires predicting a directed

4847

graph and represents a typical structured predic-
tion problem—we cannot make isolated entity and
relation predictions.

Dataset and baseline: We use the dataset from
(Roth and Yih, 2004). It contains 1441 sentences
with labeled entities and relations. There are
three possible entity types: Person, Location
and Organization, and five possible relations:
Kill, LiveIn, WorkFor, LocatedAt and
OrgBasedIn. Additionally, there is a special en-
tity label NoEnt meaning a text span is not an
entity, and a special relation label NoRel indicat-
ing that two spans are unrelated.

We used 70% of the data for training and the
remaining 30% for evaluation. We trained our
baseline model using the integer linear program
(ILP) formulation with the same set of features
as in (Roth and Yih, 2004). The baseline system
includes manually designed constraints from the
original paper. An example of such a constraint
is: if a relation label is WorkFor, the source en-
tity must be labeled Person, and the target entity
must be labeled Organization. For reference,
the supplementary material lists the complete set
of manually designed constraints.

We use three kinds of constraint features: (i)
source-relation indicator, which looks at a given
relation label and the label of its source entity; (ii)
relation-target indicator, which looks at a relation
label and the label of its target entity; and (iii)
relation-relation indicator, which looks at a pair
of entities and focuses on the two relation label,
one in each direction. The details of the constraint
features, negative examples and hyper-parameters
are in the supplementary material.

4.1 Experiments and Results

We compared the performance of two ILP-based
models, both trained in the presence of constraints
with a structured SVM. One model was trained
with manually designed constraints and the other
used learned constraints. These models are com-
pared in Table 1.

We manually inspected the learned constraints
and discovered that they exactly recover the de-
signed constraints, in the sense that the feasible out-
put space is exactly the same regardless of whether
we use designed or learned constraints. As an addi-
tional confirmation, we observed that when a model
is trained with designed constraints and tested with
learned constraints, we get the same model perfor-

Performance Metric Designed Learned

entity F-1 84.1% 83.1%
relation F-1 41.5% 38.2%

Table 1: Comparison of performance on the entity and
relation extraction task, between two ILP models, one
trained with designed constraints (Designed) and one
with learned constraints (Learned).

mance as when tested with designed constraints.
Likewise, a model that is trained with learned
constraints performs identically when tested with
learned and designed constraints.

Below, we give one example of a learned con-
straint, and illustrate how to interpret such a con-
straint. (The complete list of learned constraints
is in the supplementary material.) A learned con-
straint using the source-relation indicator features
is

− 1.98x1 + 3.53x2 − 1.90x3 + 0.11x4

+ 2.66x5 − 2.84x6 − 2.84x7 − 2.84x8

+ 2.58x9 + 0.43x10 + 0.32 ≥ 0

(9)

where x1 through x10 are indicators for
labels NoEnt, Person, Location,
Organization, NoRel, Kill, LiveIn,
WorkFor, LocatedAt, and OrgBasedIn,
respectively. This constraint disallows a relation
labeled as Kill having a source entity labeled as
Location, because −1.90 − 2.84 + 0.32 < 0.
Therefore, the constraint “Location cannot
Kill” is captured in (9). In fact, it is straight-
forward to verify that the inequality in (9)
captures many more constraints such as “NoEnt
cannot LiveIn”, “Location cannot LiveIn”,
“Organization cannot WorkFor”, etc. A
general method for interpreting learned constraints
is a direction of future research.

Note that the metric numbers in Table 1 based
on learned constraints are lower than those based
on designed constraints. Since the feasible space
is the same for both kinds of constraints, the per-
formance difference is due to the randomness of
the ILP solver picking different solutions with the
same objective value. Therefore, the entity and re-
lation experiments in this section demonstrate that
our approach can recover the designed constraints
and provide a way of interpreting these constraints.

4848

5 Citation Field Extraction Experiments

In the citation field extraction task, the input is a
citation entry. The goal is to identify spans corre-
sponding to fields such as author, title, etc. In the
example below, the labels are underlined:

[Author A . M . Turing .] [Title
Computing machinery and intelligence .
] [Journal Mind ,] [Volume 59 ,]
[Pages 433-460 .] [Date October ,
1950 .]

Chang et al. (2007) showed that hand-crafted con-
straints specific to this domain can vastly help mod-
els to correctly identify citation fields. We show
that constraints learned from the training data can
improve a trained model without the need for man-
ual effort.

Dataset and baseline. We use the dataset from
Chang et al. (2007, 2012) whose training, devel-
opment and test splits have 300, 100 and 100 ex-
amples, respectively. We train a first-order Markov
model using structured SVM (Tsochantaridis et al.,
2004) on the training set with the same raw text
features as in the original work.

Constraint features. We explore multiple sim-
ple constraint features ψ(x,y) in the citation field
extraction experiments as shown in Table 2. De-
tailed descriptions of these features, including how
to develop negative examples for each feature, and
experiment settings are in the supplementary mate-
rial.

Feature Description

Label existence Indicates which labels
exist in a citation

Label counts Counts the number of
occurrences of a label

Bigram labels Indicators for adjacent
labels

Trigram labels Indicators for 3 adjacent
labels

Part-of-speech Indicator for the part-of-
speech of a token

Punctuation Indicator for whether a
token is a punctuation

Table 2: Constraint feature templates for the citation
field extraction task

5.1 Experiments and Results
For each constraint feature template, we trained
a rectifier network with 10 ReLUs in the hidden
layer. We then use Theorem 1 to convert the result-
ing network to a system of 210 − 1, or 1023 linear
inequalities. We used beam search with beam size
50 to combine the learned inequalities with the
original sequence model to predict on the test set.
States in the search space correspond to partial as-
signments to a prefix of the sequence. Each step we
predict the label for the next token in the sequence.
The pretrained sequence model (i.e., the baseline)
ranks search nodes based on transition and emis-
sion scores, and the learned inequality prunes the
search space accordingly4. Table 3 shows the token
level accuracies of various methods.

