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Abstract

While much work on deep latent variable
models of text uses continuous latent vari-
ables, discrete latent variables are interesting
because they are more interpretable and typi-
cally more space efficient. We consider sev-
eral approaches to learning discrete latent vari-
able models for text in the case where ex-
act marginalization over these variables is in-
tractable. We compare the performance of
the learned representations as features for low-
resource document and sentence classification.
Our best models outperform the previous best
reported results with continuous representa-
tions in these low-resource settings, while
learning significantly more compressed repre-
sentations. Interestingly, we find that an amor-
tized variant of Hard EM performs particularly
well in the lowest-resource regimes.1

1 Introduction

Deep generative models with latent variables have
become a major focus of NLP research over the
past several years. These models have been used
both for generating text (Bowman et al., 2016) and
as a way of learning latent representations of text
for downstream tasks (Yang et al., 2017; Gururan-
gan et al., 2019). Most of this work has modeled
the latent variables as being continuous, that is, as
vectors in Rd, in part due to the simplicity of per-
forming inference over (certain) continuous latents
using variational autoencoders and the reparameter-
ization trick (Kingma and Welling, 2014; Rezende
et al., 2014).

At the same time, deep generative models with
discrete latent variables are attractive because the
latents are arguably more interpretable, and be-
cause they lead to significantly more compressed

∗Work done as an intern at Toyota Technological Institute
at Chicago.

1Code available on GitHub: https://github.com/
shuningjin/discrete-text-rep

representations: A representation consisting of
M floating point values conventionally requires
M × 32 bits, whereas M integers in {1, . . . ,K}
requires only M × log2K bits.

Unfortunately, discrete latent variable models
have a reputation for being more difficult to learn.
We conduct a thorough comparison of several pop-
ular methods for learning such models, all within
the framework of maximizing the evidence lower
bound (ELBO) on the training data. In particular,
we compare learning such models either with a
Vector Quantized-VAE (van den Oord et al., 2017,
VQ-VAE), a more conventional VAE with discrete
latent variables (Jang et al., 2017; Maddison et al.,
2017), or with an amortized version of “Hard” or
“Viterbi” Expectation Maximization (Brown et al.,
1993), which to our knowledge has not been ex-
plored to date. We consider both models where the
latents are local (i.e., per token) and where they are
global (i.e., per sentence); we assess the quality of
these learned discrete representations as features
for a low-resource text classifier, as suggested by
Gururangan et al. (2019), and in a nearest neighbor-
based retrieval task.

Our classification experiments distinguish be-
tween (1) the setting where the classifier must con-
sume only the discrete representation associated
with each sentence (i.e., the discrete assignment
that maximizes the approximate posterior), and (2)
the setting where the classifier may consume the
embeddings of this discrete representation learned
by the VAE encoder. Note that the former setting is
more flexible, since we need only store a sentence’s
discrete representation, and are therefore free to use
task-specific (and possibly much smaller) architec-
tures for classification. In case (1), we are able
to effectively match the performance of Gururan-
gan et al. (2019) and other baselines; in case (2),
we outperform them. Our experiments also sug-
gest that Hard EM performs particularly well in

https://github.com/shuningjin/discrete-text-rep
https://github.com/shuningjin/discrete-text-rep
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case (1) when there is little supervised data, and
that VQ-VAE struggles in this setting.

2 Related Work

Our work builds on recent advances in discrete
representation learning and its applications. In
particular, we are inspired by recent success with
VQ-VAEs outside NLP (van den Oord et al., 2017;
Razavi et al., 2019). These works show that we
can generate realistic speech and image samples
from discrete encodings, which better align with
symbolic representations that humans seem to work
with (e.g., we naturally encode continuous speech
signals into discrete words). Despite its success in
speech and vision, VQ-VAE has not been consid-
ered as much in NLP. One exception is the trans-
lation model of Kaiser et al. (2018) that encodes
a source sequence into discrete codes using vector
quantization. But their work focuses on making
inference faster, by decoding the target sequence
from the discrete codes non-autoregressively. To
our knowledge, we are the first that explores gen-
eral text representations induced by VQ-VAEs for
semi-supervised and transfer learning in NLP.

