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Abstract
Attention mechanisms are ubiquitous compo-
nents in neural architectures applied to natural
language processing. In addition to yielding
gains in predictive accuracy, attention weights
are often claimed to confer interpretability,
purportedly useful both for providing insights
to practitioners and for explaining why a model
makes its decisions to stakeholders. We call
the latter use of attention mechanisms into
question by demonstrating a simple method
for training models to produce deceptive at-
tention masks. Our method diminishes the to-
tal weight assigned to designated impermis-
sible tokens, even when the models can be
shown to nevertheless rely on these features
to drive predictions. Across multiple models
and tasks, our approach manipulates attention
weights while paying surprisingly little cost in
accuracy. Through a human study, we show
that our manipulated attention-based explana-
tions deceive people into thinking that predic-
tions from a model biased against gender mi-
norities do not rely on the gender. Conse-
quently, our results cast doubt on attention’s
reliability as a tool for auditing algorithms in
the context of fairness and accountability.1

1 Introduction

Since their introduction as a method for aligning
inputs and outputs in neural machine translation,
attention mechanisms (Bahdanau et al., 2014)
have emerged as effective components in various
neural network architectures. Attention works by
aggregating a set of tokens via a weighted sum,
where the attention weights are calculated as a
function of both the input encodings and the state
of the decoder.

Because attention mechanisms allocate weight
among the encoded tokens, these coefficients are

1The code and the datasets used in paper are
available at https://github.com/danishpruthi/
deceptive-attention

Attention Biography Label

Original
Ms. X practices medicine in
Memphis, TN and ... Ms. X
speaks English and Spanish.

Physician

Ours
Ms. X practices medicine in
Memphis , TN and ... Ms. X
speaks English and Spanish.

Physician

Table 1: Example of an occupation prediction task
where attention-based explanation (highlighted) has
been manipulated to whitewash problematic tokens.

sometimes thought of intuitively as indicating
which tokens the model focuses on when making
a particular prediction. Based on this loose intu-
ition, attention weights are often claimed to ex-
plain a model’s predictions. For example, a recent
survey on attention (Galassi et al., 2019) remarks:

“By inspecting the networks attention,
... one could attempt to investigate and
understand the outcome of neural net-
works. Hence, weight visualization is
now common practice.”

In another work, De-Arteaga et al. (2019) study
gender bias in machine learning models for occu-
pation classification. As machine learning is in-
creasingly used in hiring processes for tasks in-
cluding resume filtering, the potential for bias
raises the spectre that automating this process
could lead to social harms. De-Arteaga et al.
(2019) use attention over gender-revealing tokens
(e.g., ‘she’, ‘he’, etc.) to verify the gender bias
in occupation classification models—stating that
“the attention weights indicate which tokens are
most predictive”. Similar claims about atten-
tion’s utility for interpreting models’ predictions
are common in the literature (Li et al., 2016; Xu
et al., 2015; Choi et al., 2016; Xie et al., 2017;
Martins and Astudillo, 2016; Lai and Tan, 2019).

In this paper, we question whether attention
scores necessarily indicate features that influence

https://github.com/danishpruthi/deceptive-attention
https://github.com/danishpruthi/deceptive-attention
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a model’s predictions. Through a series of exper-
iments on diverse classification and sequence-to-
sequence tasks, we show that attention scores are
surprisingly easy to manipulate. We design a sim-
ple training scheme whereby the resulting mod-
els appear to assign little attention to a specified
set of impermissible tokens while continuing to
rely upon those features for prediction. The ease
with which attention can be manipulated without
significantly affecting performance suggests that
even if a vanilla model’s attention weights con-
ferred some insight (still an open and ill-defined
question), these insights would rely on knowing
the objective on which models were trained.

Our results present troublesome implications
for proposed uses of attention in the context of
fairness, accountability, and transparency. For ex-
ample, malicious practitioners asked to justify how
their models work by pointing to attention weights
could mislead regulators with this scheme. For in-
stance, looking at manipulated attention-based ex-
planation in Table 1, one might (incorrectly) as-
sume that the model does not rely on the gen-
der prefix. To quantitatively study the extent of
such deception, we conduct studies where we ask
human subjects if the biased occupation classi-
fication models (like the ones audited by De-
Arteaga et al. (2019)) rely on gender related in-
formation. We find that our manipulation scheme
is able to deceive human annotators into believ-
ing that manipulated models do not take gender
into account, whereas the models are heavily bi-
ased against gender minorities (see §5.2).