The results show that all versions of constrained
search outperform the baselines, indicating that the
learned constraints are effective in the citation field
extraction task. Furthermore, different constraints
learned with different features can be combined.
We observe that combining different constraint fea-
tures generally improves accuracy.

It is worth pointing out that the label existence
and label counts features are global in nature and
cannot be directly used to train a sequence model.
Even if some constraint features can be used in
training the original model, it is still beneficial to
learn constraints from them. For example, the
bigram label feature is captured in the original
first order model, but adding constraints learned
from them still improves performance. As an-
other test, we trained a model with POS features,
which also contains punctuation information. This
model achieves 91.8% accuracy. Adding con-
straints learned with POS improves the accuracy to
92.6%; adding constraints learned with punctuation
features further improves it to 93.8%.

We also observed that our method for learning
constraints is robust to the choice of the number of
hidden ReLUs. For example, for punctuation, learn-
ing using 5, 8 and 10 hidden ReLUs results an ac-
curacy of 90.1%, 90.3%, and 90.2%, respectively.
We observed similar behavior for other constraint
features as well. Since the number of constraints
learned is exponential in the number of hidden
units, these results shows that learning redundant
constraints will not hurt performance.

4Since the label-existence and label-counts features are
global, pruning by learned inequalities is possible only at the
last step of search. The other four features admit pruning at
each step of the search process.

4849

Baselines Search with learned constraints Combine constraints

Exact Search L.E. L.C. B.L. T.L. POS Punc. C1 C2 C3
86.2 87.3 88.0 87.7 87.9 88.1 89.8 90.2 88.6 90.1 90.6

Table 3: Token level accuracies (in percentage) of baseline models and constrained-search models, for the citation
field extraction task. Exact is our trained first-order Markov model. It uses exact inference (dynamic programming)
for prediction. Search is our search baseline, it uses the same model as Exact, but with beam search for inexact
inference. L.E., L.C., B.L., T.L., POS, Punc. use search with different constraint features: label existence, label
counts, bigram labels, trigram labels, part-of-speech, and punctuation features. C1 to C3 are search with combined
constraints. C1 combines L.E. and T.L.. C2 combines L.E., T.L. and POS. Finally C3 combines all constraints.

Note that carefully hand-crafted constraints may
achieve higher accuracy than the learned ones.
Chang et al. (2007) report an accuracy of 92.5%
with constraints specifically designed for this do-
main. In contrast, our method for learning con-
straints uses general constraint features, and does
not rely on domain knowledge. Therefore, our
method is suited to tasks where little is known
about the underlying domain.

6 Chunking Experiments

Chunking is the task of clustering text into groups
of syntactically correlated tokens or phrases. In the
instance below, the phrase labels are underlined:

[NP An A.P. Green official] [VP declined
to comment] [PP on] [NP the filing] [O.]

We treat the chunking problem as a sequence la-
beling problem by using the popular IOB tagging
scheme. For each phrase label, the first token in
the phrase is labeled with a “B-” prefixed to phrase
label while the other tokens are labeled with an “I-”
prefixed to the phrase label. Hence,

[NP An A.P. Green official]

is represented as

[[B-NP An] [I-NP A.P.] [I-NP Green]
[I-NP official]]

This is done for all phrase labels except “O”.
Dataset and Baselines. We use the

CoNLL2000 dataset (Tjong Kim Sang and
Buchholz, 2000) which contains 8936 training
sentences and 2012 test sentences. For our
experiments, we consider 8000 sentences out of
8936 training sentences as our training set and
the remaining 936 sentences as our development
set. Chunking is a well-studied problem and
showing performance improvements on full

training dataset is difficult. However, we use this
task to illustrate the interplay of learned constraints
with neural network models, and the impact of
learned constraints in the low training data regime.

We use the BiLSTM-CRF (Huang et al., 2015)
for this sequence tagging task. We use GloVe for
word embeddings. We do not use the BERT (De-
vlin et al., 2019) family of models since tokens are
broken down into sub-words during pre-processing,
which introduces modeling and evaluation choices
that are orthogonal to our study of label depen-
dencies. As with the citation task, all our con-
strained models use beam search, and we compare
our results to both exact decoding and beam search
baselines. We use two kinds of constraint features:
(i) n-gram label existence, and (ii) n-gram part
of speech. Details of the constraint features and
construction of negative samples are given in the
supplementary material.

6.1 Experiments and Results

We train the rectifier network with 10 hidden units.
The beam size of 10 was chosen for our experi-
ments based on preliminary experiments. We re-
port the average results on two different random
seeds for learning each constraint. Note that the
n-gram label existence is a global constraint while
the n-gram POS constraint is a local constraint
which checks for validity of label assignments at
each token. In essence, the latter constraint reranks
the beam at each step by ensuring that states that
satisfy the constraint are preferred over states that
violate the constraint. Since the n-gram label exis-
tence is a global constraint, we check the validity
of the tag assignments only at the last token. In the
case where none of the states in the beam satisfy
the constraint, the original beams are used.