In addition to exploring the viability of VQ-
VAEs for text representation learning, an important
part of this paper is a systematic comparison be-
tween different discretization techniques. Gumbel-
Softmax (Jang et al., 2017; Maddison et al., 2017)
is a popular choice that has been considered for
supervised text classification (Chen and Gimpel,
2018) and dialog generation (Zhao et al., 2018). In
the binary latent variable setting, straight-through
estimators are often used (Dong et al., 2019). An-
other choice is “continuous decoding” which takes
a convex combination of latent values to make the
loss differentiable (Al-Shedivat and Parikh, 2019).
Yet a less considered choice is Hard EM (Brown
et al., 1993; De Marcken, 1995; Spitkovsky et al.,
2010). A main contribution of this work is a thor-
ough empirical comparison between such different
choices in a controlled setting.

To demonstrate the usefulness of our models, we
focus on improving low-resource classification per-
formance by pretraining on unlabeled text. Previ-
ous best results are obtained with continuous latent-
variable VAEs, e.g., VAMPIRE (Gururangan et al.,
2019). We show that our discrete representations
outperform these previous results while being sig-
nificantly more lightweight.

3 Background

We consider generative models of a sequence
x = x1:T of T word tokens. We assume our la-
tents to be a sequence z = z1:L of L discrete la-
tent vectors, each taking a value in {1, . . . ,K}M ;
that is, z ∈ {1, . . . ,K}M×L. As is common in
VAE-style models of text, we model the text au-
toregressively, and allow arbitrary interdependence
between the text and the latents. That is, we have
p(x, z;θ) = p(z) ×

∏T
t=1 p(xt |x<t, z;θ), where

θ are the generative model’s parameters. We fur-
ther assume p(z) to be a fully factorized, uniform
prior: p(z) = 1

KML .
Maximizing the marginal likelihood of such a

model will be intractable for moderate values of
K, M , and L. So we consider learning approaches
that maximize the ELBO (Jordan et al., 1999) in
an amortized way (Kingma and Welling, 2014;
Rezende et al., 2014):

ELBO(θ,φ) = Eq(z |x;φ)

[
log

p(x, z;θ)

q(z |x;φ)

]
,

where q(z |x;φ) is the approximate posterior given
by an inference or encoder network with parame-
ters φ. The approaches we consider differ in terms
of how this approximate posterior q is defined.

Mean-Field Categorical VAE (CatVAE) A
standard Categorical VAE parameterizes the ap-
proximate posterior as factorizing over categori-
cal distributions that are independent given x. We
therefore maximize:

Eq(z |x;φ) [log p(x | z;θ)]−
∑
m,l

KL(qml||pml)

= Eq(z |x;φ)) [log p(x | z;θ)]

+
∑
m,l

H(qml)−ML logK,

where q(z |x;φ)=
∏M

m=1

∏L
l=1 qml(zml |x;φ),

pml = 1/K, and H is the entropy.
We approximate the expectation above by sam-

pling from the qml, and we use the straight-through
gradient estimator (Bengio et al., 2013; Jang et al.,
2017) to compute gradients with respect to φ. We
find this approach to be more stable than using the
REINFORCE (Williams, 1992) gradient estimator,
or a Concrete (Maddison et al., 2017; Jang et al.,
2017) approximation to categorical distributions.
Specifically, we sample from a categorical distribu-
tion using the Gumbel-Max trick (Maddison et al.,
2014) in the forward pass, and approximate the
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gradient using softmax with a small temperature.
This approach is also referred to as straight-through
Gumbel-Softmax (Jang et al., 2017).

VQ-VAE A VQ-VAE (van den Oord et al., 2017;
Razavi et al., 2019) can also be seen as maximiz-
ing the ELBO, except the approximate posterior is
assumed to be a point mass given by

qml(zml|x) =

{
1 if zml = ẑml

0 otherwise
,

where

ẑml = arg min
j∈{1,...,K}

||e(m)
j − enc(x)ml||2, (1)

and e
(m)
j ∈ Rd is an embedding of the jth discrete

value zml can take on, and enc(x)ml ∈ Rd is an
encoding corresponding to the mlth latent given
by an encoder network. These e

(m)
j embedding

vectors are often referred to as a VQ-VAE’s “code
book”. In our setting, a code book is shared across
latent vectors.