Lastly, practitioners often overlook the fact that
attention is typically not applied over words but
over final layer representations, which themselves
capture information from neighboring words. We
investigate the mechanisms through which the ma-
nipulated models attain low attention values. We
note that (i) recurrent connections allow informa-
tion to flow easily to neighboring representations;
(ii) for cases where the flow is restricted, models
tend to increase the magnitude of representations
corresponding to impermissible tokens to offset
the low attention scores; and (iii) models addition-
ally rely on several alternative mechanisms that
vary across random seeds (see §5.3).

2 Related Work

Many recent papers examine whether attention is
a valid explanation or not. Jain et al. (2019) iden-

tify alternate adversarial attention weights after
the model is trained that nevertheless produce the
same predictions, and hence claim that attention is
not explanation. However, these attention weights
are chosen from a large (infinite up to numerical
precision) set of possible values and thus it is not
surprising that multiple weights produce the same
prediction. Moreover since the model does not ac-
tually produce these weights, they would never be
relied on as explanations in the first place. Simi-
larly, Serrano and Smith (2019) modify attention
values of a trained model post-hoc by hard-setting
the highest attention values to zero. They find that
the number of attention values that must be ze-
roed out to alter the model’s prediction is often too
large, and thus conclude that attention is not a suit-
able tool to for determining which elements should
be attributed as responsible for an output. In con-
trast to these two papers, we manipulate the atten-
tion via the learning procedure, producing models
whose actual weights might deceive an auditor.

In parallel work to ours, Wiegreffe and Pinter
(2019) examine the conditions under which at-
tention can be considered a plausible explanation.
They design a similar experiment to ours where
they train an adversarial model, whose attention
distribution is maximally different from the one
produced by the base model. Here we look at
a related but different question of how attention
can be manipulated away from a set of impermis-
sible tokens. Using human studies we show that
our training scheme leads to attention maps that
are more deceptive, since people find them to be
more believable explanations of the output (see
§5.2). We also extend our analysis to sequence-
to-sequence tasks, and a broader set of models, in-
cluding BERT, and identify mechanisms by which
the manipulated models rely on the impermissible
tokens despite assigning low attention to them.

Lastly, several papers deliberately train atten-
tion weights by introducing an additional source
of supervision to improve predictive performance.
In some of these papers, the supervision comes
from known word alignments for machine trans-
lation (Liu et al., 2016; Chen et al., 2016), or by
aligning human eye-gaze with model’s attention
for sequence classification (Barrett et al., 2018).

3 Manipulating Attention

Let S = w1, w2, . . . , wn denote an input sequence
of n words. We assume that for each task, we are
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Dataset
(Task) Input Example Impermissible Tokens

(Percentage)

CommonCrawl Biographies
(Physician vs Surgeon)

Ms. X practices medicine in Memphis, TN
and is affiliated with . . . Ms. X speaks English and Spanish.

Gender Indicators
(6.5%)

Wikipedia Biographies
(Gender Identification)

After that, Austen was educated at home until
she went to boarding school with Cassandra early in 1785

Gender Indicators
(7.6%)

SST + Wikipedia
(Sentiment Analysis)

Good fun, good action, good acting, good dialogue, good pace, good
cinematography. Helen Maxine Lamond Reddy (born 25

October 1941) is an Australian singer, actress, and activist.

SST sentence
(45.5%)

Reference Letters
(Acceptance Prediction)

It is with pleasure that I am writing this letter in support
of . . . I highly recommend her for a place in your
institution. Percentile:99.0 Rank:Extraordinary.

Percentile, Rank
(1.6%)

Table 2: Example sentences from each classification task, with highlighted impermissible tokens and their support.

given a pre-specified set of impermissible words
I, for which we want to minimize the correspond-
ing attention weights. For example, these may in-
clude gender words such as “he”, “she”, “Mr.”, or
“Ms.”. We define the mask m to be a binary vector
of size n, such that

mi =

{
1, if wi ∈ I
0 otherwise.

Further, let α ∈ [0, 1]n denote the attention as-
signed to each word in S by a model, such that∑

i αi = 1. For any task-specific loss function L,
we define a new objective function L′ = L + R
where R is an additive penalty term whose pur-
pose is to penalize the model for allocating atten-
tion to impermissible words. For a single attention
layer, we defineR as:

R = −λ log(1−αTm)

and λ is a penalty coefficient that modulates the
amount of attention assigned to impermissible to-
kens. The argument of the log term (1 − αTm)
captures the total attention weight assigned to per-
missible words. In contrast to our penalty term,
Wiegreffe and Pinter (2019) use KL-divergence
to maximally separate the attention distribution of
the manipulated model (αnew) from the attention
distribution of the given model (αold):

R′ = −λ KL(αnew ‖ αold). (1)

However, their penalty term is not directly appli-
cable to our case: instantiating αold to be uniform
over impermissible tokens, and 0 over remainder
tokens results in an undefined loss term.