The results for this set of experiments are pre-
sented in Table 4. We observe that the POS
constraint improves the performance of the base-

4850

Constraint n
Percentage of training data used

1% 5% 10% 25% 50% 100%

Label existence 2 81.28 88.30 89.73 91.24 90.40 92.48
3 80.98 88.20 90.58 91.20 92.37 93.12

Part-of-speech 3 86.52 90.74 91.80 92.41 93.07 93.84
4 84.21 90.99 92.17 92.46 93.08 93.93

Search without constraints 81.29 88.27 90.62 91.33 92.51 93.44

Exact decoding 82.11 88.70 90.49 92.57 93.94 94.75

Table 4: Token level accuracies (in percentage) for the chunking baseline and constrained model. The results are
shown on n-gram Label Existence and n-gram Part of Speech constraints with n = {2, 3} and n = {3, 4} respec-
tively. The results are shown on {1%, 5%, 10%, 25%, 50%, 100%} of training data. Exact decoding with Viterbi
algorithm and Search w/o constraint are baseline models which do not incorporate constraints during inference.

line models significantly, outperforming the beam
search baseline on all training ratios. More im-
portantly, the results show sizable improvements
in accuracy for smaller training ratios (e.g, 4.41%
and 5.23% improvements on exact and search base-
lines respectively with 1% training data). When
the training ratios get bigger, we expect the models
to learn these properties and hence the impact of
the constraints decreases.

These results (along with the experiments in the
previous sections) indicate that our constraints can
significantly boost performance in the low data
regime. Another way to improve performance in
low resource settings is to use better pretrained
input representations. When we replaced GloVe
embeddings with ELMo, we observed a 87.09%
accuracy on 0.01 ratio of training data using exact
decoding. However, this improvement comes at
a cost: the number of parameters increases from
3M (190k trainable) to 94M (561k trainable). In
contrast, our method instead introduces a smaller
rectifier network with ≈ 1000 additional parame-
ters while still producing similar improvements. In
other words, using trained constraints is computa-
tionally more efficient.

We observe that the label existence constraints,
however, do not help. We conjecture that this may
be due to one of the following three conditions: (i)
The label existence constraint might not exist for
the task; (ii) The constraint exists but the learner is
not able to find it; (iii) The input representations are
expressive enough to represent the constraints. Dis-
entangling these three factors is a future research
challenge.

7 Related Work

Structured prediction is an active field in machine
learning and has numerous applications, includ-
ing various kinds of sequence labeling tasks, pars-
ing (e.g., Martins et al., 2009), image segmenta-
tion (e.g., Lam et al., 2015), and information extrac-
tion (e.g., Anzaroot et al., 2014). The work of Roth
and Yih (2004) introduced the idea of using explic-
itly stated constraints in an integer programming
framework. That constraints and knowledge can
improve models has been highlighted by several
lines of work (e.g., Ganchev et al., 2010; Chang
et al., 2012; Hu et al., 2016).

The interplay between constraints and represen-
tations has been sharply highlighted by recent work
on integrating neural networks with structured out-
puts (e.g., Rocktäschel and Riedel, 2017; Niculae
et al., 2018; Manhaeve et al., 2018; Xu et al., 2018;
Li and Srikumar, 2019; Li et al., 2019, and others).
We expect that constraints learned as described in
this work can be integrated into these formalisms,
presenting an avenue for future research.

While our paper focuses on learning explicit con-
straints directly from examples, it is also possible
to use indirect supervision from these examples
to learn a structural classifier (Chang et al., 2010),
with an objective function penalizing invalid struc-
tures.

Related to our goal of learning constraints is rule
learning, as studied in various subfields of artifi-
cial intelligence. Quinlan (1986) describes the ID3
algorithm, which extracts rules as a decision tree.
First order logic rules can be learned from exam-
ples using inductive logic programming (Muggle-
ton and de Raedt, 1994; Lavrac and Dzeroski, 1994;

4851

Page and Srinivasan, 2003). Notable algorithms for
inductive logic programming include FOIL (Quin-
lan, 1990) and Progol (Muggleton, 1995).

Statistical relation learning addresses learning
constraints with uncertainty (Friedman et al., 1999;
Getoor and Mihalkova, 2001). Markov logic net-
works (Richardson and Domingos, 2006) combines
probabilistic models with first order logic knowl-
edge, whose weighted formulas are soft constraints
and the weights can be learned from data. In con-
trast to these directions, in this paper, we exploit
a novel representational result about rectifier net-
works to learn polytopes that represent constraints
with off-the-shelf neural network tools.

8 Conclusions

We presented a systematic way for discovering con-
straints as linear inequalities for structured predic-
tion problems. The proposed approach is built upon
a novel transformation from two layer rectifier net-
works to linear inequality constraints and does not
rely on domain expertise for any specific problem.
Instead, it only uses general constraint features as
inputs to rectifier networks. Our approach is partic-
ularly suited to tasks where designing constraints
manually is hard, and/or the number of training
examples is small. The learned constraints can
be used for structured prediction problems in two
ways: (1) combining them with an existing model
to improve prediction performance, or (2) incorpo-
rating them into the training process to train a better
model. We demonstrated the effectiveness of our
approach on three NLP tasks, each with different
original models.

Acknowledgments

We thank members of the NLP group at the Uni-
versity of Utah, especially Jie Cao, for their valu-
able insights and suggestions; and reviewers for
pointers to related works, corrections, and helpful
comments. We also acknowledge the support of
NSF Cyberlearning-1822877, SaTC-1801446 and
gifts from Google and NVIDIA.

References
Sam Anzaroot, Alexandre Passos, David Belanger, and

Andrew McCallum. 2014. Learning Soft Linear
Constraints with Application to Citation Field Ex-
traction. Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers).

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agar-
wal, Hal Daume, and John Langford. 2015. Learn-
ing to Search Better than Your Teacher. In Proceed-
ings of The 32nd International Conference on Ma-
chine Learning.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2007.
Guiding semi-supervision with constraint-driven
learning. In Proceedings of the 45th annual meet-
ing of the association of computational linguistics.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2012.
Structured Learning with Constrained Conditional
Models. Machine Learning.

Ming-wei Chang, Vivek Srikumar, Dan Goldwasser,
and Dan Roth. 2010. Structured Output Learn-
ing with Indirect Supervision. Proceedings of the
27th International Conference on Machine Learning
(ICML-10).