VQ-VAEs are typically learned by maximizing
the ELBO assuming degenerate approximate pos-
teriors as above, plus two terms that encourage the
encoder embeddings and the “code book” embed-
dings to become close. In particular, we attempt to
maximize the objective:

log p(x | ẑ)−
∑
m,l

||sg(enc(x)ml)− e
(m)
ẑm,l
||22 (2)

− β
∑
m,l

|| enc(x)ml − sg(e
(m)
ẑm,l

)||22,

where sg is the stop-gradient operator, and ẑ = ẑ1:L
is the sequence of minimizing assignments ẑm,l

for each enc(x)ml. The loss term following the
β is known as the “commitment loss”. Gradients
of the likelihood term with respect to enc(x) are
again estimated with the straight-through gradient
estimator.

Hard EM We train with an amortized form of
Hard EM. First we define a relaxed version of z,
z̃, where each z̃ml is a softmax over K outputs
(rather than a hard assignment) and is produced
by an inference network with parameters φ.2 In
the E-Step, we take a small, constant number of

2Note this assumes our generative model can condition on
such a relaxed latent variable.
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Figure 1: Discrete VAE architectures withM = 2. The
Local (middle) and Global (bottom) models are two
different encoder-decoder setups. The top row shows
the procedure of converting continuous output from en-
coder into discrete input to decoder by drawing discrete
samples: VQ-VAE (top left) draws samples from point
mass distributions using nearest neighbor lookup from
the code books; CatVAE (top right) samples from cat-
egorical distributions directly.

gradient steps to maximize log p(x | z̃;θ) with re-
spect to φ (for a fixed θ). In the M-Step, we take
a single gradient step to maximize log p(x | ẑ;θ)
with respect to θ, where ẑ contains the element-
wise argmaxes of z̃ as produced by the inference
network (with its most recent parameters φ). Thus,
Hard EM can also be interpreted as maximizing the
(relaxed) ELBO. We also note that taking multiple
steps in the hard E-step somewhat resembles the
recently proposed aggressive training of VAEs (He
et al., 2019).

4 Models and Architectures

Recall that the latent sequence is z = z1:L, where
zl ∈ {1, . . . ,K}M . We consider two generative
models p(x | z;θ), one where L = T and one
where L = 1. Each latent in the former model
corresponds to a word, and so we refer to this as
a “local” model, whereas in the second model we
view the latents as being “global”, since there is
one latent vector for the whole sentence. We use
the following architectures for our encoders and
decoder, as illustrated in Figure 1.
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4.1 Encoder
The encoder (parameterized by φ) maps an exam-
ple x to the parameters of an approximate poste-
rior distribution. Our encoder uses a single-layer
Transformer (Vaswani et al., 2017) network to map
x = x1:T to a sequence of T vectors h1, . . . ,hT ,
each in Rd.

Mean-Field Categorical VAE For the lo-
cal model, we obtain the parameters of each
categorical approximate posterior qmt as
softmax(Wm ht), where each Wm ∈ RK×d is a
learned projection. For the global model, we obtain
the parameters of each categorical approximate
posterior qm1 as softmax

(∑
t Wm ht

T

)
; that is,

we pass token-level ht vectors through learned
projections Wm, followed by mean-pooling.

VQ-VAE For the local model, let d̃ = d/M . We
obtain enc(x)mt, the encoding of the mtth latent
variable, as ht,(m−1)d̃:md̃, following Kaiser et al.

(2018). That is, we take the mth d̃-length sub-
vector of ht. For the global model, let d̃ = d.
We first project ht to RMd, mean-pool, and obtain
enc(x)m1 by taking the mth d̃-length subvector of
the resulting pooled vector. A VQ-VAE also re-
quires learning a code book, and we define M code

books E(m) = [e
(m)
1

>
; . . . ; e

(m)
K

>
] ∈ RK×d̃ .

Hard EM We use the same encoder architecture
as in the mean-field Categorical VAE case. Note,
however, that we do not sample from the result-
ing categorical distributions. Rather, the softmax
distributions are passed directly into the decoder.

4.2 Decoder
In the case of the mean-field Categorical VAE,
we obtain a length-L sequence of vectors zl ∈
{1, . . . ,K}M after sampling from the approximate
posteriors. For the VQ-VAE, on the other hand,
we obtain the sequence of ẑl vectors by taking the
indices of the closest code book embeddings, as in
Equation (1).

In both cases, the resulting sequence of discrete
vectors is embedded and consumed by the decoder.
In particular, when learning with a VQ-VAE, the
embedding of ẑml is simply e

(m)
ẑml

, whereas for the
Categorical VAE each discrete latent is embedded
using a trained embedding layer. In the local model,
when M > 1, we concatenate the M embeddings
to form a single real vector embedding for the lth

latent variable. In the global model, we use the M

embeddings directly. This resulting sequence of T
or M real vectors is then viewed as the source side
input for a standard 1-layer Transformer encoder-
decoder model (Vaswani et al., 2017), which de-
codes x using causal masking.