When dealing with models that employ multi-
headed attention, which use multiple different at-
tention vectors at each layer of the model (Vaswani

et al., 2017) we can optimize the mean value of our
penalty as assessed over the set of attention heads
H as follows:

R = − λ

|H|
∑
h∈H

log(1−αT
hm)).

When a model has many attention heads, an au-
ditor might not look at the mean attention assigned
to certain words but instead look head by head
to see if any among them assigns a large amount
of attention to impermissible words. Anticipating
this, we also explore a variant of our approach for
manipulating multi-headed attention where we pe-
nalize the maximum amount of attention paid to
impermissible words (among all heads) as follows:

R = −λ ·min
h∈H

log(1−αT
hm).

For cases where the impermissible set of tokens
is unknown apriori, one can plausibly use the top
few highly attended tokens as a proxy.

4 Experimental Setup

We study the manipulability of attention on four
binary classification problems, and four sequence-
to-sequence tasks. In each dataset, (in some, by
design) a subset of input tokens are known a priori
to be indispensable for achieving high accuracy.

4.1 Classification Tasks

Occupation classification We use the biogra-
phies collected by De-Arteaga et al. (2019) to
study bias against gender-minorities in occupation
classification models. We carve out a binary clas-
sification task of distinguishing between surgeons
and (non-surgeon) physicians from the multi-class
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occupation prediction setup. We chose this sub-
task because the biographies of the two profes-
sions use similar words, and a majority of sur-
geons (> 80%) in the dataset are male. We further
downsample minority classes—female surgeons,
and male physicians—by a factor of ten, to en-
courage models to use gender related tokens. Our
models (described in detail later in § 4.2) attain
96.4% accuracy on the task, and are reduced to
93.8% when the gender pronouns in the biogra-
phies are anonymized. Thus, the models (trained
on unanonymized data) make use of gender indi-
cators to obtain a higher task performance. Con-
sequently, we consider gender indicators as imper-
missible tokens for this task.

Pronoun-based Gender Identification We
construct a toy dataset from Wikipedia comprised
of biographies, in which we automatically label
biographies with a gender (female or male) based
solely on the presence of gender pronouns. To do
so, we use a pre-specified list of gender pronouns.
Biographies containing no gender pronouns, or
pronouns spanning both classes are discarded.
The rationale behind creating this dataset is that
due to the manner in which the dataset was
created, attaining 100% classification accuracy
is trivial if the model uses information from the
pronouns. However, without the pronouns, it may
not be possible to achieve perfect accuracy. Our
models trained on the same data with pronouns
anonymized, achieve at best 72.6% accuracy.

Sentiment Analysis with Distractor Sentences
We use the binary version of Stanford Senti-
ment Treebank (SST) (Socher et al., 2013), com-
prised of 10, 564 movie reviews. We append
one randomly-selected “distractor” sentence to
each review, from a set of opening sentences of
Wikipedia pages.2 Here, without relying upon the
tokens in the SST sentences, a model should not
be able to outperform random guessing.

Graduate School Reference Letters We obtain
a dataset of recommendation letters written for the
purpose of admission to graduate programs. The
task is to predict whether the student, for whom
the letter was written, was accepted. The letters
include students’ ranks and percentile scores as
marked by their mentors, which admissions com-
mittee members rely on. Indeed, we notice accu-

2Opening sentences tend to be declarative statements of
fact and typically are sentiment-neutral.

racy improvements when using the rank and per-
centile features in addition to the reference let-
ter. Thus, we consider percentile and rank labels
(which are appended at the end of the letter text)
as impermissible tokens. An example from each
classification task is listed in Table 2. More de-
tails about the datasets are in the appendix.

4.2 Classification Models

Embedding + Attention For illustrative pur-
poses, we start with a simple model with attention
directly over word embeddings. The word embed-
dings are aggregated by a weighted sum (where
weights are the attention scores) to form a context
vector, which is then fed to a linear layer, followed
by a softmax to perform prediction. For all our ex-
periments, we use dot-product attention, where the
query vector is a learnable weight vector. In this
model, prior to attention there is no interaction be-
tween the permissible and impermissible tokens.
The embedding dimension size is 128.