Michael Collins and Brian Roark. 2004. Incremental
Parsing with the Perceptron Algorithm. In Proceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics.

Hal Daumé, John Langford, and Daniel Marcu.
2009. Search-based Structured Prediction. Machine
Learning Journal (MLJ).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

Janardhan Rao Doppa, Alan Fern, and Prasad Tade-
palli. 2014. Structured Prediction via Output Space
Search. The Journal of Machine Learning Research.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pf-
effer. 1999. Learning Probabilistic Relational Mod-
els. Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence.

Kuzman Ganchev, Joao Graça, Jennifer Gillenwater,
and Ben Taskar. 2010. Posterior Regularization for
Structured Latent Variable Models. The Journal of
Machine Learning Research.

Lise Getoor and Lilyana Mihalkova. 2001. Learning
Statistical Models from Relational Data. Proceed-
ings of the 2011 ACM SIGMOD International Con-
ference on Management of Data.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Advances in Neural Informa-
tion Processing Systems 27.

Gurobi Optimization LLC. 2019. Gurobi optimizer ref-
erence manual.

https://doi.org/10.3115/v1/P14-1056
https://doi.org/10.3115/v1/P14-1056
https://doi.org/10.3115/v1/P14-1056
http://proceedings.mlr.press/v37/changb15.pdf
http://proceedings.mlr.press/v37/changb15.pdf
https://www.aclweb.org/anthology/P07-1036
https://www.aclweb.org/anthology/P07-1036
https://doi.org/10.1007/s10994-012-5296-5
https://doi.org/10.1007/s10994-012-5296-5
http://www.icml2010.org/papers/522.pdf
http://www.icml2010.org/papers/522.pdf
https://doi.org/10.3115/1218955.1218970
https://doi.org/10.3115/1218955.1218970
http://pub.hal3.name/#daume06searn
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://jmlr.org/papers/v15/doppa14a.html
http://jmlr.org/papers/v15/doppa14a.html
https://www.ijcai.org/Proceedings/99-2/Papers/090.pdf
https://www.ijcai.org/Proceedings/99-2/Papers/090.pdf
https://dl.acm.org/doi/pdf/10.5555/1756006.1859918?download=true
https://dl.acm.org/doi/pdf/10.5555/1756006.1859918?download=true
https://doi.org/10.1145/1989323.1989451
https://doi.org/10.1145/1989323.1989451
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://www.gurobi.com
http://www.gurobi.com

4852

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing Deep Neu-
ral Networks with Logic Rules. In ”Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers)”.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF Models for Sequence Tagging.
arXiv preprint arXiv:1508.01991.

Nikos Komodakis, Nikos Paragios, and Georgios Tzir-
itas. 2007. MRF Optimization via Dual Decompo-
sition: Message-passing Revisited. Proceedings of
the IEEE International Conference on Computer Vi-
sion.

Michael Lam, Janardhan Rao Doppa, Sinisa Todorovic,
and Thomas G Dietterich. 2015. HC-Search for
Structured Prediction in Computer Vision. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition.

Nada Lavrac and Saso Dzeroski. 1994. Inductive Logic
Programming: Techniques and Applications. Ellis
Horwood.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Sriku-
mar. 2019. A Logic-Driven Framework for Con-
sistency of Neural Models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Tao Li and Vivek Srikumar. 2019. Augmenting Neu-
ral Networks with First-order Logic. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2018.
Deepproblog: Neural probabilistic logic program-
ming. In Advances in Neural Information Process-
ing Systems.

André FT Martins, Mário AT Figueiredo, Pedro MQ
Aguiar, Noah A Smith, and Eric P Xing. 2011. An
Augmented Lagrangian Approach to Constrained
MAP Inference. In Proceedings of the 28th Inter-
national Conference on International Conference on
Machine Learning.

André FT Martins, Noah A Smith, and Eric P Xing.
2009. Concise Integer Linear Programming Formu-
lations for Dependency Parsing. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP: Vol-
ume 1-Volume 1.

Stephen Muggleton. 1995. Inverse Entailment and Pro-
gol. New Generation Computing.

Stephen Muggleton and Luc de Raedt. 1994. Induc-
tive Logic Programming: Theory and Methods. The
Journal of Logic Programming.

Vlad Niculae, Andre Martins, Mathieu Blondel, and
Claire Cardie. 2018. SparseMAP: Differentiable
Sparse Structured Inference. In International Con-
ference on Machine Learning.

David Page and Ashwin Srinivasan. 2003. ILP: A
Short Look Back and a Longer Look Forward. Jour-
nal of Machine Learning Research.

Xingyuan Pan and Vivek Srikumar. 2016. Expressive-
ness of Rectifier Networks. In Proceedings of the
33rd International Conference on Machine Learn-
ing.

J. R. Quinlan. 1986. Induction of Decision Trees. Ma-
chine Learning.

J. R. Quinlan. 1990. Learning Logical Definitions from
Relations. Machine Learning.

Matthew Richardson and Pedro Domingos. 2006.
Markov Logic Networks. Machine Learning.

Sebastian Riedel and James Clarke. 2006. Incremental
Integer Linear Programming for Non-projective De-
pendency Parsing. In Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Language
Processing.

Tim Rocktäschel and Sebastian Riedel. 2017. End-to-
end differentiable proving. In Advances in Neural
Information Processing Systems.

Dan Roth and Wen-tau Yih. 2004. A Linear Program-
ming Formulation for Global Inference in Natural
Language Tasks. Proceedings of the Eighth Confer-
ence on Computational Natural Language Learning
(CoNLL-2004) at HLT-NAACL 2004.