As above, for Hard EM, we do not obtain a se-
quence of discrete vectors from the encoder, but
rather a sequence of softmax distributions. These
are multiplied into an embedding layer, as in the
Categorical VAE case, and fed into the Transformer
encoder-decoder model.

5 Evaluating Latent Representations

Similar to Gururangan et al. (2019), we evaluate
the learned latent representations by using them as
features in a text classification system. We are in
particular interested in using latent representations
learned on unlabeled text to help improve the per-
formance of classifiers trained on a small amount
of labeled text. Concretely, we compare different
discrete latent variable models in following steps:

1. Pretraining an encoder-decoder model on in-
domain unlabeled text with an ELBO objec-
tive, with early stopping based on validation
perplexity.

2. Fixing the encoder to get discrete latents for
the downstream classification task, and train-
ing a small number of task-specific parameters
on top, using varying amounts of labeled data.
As noted in the introduction, we consider both
reembedding these latents from scratch, or
using the embeddings learned by the encoder.

5.1 Tasks and Datasets
The datasets we use for classification are AG News,
DBPedia, and Yelp Review Full (Zhang et al.,
2015), which correspond to predicting news labels,
Wikipedia ontology labels, and the number of Yelp
stars, respectively. The data details are summarized
in Table 1. For all datasets, we randomly sample
5,000 examples as development data. To evaluate
the efficiency of the latent representation in low-
resource settings, we train the classifier with vary-
ing numbers of labeled instances: 200, 500, 2500,
and the full training set size (varies by dataset). We
use accuracy as the evaluation metric.

In preprocessing, we space tokenize, lowercase,
and clean the text as in Kim (2014), and then trun-
cate each sentence to a maximum sequence length
of 400. For each dataset, we use a vocabulary of
the 30,000 most common words.
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Dataset # Classes Train Dev Test

AG News 4 115K 5K 7.6K
DBPedia 14 555K 5K 70K
Yelp Review Full 5 645K 5K 50K

Table 1: The number of classes and the numbers of ex-
amples in each data subset, for the classification tasks.

5.2 Transfer Paradigm

When transferring to a downstream classifica-
tion task, we freeze the pretrained encoder and
add a lightweight classifier on top, viewing each
sentence as an L-length sequence of vectors in
{1, . . . ,K}M , as described in Section 4. For in-
stance, the sentence (from the DBPedia dataset)

“backlash is a 1986 australian film directed by bill
bennett” is encoded as [90, 114, 30, 111] under
a global model with M = 4, and as [[251, 38],
[44, 123], [94, 58], [228, 53], [88, 55], [243,
43], [66, 236], [94, 72], [172, 61], [236, 150]]
under a local model with M = 2.

As noted in the introduction, we consider two
ways of embedding the integers for consumption
by a classifier. We either (1) learn a new task-
specific embedding space E(m)

task (i.e., reembedding)
or (2) use the fixed embedding space E(m) from
pretraining. The first setting allows us to effectively
replace sentences with their lower dimensional dis-
crete representations, and learn a classifier on the
discrete representations from scratch. In the local
model, we obtain token-level embedding vectors
by concatenating the M subvectors corresponding
to each word. The resulting embeddings are either
averaged, or fed to a Transformer and then aver-
aged, and finally fed into a linear layer followed by
a softmax.

6 Experimental Details

6.1 Baselines

We first experiment with three common text mod-
els: CBOW (Mikolov et al., 2013), bidirectional
LSTM (Hochreiter and Schmidhuber, 1997), and a
single-layer Transformer encoder. We find CBOW
(with 64-dimensional embeddings) to be the most
robust in settings with small numbers of labeled
instances, and thus report results only with this
baseline among the three. Further, we compare to
VAMPIRE (Gururangan et al., 2019), a framework
of pretraining VAEs for text classification using
continuous latent variables. We pretrain VAMPIRE

models on in-domain text for each dataset with 60
random hyperparameter search (with same ranges
as specified in their Appendix A.1), and select best
models based on validation accuracy in each set-
ting.