Dan Roth and Wen-tau Yih. 2005. Integer Linear Pro-
gramming Inference for Conditional Random Fields.
Proceedings of the 22nd International Conference
on Machine Learning.

Alexander M Rush, David Sontag, Michael Collins,
and Tommi Jaakkola. 2010. On dual decomposition
and linear programming relaxations for natural lan-
guage processing. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing.

Noah A. Smith. 2011. Linguistic Structure Prediction.
Morgan & Claypool Publishers.

Noah A Smith and Jason Eisner. 2005. Contrastive Es-
timation: Training Log-Linear Models on Unlabeled
Data. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the CoNLL-2000 shared task chunk-
ing. In Fourth Conference on Computational Nat-
ural Language Learning and the Second Learning
Language in Logic Workshop.

https://doi.org/10.18653/v1/P16-1228
https://doi.org/10.18653/v1/P16-1228
https://arxiv.org/pdf/1508.01991.pdf
https://arxiv.org/pdf/1508.01991.pdf
http://imagine.enpc.fr/~komodakn/publications/docs/ICCV07_Dual_Decomposition.pdf
http://imagine.enpc.fr/~komodakn/publications/docs/ICCV07_Dual_Decomposition.pdf
http://openaccess.thecvf.com/content_cvpr_2015/papers/Lam_HC-Search_for_Structured_2015_CVPR_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2015/papers/Lam_HC-Search_for_Structured_2015_CVPR_paper.pdf
https://dl.acm.org/doi/book/10.5555/562956
https://dl.acm.org/doi/book/10.5555/562956
https://www.aclweb.org/anthology/D19-1405
https://www.aclweb.org/anthology/D19-1405
https://www.aclweb.org/anthology/P19-1028
https://www.aclweb.org/anthology/P19-1028
http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming.pdf
http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming.pdf
http://www.icml-2011.org/papers/150_icmlpaper.pdf
http://www.icml-2011.org/papers/150_icmlpaper.pdf
http://www.icml-2011.org/papers/150_icmlpaper.pdf
https://www.aclweb.org/anthology/P09-1039
https://www.aclweb.org/anthology/P09-1039
http://www.doc.ic.ac.uk/~shm/Papers/InvEnt.pdf
http://www.doc.ic.ac.uk/~shm/Papers/InvEnt.pdf
http://www.cs.utsa.edu/~bylander/cs6243/muggleton1994inductive.pdf
http://www.cs.utsa.edu/~bylander/cs6243/muggleton1994inductive.pdf
http://proceedings.mlr.press/v80/niculae18a/niculae18a.pdf
http://proceedings.mlr.press/v80/niculae18a/niculae18a.pdf
http://www.jmlr.org/papers/volume4/page03a/page03a.pdf
http://www.jmlr.org/papers/volume4/page03a/page03a.pdf
http://proceedings.mlr.press/v48/panb16.html
http://proceedings.mlr.press/v48/panb16.html
https://link.springer.com/content/pdf/10.1007/BF00116251.pdf
https://link.springer.com/content/pdf/10.1007/BF00117105.pdf
https://link.springer.com/content/pdf/10.1007/BF00117105.pdf
https://link.springer.com/content/pdf/10.1007/s10994-006-5833-1.pdf
https://www.aclweb.org/anthology/W06-1616
https://www.aclweb.org/anthology/W06-1616
https://www.aclweb.org/anthology/W06-1616
https://papers.nips.cc/paper/6969-end-to-end-differentiable-proving.pdf
https://papers.nips.cc/paper/6969-end-to-end-differentiable-proving.pdf
https://www.aclweb.org/anthology/W04-2401
https://www.aclweb.org/anthology/W04-2401
https://www.aclweb.org/anthology/W04-2401
https://doi.org/10.1145/1102351.1102444
https://doi.org/10.1145/1102351.1102444
https://www.aclweb.org/anthology/D10-1001
https://www.aclweb.org/anthology/D10-1001
https://www.aclweb.org/anthology/D10-1001
https://doi.org/10.2200/S00361ED1V01Y201105HLT013
https://doi.org/10.3115/1219840.1219884
https://doi.org/10.3115/1219840.1219884
https://doi.org/10.3115/1219840.1219884
https://www.aclweb.org/anthology/W00-0726
https://www.aclweb.org/anthology/W00-0726

4853

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. 2004. Support vector
machine learning for interdependent and structured
output spaces. Proceedings of the Twenty-First In-
ternational Conference on Machine Learning.

Sam Wiseman and Alexander M Rush. 2016.
Sequence-to-Sequence Learning as Beam-Search
Optimization. Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and
Guy Van den Broeck. 2018. A Semantic Loss Func-
tion for Deep Learning with Symbolic Knowledge.
In Proceedings of the 35th International Conference
on Machine Learning.

A Proof of Theorem 1

In this section we prove Theorem 1. The theorem
and the relevant definitions are repeated here for
convenience.

Define the rectifier (ReLU) activation function
as R(x) = max(0, x). Consider the following two-
layer rectifier network:

z(x,y) = sgn
(
1−

K∑
k=1

R
(
wk ·ψ(x,y) + bk

))
(10)

The input to the network is still ψ(x,y). There are
K ReLUs in the hidden layer, and one threshold
unit in the output layer.

The decision boundary of this rectifier network
is specified by a system of linear inequalities. In
particular, we have the following theorem:
Theorem 2. Consider a two-layer rectifier network
with K hidden ReLUs as in Eq. (10). Define the
set [K] = {1, 2, . . . ,K}. The network outputs
z(x,y) = 1 if, and only if, for every subset S of
[K], the following linear inequality holds:

1−
∑
k∈S

(
wk ·ψ(x,y) + bk

)
≥ 0

Proof. Define ak = wk · ψ(x,y) + bk. We first
prove the “if” part of the theorem. Suppose that
for any S ⊆ [K], 1 −

∑
k∈S ak ≥ 0. Thus for

a specific subset S∗ = {k ∈ [K] : ak ≥ 0},
we have 1 −

∑
k∈S∗ ak ≥ 0. By the definition

of S∗,
∑K

k=1R(ak) =
∑

k∈S∗ ak, therefore 1 −∑K
k=1R(ak) ≥ 0.
Next we prove the “only if” part of the theorem.

Suppose that 1−
∑K

k=1R(ak) ≥ 0. For any S ⊆
[K], we have

∑K
k=1R(ak) ≥

∑
k∈S R(ak) ≥∑

k∈S ak. Therefore, for any S ⊆ [K], 1 −∑
k∈S ak ≥ 0.

B Synthetic Integer Linear
Programming Experiments

We first check if constraints are learnable, and
whether learned constraints help a downstream task
with a synthetic experiment. Consider framing
structure prediction as an integer linear program
(ILP):

min
z∈{0,1}n

∑
i

ci · zi,

subject to
∑
i

Akizi ≥ bk, k ∈ [m]

(11)

The objective coefficient ci denotes the cost of
setting the variable zi to 1 and the goal of predic-
tion is to find a cost minimizing variable assign-
ment subject to m linear constraints in (11). We
randomly generate a hundred 50-dimensional ILP
instances, all of which share a fixed set of random
constraints. Each instance is thus defined by its ob-
jective coefficients. We reserve 30% of instances
as test data. The goal is to learn the shared linear
constraints in Eq. (11) from the training set.

We use the Gurobi Optimizer (Gurobi Optimiza-
tion LLC, 2019) to solve all the ILP instances to
obtain pairs {(c, z)}, where c is the vector of objec-
tive coefficients and z is the optimal solution. Each
z in this set is feasible, giving us positive examples
(z,+1) for the constraint learning task.

Negative examples are generated as follows:
Given a positive pair (c, z) described above, if the
ith coefficient ci > 0 and the corresponding deci-
sion zi = 1, construct z′ from z by flipping the ith

bit in z from 1 to 0. Such a z′ is a negative example
for the constraint learning task because z′ has a
lower objective value than z. Therefore, it violates
at least one of the constraints in Eq. (11). Simi-
larly, if ci < 0 and zi = 0, we can flip the ith bit
from 0 to 1. We perform the above steps for every
coefficient of every example in the training set to
generate a set of negative examples {(z′,−1)}.

We trained a rectifier network on these exam-
ples and converted the resulting parameters into
a system of linear inequalities using Theorem 2.
The hyper-parameters and design choices are sum-
marized in the supplementary material. We used
the learned inequalities to replace the original con-
straints to obtain predicted solutions. We evaluated
these predicted solutions against the oracle solu-
tions (i.e., based on the original constraints). We

https://doi.org/10.1145/1015330.1015341
https://doi.org/10.1145/1015330.1015341
https://doi.org/10.1145/1015330.1015341
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.18653/v1/D16-1137
http://proceedings.mlr.press/v80/xu18h.html
http://proceedings.mlr.press/v80/xu18h.html

4854

also computed a baseline solution for each test ex-
ample by minimizing an unconstrained objective.

Table 5 lists four measures of the effectiveness of
learned constraints. First, we want to know whether
the learned rectifier network can correctly predict
the synthetically generated positive and negative
examples. The binary classification accuracies are
listed in the first row. The second row lists the
bitwise accuracies of the predicted solutions based
on learned constraints, compared with the gold so-
lutions. We see that the accuracy values of the
solutions based on learned constraints are in the
range from 80.2–83.5%. As a comparison, without
using any constraints, the accuracy of the baseline
is 56.8%. Therefore the learned constraints can
substantially improve the prediction accuracy in
the down stream inference tasks. The third row
lists the percentage of the predicted solutions sat-
isfying the original constraints. Solutions based
on learned constraints satisfy 69.8–74.4% of the
original constraints. In contrast, the baseline solu-
tions satisfy 55.3% of the original constraints. The
last row lists the percentage of the gold solutions
satisfying the learned constraints. We see that the
gold solutions almost always satisfy the learned
constraints.

The hyper-parameter and other design choices
for the synthetic ILP experiments are listed in Ta-
ble 6.

C Entity and relation extraction
experiments

C.1 Designed constraints

Table 7 lists the designed constraints used in
the entity and relation extraction experiments.
There are fifteen constraints, three for each rela-
tion type. For example, the last row in Table 7
means that the relation OrgBasedIn must have
an Organization as its source entity and a
Location as its target entity, and the relation
in the opposite direction must be NoRel.

C.2 Constraint features

We use the same example as in the main paper to
illustrate the constraint features used in the entity
and relation extraction experiments:

[Organization Google LLC] is
headquartered in [Location Mountain
View, California, USA].

In the above example, the relation from “Google
LLC” to “Mountain View, California, USA” is
OrgBasedIn, and the relation in the opposite
direction is labeled NoRel, indicating there is no
relation from “Mountain View, California, USA”
to “Google LLC”.

We used three constraint features for this task,
explained as follows.

Source-relation indicator This feature looks at
a given relation label and the label of its source
entity. It is an indicator pair (source label, relation
label). Our example sentence will contribute the
following two feature vectors, (Organization,
OrgBasedIn) and (Location, NoRel), both
corresponding to postive examples. The negative
examples contains all possible pairs of (source la-
bel, relation label), which do not appear in the
positive example set.

Relation-target indicator This feature looks at
a given relation label the label of its target entity. It
is an indicator pair (relation label, target label). Our
example sentence will contribute the following two
feature vectors, (OrgBasedIn, Location) and
(NoRel,Organization), both corresponding to
positive examples. The negative examples contains
all possible pairs of (relation label, target label),
which do not appear in the positive example set.