6.2 Hyperparameters

In our experiments, we use Transformer layers
with dmodel = 64. For optimization, we use
Adam (Kingma and Ba, 2015), either with a learn-
ing rate of 0.001 or with the inverse square-root
schedule defined in Vaswani et al. (2017) in pre-
training. We use a learning rate of 0.0003 in
classification. We tune other hyperparameters
with random search and select the best settings
based on validation accuracy. For the latent space
size, we choose M in {1, 2, 4, 8, 16} and K in
{128, 256, 512, 1024, 4096}. Model specific hy-
perparameters are introduced below.

6.3 VQ-VAE

In VQ-VAE, an alternative to the objective in Equa-
tion (2) is to remove its second term, while using
an auxiliary dictionary learning algorithm with ex-
ponential moving averages (EMA) to update the
embedding vectors (van den Oord et al., 2017). We
tune whether to use EMA updates or not. Also, we
find small β for commitment loss to be beneficial,
and search over {0.001, 0.01, 0.1}.

6.4 Mean-Field Categorical VAE

We find that using the discrete analytic KL diver-
gence term directly in the ELBO objective leads to
posterior collapse. The KL term vanishes to 0 and
the qml distributions converge to the uniform priors.
To circumvent this, we modify the KL term to be
max(KL, λ). This is known as Free Bits (Kingma
et al., 2016; Li et al., 2019), which ensures that
the latent variables encode a certain amount of in-
formation by not penalizing the KL divergence
when it is less than λ. We set λ = γML logK,
where γ is a hyperparameter between 0 and 1. That
is, we allocate a “KL budget” as a fraction of
ML logK, which is the upper bound of KL di-
vergence between ML independent categorical dis-
tributions and uniform prior distributions. Since in
this case KL(qml(zml |x)||pml(zml)) = logK −
H[qml(zml |x)], this is equivalent to thresholding
H[qml(zml |x)] by (1− γ) logK. We experiment
with γ ∈ {0.2, 0.4, 0.6, 0.8, 1}.3

3Note that when γ ≥ 1 the VAE reduces to an autoencoder.
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Figure 2: The accuracies obtained by Hard EM, Categorical VAE, and VQ-VAE representations, averaged over
the AG News, DBPedia, and Yelp Full development datasets, for different numbers of labeled training examples.
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1 2 4 8 16
M

62

64

66

68

70

72

74

A
cc

ur
ac

y

Average Accuracy (200 Labels)

HardEM
CatVAE
VQ-VAE

global
local

reembed
no reembed

Figure 3: The averaged accuracies obtained from using
Hard EM, Categorical VAE, and VQ-VAE representa-
tions and 200 labeled examples, for differentM values.

6.5 Hard EM

We vary the number of gradient steps in the E-step
in {1, 3}. At evaluation time, we always take the
argmax of z̃ to get a hard assignment.

7 Results

In Figure 2, we compare the accuracy obtained
by the representations from our Hard EM, Cate-
gorical VAE, and VQ-VAE models, averaged over
the development datasets of AG News, DBPedia,
and Yelp Full. In particular, we plot the best ac-
curacy obtained over all hyperparameters (includ-
ing M ) for different numbers of labeled examples;
we distinguish between local and global models,

and between when the discrete representations are
reembedded from scratch and when the encoder
embeddings are used.

We see that using the encoder embeddings typi-
cally outperforms reembedding from scratch, and
that global representations tend to outperform local
ones, except in the full data regime. Furthermore,
we see that the Categorical VAE and VQ-VAE are
largely comparable on average, though we under-
take a finer-grained comparison by dataset in Ap-
pendix A. Perhaps most interestingly, we note that
when reembedding from scratch, Hard EM signif-
icantly outperforms the other approaches in the
lowest data regimes (i.e., for 200 and 500 exam-
ples). In fact, Hard EM allows us to match the
performance of the best previously reported results
even when reembedding from scratch; see Table 3.

Table 2 shows the best combinations of model
and hyperparameters when training with 200 la-
beled examples on AG News. These settings were
used in obtaining the numbers in Figure 2, and are
largely stable across datasets.

In Figure 3, we compare the average accuracy
of our local and global model variants trained on
200 labeled examples, as we vary M . When reem-
bedding, local representations tend to improve as
we move from M = 1 to M = 2, but not sig-
nificantly after that. When reembedding global
representations, performance increases as M does.
Unsurprisingly, when not reembedding, M matters
less.
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Method K M

Local CatVAE 4096 1
Local (re) Hard EM 1024 1
Global CatVAE 256 4
Global (re) Hard EM 4096 4

Table 2: Best methods and settings of K and M when
training on 200 labeled examples of the AG News
corpus and evaluating on the development set. The
“(re)” affix indicates that latent variables are reembed-
ded from scratch.