Relation-relation indicator This feature looks
at a pair of entities and focuses on the two relation
labels between them, one in each direction. There-
fore our running example will give us two positive
examples with features (OrgBasedIn, NoRel)
and (NoRel,OrgBasedIn). The negative exam-
ples contain any pair of relation labels that is not
seen in the positive example set.

C.3 Hyper-parameters and design choices

The hyper-parameter and design choices for the
experiments are in Table 8. Note that different runs
of the SVM learner with the learned or designed
constraints may give different results from those
on Table 1. This is due to non-determinism intro-
duced by hardware and different versions of the
Gurobi solver picking different solutions that have
the same objective value. In the results in Table 1,
we show the results where the training with learned
constraints seem to underperform the model that is
trained with designed constraints. In other runs on
different hardware, we found the opposite ordering
of the results.

4855

Number of ReLUs

2 3 4 5 6 7 8 9 10

binary classification acc. (%) 85.1 87.3 92.1 90.3 95.0 94.3 94.1 97.7 98.0
bitwise solution acc. (%) 81.1 80.9 81.9 80.2 81.0 82.3 81.1 83.2 83.5
original constr. satisfied (%) 70.3 69.8 72.7 70.4 70.1 71.1 71.4 74.4 74.3
learned constr. satisfied (%) 95.6 98.6 98.7 99.1 97.4 98.9 99.9 99.1 99.4

Table 5: Effectiveness of learned constraints for the synthetic ILP experiments.

Description Value

Total number of examples 100
Number of training examples 70
Number of test examples 30
Dimensionality 50
Range of hidden ReLU units considered for experiments 2-10
Learning rates for cross-validation while learning rectifier networks {0.001, 0.01, 0.1}
Learning rate decay for cross-validation {0.0, 10−7, 10−6}
Optimizer parameters for learning β1 = 0.9, β2 = 0.999, ε = 10−7

Number of training epochs 1000

Table 6: Parameters used in the synthetic ILP experiments

Antecedents Consequents

If the relation is Source must be Target must be Reversed relation must be

Kill Person Person NoRel
LiveIn Person Location NoRel
WorkFor Person Organization NoRel
LocatedAt Location Location NoRel
OrgBasedIn Organization Location NoRel

Table 7: Designed constraints used in the entity and relation extraction experiments

Description Value

Structured SVM trade-off parameter for the base model 2−6

Number of hidden ReLU units
–for source-relation 2
–for relation-target 2
–for relation-relation 1

Learning rates for cross-validation while learning rectifier networks {0.001, 0.01, 0.1}
Learning rate decay for cross-validation {0.0, 10−7, 10−6}
Optimizer parameters for learning β1 = 0.9, β2 = 0.999, ε = 10−7

Table 8: Parameters used in the entity and relation extraction experiments

4856

C.4 Learned Constraints

We see in the main paper that 2K−1 linear inequal-
ity constraints are learned using a rectifier network
with K hidden units. In the entity and relation
extraction experiments, we use two hidden units
to learn three constraints from the source-relation
indicator features. The three learned constraints
are listed in Table 9. A given pair of source la-
bel and relation label satisfies the constraint if the
sum of the corresponding coefficients and the bias
term is greater than or equal to zero. For exam-
ple, the constraint from the first row in Table 9
disallows the pair (Location, Kill), because
−1.90− 2.84 + 0.32 < 0. Therefore, the learned
constraint would not allow the source entity of a
Kill relation to be a Location, which agrees
with the designed constraints.

We enumerated all possible pairs of source la-
bel and relation label and found that the learned
constraints always agree with the designed con-
straints in the following sense: whenever a pair
of source label and relation label satisfies the de-
signed constraints, it also satisfies all three learned
constraints, and whenever a pair of source label
and relation label is disallowed by the designed
constraints, it violates at least one of the learned
constraints. Therefore, our method of constraint
learning exactly recovers the designed constraints.

We also use two hidden units to learn three con-
straints from the relation-target indicator features,
and one hidden unit to learn one constraint from
the relation-relation indicator features. The learned
constraints are listed in Table 11 and Table 10.
Again we verify that the learned constraints exactly
recover the designed constraints in all cases.

D Citation field extraction experiments

D.1 Constraint Features

We use the same example as in the main paper to
illustrate the constraint features used in the citation
field extraction experiments:

[Author A . M . Turing .] [Title
Computing machinery and intelligence .
] [Journal Mind ,] [Volume 59 ,]
[Pages 433-460 .] [Date October ,
1950 .]

We explore multiple simple constraint features
ψ(x,y) as described below.

Label existence This features indicates which la-
bels exist in a citation entry. In our above example,
there are six labels. Suppose there are nl possible
labels. The above example is a positive example,
the feature vector of which is an nl-dimensional
binary vector. Exactly six elements, corresponding
to the six labels in the example, have the value 1
and all others have the value 0. To obtain the neg-
ative examples, we iterate through every positive
example and flip one bit of its feature vector. If the
resulting vector is not seen in the positive set it will
be a negative example.

Label counts Label-count features are similar
to Label-existence features. Instead of indicating
whether a label exists using 1 or 0, label-count
features records the number of times each label
appears in the citation entry. The positive exam-
ples can be generated naturally from the training
set. To generate negative examples, we perturb the
actual labels of a positive example, as opposed to
its feature vector. We then extract the label counts
feature from the perturbed example, and treat it as
negative if it has not seen before in the positive set.

Bigram labels This feature considers each pair
of adjacent labels in the text. From left to right,
the above example will give us feature vectors
like (Author, Author), (Author, Title),
(Title, Title), . . . , (Date, Date). We then
use one-hot encoding to represent these features,
which is the input vector to the rectifier network.
All these feature vectors are labeled as positve (+1)
by the rectifier network, since they are generated
from the training set. To generate negative exam-
ples for bigram-label features, we generate all posi-
tive examples from the training set, then enumerate
all possible pair of labels and select those that were
not seen in the positive examples.