Model 200 500 2500 Full

AG News

CBOW 63.4 (1.5) 72.9 (0.7) 82.1 (0.2) 90.0 (0.2)
VAMPIRE? 83.9 (0.6) 84.5 (0.4) 85.8 (0.2) -
VAMPIRE 82.2 (0.8) 84.7 (0.2) 86.4 (0.4) 91.0 (0.1)
Local 82.7 (0.1) 84.3 (0.3) 85.0 (0.4) 86.6 (0.2)
Local (re) 82.7 (0.4) 84.0 (0.3) 85.4 (0.1) 87.1 (0.3)
Global 84.6 (0.1) 85.7 (0.1) 86.3 (0.2) 87.5 (0.6)
Global (re) 83.9 (0.5) 84.6 (0.2) 85.1 (0.3) 86.9 (0.1)

DBPedia

CBOW 72.7 (0.6) 84.7 (0.7) 92.8 (0.3) 97.7 (0.1)
VAMPIRE 89.1 (1.3) 93.7 (0.5) 95.7 (0.2) 98.2 (0.1)
Local 89.2 (0.2) 92.8 (0.4) 94.6 (0.2) 97.1 (0.3)
Local (re) 88.7 (0.2) 90.2 (0.3) 93.3 (0.1) 96.9 (0.2)
Global 91.8 (0.5) 94.3 (0.3) 95.0 (0.2) 95.6 (0.0)
Global (re) 88.5 (0.7) 92.3 (0.7) 94.6 (0.4) 95.8 (0.1)

Yelp Full

CBOW 31.0 (5.9) 41.1 (0.6) 48.4 (0.4) 58.9 (0.4)
VAMPIRE 41.4 (2.9) 47.2 (0.7) 52.5 (0.1) 60.3 (0.1)
Local 46.2 (0.8) 49.0 (0.5) 51.9 (0.5) 53.1 (0.3)
Local (re) 47.2 (0.7) 49.4 (0.7) 52.1 (0.2) 55.0 (0.6)
Global 48.5 (1.0) 50.1 (0.5) 53.0 (0.3) 54.9 (0.4)
Global (re) 46.0 (0.5) 47.4 (0.5) 48.8 (0.8) 53.8 (0.3)

Table 3: Test accuracy results by dataset and by the
number of labeled examples used in training. The
scores are averages over five random subsamples, with
standard deviations in parentheses and column bests in
bold. VAMPIRE? for AG News is reported by Guru-
rangan et al. (2019) and VAMPIREs are from our ex-
periments.

Finally, we show the final accuracies obtained
by our best models on the test data of each dataset
in Table 3. We see that on all datasets when
there are only 200 or 500 labeled examples, our
best model outperforms VAMPIRE and the CBOW
baseline, and our models that reembed the latents
from scratch match or outperform VAMPIRE. As
noted in Table 2, it is Hard EM that is particularly
performant in these settings.

8 Analysis and Discussion

8.1 Qualitative analysis
To gain a better understanding of what the learned
clusters represent, we examine their patterns on the
AG News dataset labeled with four classes. Since
VQ-VAEs and Categorical VAEs exhibit similar
patterns, we focus on the latter model.

Tables 4 and 5 show examples of sentence- and
word-level clusters, respectively, induced by Cate-
gorical VAEs. The sentence-level model encodes
each document into M = 4 latents, each taking
one of K = 256 integers. The word-level model
encodes each word intoM = 1 latent taking one of
K = 1024 integers. Since a word can be assigned
multiple clusters, we take the majority cluster for
illustration purposes.

We see that clusters correspond to topical aspects
of the input (either a document or a word). In par-
ticular, in the sentence-level case, documents in the
same cluster often have the same ground-truth label.
We also find that each of M latents independently
corresponds to topical aspects (e.g., z1 = 65 im-
plies that the topic has to do with technology); thus,
taking the combination of these latents seems to
make the cluster “purer”. The word-level clusters
are also organized by topical aspects (e.g., many
words in cluster 510 are about modern conflicts in
the Middle East).

8.2 Effect of Alternating Optimization
While Hard EM achieves impressive performance
when reembedding from scratch and when training
on only 200 or 500 examples, we wonder whether
this performance is due to the alternating optimiza-
tion, to the multiple E-step updates per M-step
update, or to the lack of sampling. We accordingly
experiment with optimizing our VQ-VAE and Cat-
VAE variants in an alternating way, allowing mul-
tiple inference network updates per update of the
generative parameters θ. We show the results on
the AG News dataset in Table 6. We find that al-
ternating does generally improve the performance
of VQ-VAE and CatVAE as well, though Hard EM
performs the best overall when reembedding from
scratch. Furthermore, because Hard EM requires
no sampling, it is a compelling alternative to Cat-
VAE. For all three methods, we find that doing 3
inference network update steps during alternating
optimization performs no better than doing a single
one, which suggests that aggressively optimizing
the inference network is not crucial in our setting.
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Cluster Class Text

(23, 155, 24, 53) World a platoon in iraq is being investigated for allegedly refusing to carry out a convoy mission...
World afp chechen warlord shamil basayev has claimed responsibility for the deadly school...
World the federal government has sent a team of defence personnel to verify a claim that two...
World an audio tape purportedly by osama bin laden praises gunmen who attacked a us consulate...

(41, 75, 175, 222) Business amazon com says it has reached an agreement to buy joyo com, the largest internet retailer...
Business electronic data systems offered voluntary early retirement to about 9, 200 us employees...
Business in the aftermath of its purchase of at amp t wireless, cingular wireless is selling several sets...
Sci/Tech wired amp wireless continues its reign at the top spot among it priorities due to widespread...

(10, 208, 179, 180) Sports this is the week of the season when every giants defensive back needs to have shoulders as...
Sports drew henson will have to wait before he’s the star of the dallas cowboys offense right now...
Sports st louis how do you beat the greatest show on turf with two rookie cornerbacks...
Sports cincinnati bengals coach marvin lewis said yesterday that he expects quarterback carson...

(65, 224, 78, 114) Sci/Tech microsoft acknowledged on monday it continued to battle a technical glitch that prevented...
Sci/Tech users of the music player should watch out for hacked themes a flaw allows would be...
World microsoft’s popular internet explorer has a serious rival in the firefox browser
Sci/Tech microsoft has doubled the period of time it will allow business users of windows xp to...

Table 4: Examples of sentence-level (M = 4, K = 256) clusters on AG News.

Cluster Words

822 government indonesia guilty prison general prosecutors leader law german sex authorities charged marched issue
651 yankees veteran baltimore quarterback offense tampa steelers giants defensive cleveland minnesota pittsburgh
595 month currency low session dollar euro greenback yen monetary weakening lows versus maintained grip rebounded
305 if despite when although
304 core plans intel athlon opteron processors chip hewlett packard strategy clearer forum designs desktop upped ante
802 bit cameras image pleasing integrates multimedia functions gprs automation self types btx supercomputers logic
298 president dick cheney john republicans kerry voters democrat javier sen kellogg
994 exploded bomb near killing injuring explosion eight residents firefighters leak central philippine 55 heavily cancun
484 apple atari san francisco sony toshiba anaheim finally assault famed mp3 freedom u2 accusations brook introduces
510 iraq killed car rebel iraqi military suicide forces marines insurgents baghdad evacuation bomber strikes explosions

Table 5: Word-level (M = 1, K = 1024) clusters on AG News. We take the majority cluster for each word for
illustration purposes.

Model 200 200 (re) 500 500 (re)

EM-Local 81.4 82.1 83.0 82.8
EM-Global 85.6 84.6 85.5 85.4

Cat-Local-Alt 83.3 82.9 84.8 84.1
Cat-Global-Alt 86.4 83.1 87.1 85.0

Cat-Local 83.2 82.5 85.3 84.8
Cat-Global 85.4 82.8 86.1 84.5

VQ-Local-Alt 82.9 81.1 84.8 81.4
VQ-Global-Alt 84.7 79.6 85.9 82.9

VQ-Local 82.6 78.7 83.6 81.3
VQ-Global 83.0 76.8 85.4 82.0

Table 6: Effect of alternating optimization on AG News
classification with 200 and 500 labels. The “(re)” affix
denotes reembedding. Accuracies are on development
set with column highs in bold.