Trigram labels This feature is similar to the bi-
gram labels. From the training set, we gener-
ate positive examples, e.g., (Author, Author,
Author), (Author, Author, Title) etc, and
convert them into one-hot encodings. For negative
examples, we enumerate all possible trigram labels,
and select those trigrams as negative if two con-
ditions are met: (a) the trigram is not seen in the
positive set; and (b) a bigram contained in it is seen
in the training set. The intuition is that we want
negative examples to be almost feasible.

4857

Source Labels Relation Labels

NoEnt Per. Loc. Org. NoRel Kill Live Work Located Based Bias

-1.98 3.53 -1.90 0.11 2.66 -2.84 -2.84 -2.84 2.58 0.43 0.32
-1.61 -1.48 3.50 0.92 1.15 1.02 1.02 1.02 -3.96 -1.38 1.46
-3.59 2.04 1.60 1.03 3.81 -1.82 -1.82 -1.82 -1.38 -0.95 0.78

Table 9: Linear constraint coefficients learned from the source-relation indicator features

Forward Relation Labels Backward Relation Labels Bias

4.95 -1.65 -1.65 -1.65 -1.65 -1.65 5.06 -1.53 -1.53 -1.53 -1.53 -1.53 -2.41

Table 10: Linear constraint coefficients learned from the relation-relation indicator features. The order of the
relation labels is: NoRel, Kill, LiveIn, WorkFor, LocatedAt, and OrgBasedIn

Part-of-speech For a fixed window size, we ex-
tract part-of-speech tags and the corresponding la-
bels, and use the combination as our constraint fea-
tures. For example, with window size two, we get
indicators for (tagi−1, tagi, labeli−1, labeli)
for the ith token in the sentence, where tag and
label refer to part-of-speech tag and citation field
label respectively. For negative examples, we enu-
merate all four-tuples as above, and select it as
negative if the four-tuple is not seen in the posi-
tive set, but both (tagi−1, tagi) and (labeli−1,
labeli) are seen in the training set.

Punctuation The punctuation feature is similar
to the part-of-speech feature. Instead of the POS
tag, we use an indicator for whether the current
token is a punctuation.

D.2 Hyper-parameters and design choices
The hyper-parameter and design choices for the
experiments are in the Table 12.

E Chunking Experiments

E.1 Constraint Features
The two constraints which we discussed in the main
paper for the chunking dataset are described below.

N-gram label existence This constraint is a gen-
eral form of the label existence constraint men-
tioned in Section D.1. In fact, it is the n-gram
label existence constraint with n=1. The n-gram
label existence constraint represents the labels of
a sequence as a binary vector. Each feature of
this binary vector corresponds to an n-gram label
combination. Hence, the length of this constraint
feature will be | l |n where | l | is the total number
of distinct labels. This means the vector size of

this constraint grows exponentially with increasing
n. The binary vector indicates a value of 1 for all
the n-gram label features present in the sequence
tags. The positive examples are hence formed from
the training set sequences. For the negative exam-
ples, we iterate through each positive example and
flip a bit. The resulting vector is incorporated as a
negative example if it doesn’t occur in the training
set.

N-gram part of speech (POS) This constraint
is a general form of the part of speech constraint
mentioned in Section D.1. POS tags of a token are
converted to a indicator vector. We concatenate
the indicator vectors of each gram in an n-gram in
order and this vector is further concatenated with
indicators of labels of each of these grams. Hence,
for n=2, we get the constraint vector as (tagi−1,
tagi, labeli−1, labeli) where tagi and labeli
are indicators for POS tags and labels respectively
for the ith token. The positive examples enumer-
ate vectors for all existing n-grams in the training
sequences. The negative examples are creating by
changing a label indicator in the constraint feature.
The label to be perturbed and the perturbation both
are chosen at random. The constraint vector hence
formed is incorporated as a negative example if it
doesn’t occur in the set of positive examples.

E.2 Hyper-parameters and design choices
The hyper-parameter and design choices are sum-
marized in Table 13.

4858

Relation Labels Target Labels

NoRel Kill Live Work Located Based NoEnt Per. Loc. Org. Bias

2.68 -3.17 -0.55 2.68 -0.55 -0.55 -1.58 3.15 0.53 -2.70 1.02
2.72 2.42 -1.39 -2.55 -1.39 -1.39 -2.51 -2.27 1.54 2.31 0.85
5.40 -0.74 -1.94 0.13 -1.94 -1.94 -4.10 0.88 2.08 -0.39 0.86

Table 11: Linear constraint coefficients learned from the relation-target indicator features

Description Value

Structured SVM trade-off parameter for the base model unregularized
Beam size 50
Number of hidden ReLU units for experiments 10
Learning rates for cross-validation while learning rectifier networks {0.001, 0.01, 0.1}
Learning rate decay for cross-validation {0.0, 10−7, 10−6}
Optimizer parameters for learning β1 = 0.9, β2 = 0.999, ε = 10−7

Table 12: Parameters used in the citation field extraction experiments

Description Value

Constraint Rectifier Network

Range of hidden ReLU units considered for experiments {5, 10}
Learning rates for development while learning rectifier networks {0.001, 0.005, 0.01, 10−4}
Number of training epochs 1000
Random Seeds {1, 2}

BiLSTM CRF Model

Learning rate for development while learning baseline model {0.01, 0.05, 0.001, 0.005}
Learning Rate Decay {10−5, 10−6}
Beam Size 10
Number of training epochs 300

Table 13: Parameters used in the chunking experiments