8.3 Compression

We briefly discuss in what sense discrete latent rep-
resentations reduce storage requirements. Given
a vocabulary of size 30,000, storing a T -length
sentence requires T log2 30000 ≈ 14.9T bits. Our

models require at most ML log2K bits to repre-
sent a sentence, which is generally smaller, and
especially so when using a global representation.
It is also worth noting that storing a d-dimensional
floating point representation of a sentence (as con-
tinuous latent variable approaches might) costs 32d
bits, which is typically much larger.

While the above holds for storage, the space re-
quired to classify a sentence represented as ML
integers using a parametric classifier may not be
smaller than that required for classifying a sentence
represented as a d-dimensional floating point vector.
On the other hand, nearest neighbor-based meth-
ods, which are experiencing renewed interest (Guu
et al., 2018; Chen et al., 2019; Wiseman and Stratos,
2019), should be significantly less expensive in
terms of time and memory when sentences are en-
coded as ML integers rather than d-dimensional
floating point vectors. In the next subsection we
quantitatively evaluate our discrete representations
in a nearest neighbor-based retrieval setting.



4839

Discrete Embedding
M=4, K=256 M=8, K=128 M=16, K=256

Hard EM 76.1 79.6 78.8
CatVAE 77.5 73.7 78.5
VQ-VAE 69.1 73.5 71.2

Continuous Embedding (300d)
L2 COSINE

GloVe 76.4 76.6
fastText 72.8 74.1

Table 7: Unsupervised document retrieval on AG News
dataset, measured by average label precision of top 100
nearest neighbors of the development set. Underlined
score is the row best. Discrete representations use Ham-
ming distance.

8.4 Nearest Neighbor-Based Retrieval
In the classification experiments of Section 5, we
evaluated our discrete representations by training a
small classifier on top of them. Here we evaluate
our global discrete representations in a document
retrieval task to directly assess their quality; we
note that this evaluation does not rely on the learned
code books, embeddings, or a classifier.

In these experiments we use each document in
the development set of the AG News corpus as a
query to retrieve 100 nearest neighbors in the train-
ing corpus, as measured by Hamming distance. We
use average label precision, the fraction of retrieved
documents that have the same label as the query
document, to evaluate the retrieved neighbors. We
compare with baselines that use averaged 300d pre-
trained word vectors (corresponding to each token
in the document) as a representation, where neigh-
bors are retrieved based on cosine or L2 distance.
We use GloVe with a 2.2 million vocabulary (Pen-
nington et al., 2014) and fastText with a 2 million
vocabulary (Mikolov et al., 2018). The results are
in Table 7. We see that CatVAE and Hard EM
outperform these CBOW baselines (while being
significantly more space efficient), while VQ-VAE
does not. These results are in line with those of
Figure 2, where VQ-VAE struggles when its code
book vectors cannot be used (i.e., when reembed-
ding from scratch).

In Figure 4 we additionally experiment with a
slightly different setting: Rather than retrieving
a fixed number of nearest neighbors for a query
document, we retrieve all the documents within a
neighborhood of Hamming distance ≤ D, and cal-
culate the average label precision. These results use
global representations with M = 16, and we there-
fore examine thresholds of D ∈ {0, . . . , 16}. We

Figure 4: Retrieving document clusters with Hamming
distance ≤ D, for global models with M = 16 and
K = 256. Query and target documents are from AG
News’s development set and training set respectively.
Dot size indicates the number of documents in a cluster.

see that for CatVAE and Hard EM, the document
similarity (or label precision) has an approximately
linear correlation with Hamming distance. On the
other hand, VQ-VAE shows a more surprising pat-
tern, where high precision is not achieved until
D = 10, perhaps suggesting that a large portion of
the latent dimensions are redundant.

9 Conclusion

We have presented experiments comparing the dis-
crete representations learned by a Categorical VAE,
a VQ-VAE, and Hard EM in terms of their abil-
ity to improve a low-resource text classification
system, and to allow for nearest neighbor-based
document retrieval. Our best classification models
are able to outperform previous work, and this re-
mains so even when we reembed discrete latents
from scratch in the learned classifier. We find that
amortized Hard EM is particularly effective in low-
resource regimes when reembedding from scratch,
and that VQ-VAE struggles in these settings.
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Figure 5: The accuracies obtained by Hard EM, Categorical VAE, and VQ-VAE representations on the develop-
ment datasets of AG News (top), DBPedia (middle), and Yelp Full (bottom), for different numbers of labeled
training examples. Triangular and circular markers correspond to global and local models, respectively. Unshaded
and shaded markers correspond to reembedding from scratch and using encoder embeddings, respectively.