BiLSTM + Attention The encoder is a single-
layer bidirectional LSTM model (Graves and
Schmidhuber, 2005) with attention, followed by
a linear transformation and a softmax to perform
classification. The embedding and hidden dimen-
sion size are both set to 128.

Transformer Models We use the Bidirec-
tional Encoder Representations from Transform-
ers (BERT) model (Devlin et al., 2019). We use
the base version consisting of 12 layers with self-
attention. Further, each of the self-attention layers
consists of 12 attention heads. The first token of
every sequence is the special classification token
[CLS], whose final hidden state is used for classi-
fication tasks. To block the information flow from
permissible to impermissible tokens, we multi-
ply attention weights at every layer with a self-
attention mask M, a binary matrix of size n × n
where n is the size of the input sequence. An ele-
ment Mi,j represents whether the token wi should
attend on the token wj . Mi,j is 1 if both i and j
belong to the same set (either the set of impermis-
sible tokens, I or its complement Ic). Addition-
ally, the [CLS] token attends to all the tokens, but
no token attends to [CLS] to prevent the informa-
tion flow between I and Ic (Figure 1 illustrates
this setting). We attempt to manipulate attention
from [CLS] token to other tokens, and consider
two variants: one where we manipulate the maxi-
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Figure 1: Restricted self-attention in BERT. The infor-
mation flow through attention is restricted between im-
permissible and permissible tokens for every encoder
layer. The arrows represent the direction of attention.

mum attention across all heads, and one where we
manipulate the mean attention.

4.3 Sequence-to-sequence Tasks

Previous studies analysing the interpretability of
attention are all restricted to classification tasks
(Jain et al., 2019; Serrano and Smith, 2019; Wiegr-
effe and Pinter, 2019). Whereas, attention mech-
anism was first introduced for, and reportedly
leads to significant gains in, sequence-to-sequence
tasks. Here, we analyse whether for such tasks at-
tention can be manipulated away from its usual in-
terpretation as an alignment between output and
input tokens. We begin with three synthetic
sequence-to-sequence tasks that involve learning
simple input-to-output mappings.3

Bigram Flipping The task is to reverse the bi-
grams in the input ({w1, w2 . . . w2n−1, w2n} →
{w2, w1, . . . w2n, w2n−1}).

Sequence Copying The task requires copying
the input sequence ({w1, w2 . . . wn−1, wn} →
{w1, w2 . . . wn−1, wn}).

Sequence Reversal The goal here is to reverse
the input sequence ({w1, w2 . . . wn−1, wn} →
{wn, wn−1 . . . w2, w1}).

The motivation for evaluating on the synthetic
tasks is that for any given target token, we pre-
cisely know the input tokens responsible. Thus,
for these tasks, the gold alignments act as imper-
missible tokens in our setup (which are different
for each output token). For each of the three tasks,
we programmatically generate 100K random in-
put training sequences (with their corresponding
target sequences) of length upto 32. The input and
output vocabulary is fixed to a 1000 unique tokens.
For the task of bigram flipping, the input lengths

3These tasks have been previously used in the literature
to assess the ability of RNNs to learn long-range reorderings
and substitutions (Grefenstette et al., 2015).

are restricted to be even. We use two sets of 100K
unseen random sequences from the same distribu-
tion as the validation and test set.

Machine Translation (English to German)
Besides synthetic tasks, we also evaluate on En-
glish to German translation. We use the Multi30K
dataset, comprising of image descriptions (Elliott
et al., 2016). Since the gold target to source word-
level alignment is unavailable, we rely on the Fast
Align toolkit (Dyer et al., 2013) to align target
words to their source counterparts. We use these
aligned words as impermissible tokens.

For all sequence-to-sequence tasks, we use
an encoder-decoder architecture. Our encoder
is a bidirectional GRU, and our decoder is a
unidirectional GRU, with dot-product attention
over source tokens, computed at each decoding
timestep.4 We also run ablation studies with (i) no
attention, i.e. just using the last (or the first) hid-
den state of the encoder; and (ii) uniform attention,
i.e. all the source tokens are uniformly weighted.5

5 Results and Discussion

In this section we examine how lowering attention
affects task performance (§ 5.1). We then present
experiments with human participants to quantify
the deception with manipulated attention (§ 5.2).
Lastly, we identify alternate workarounds through
which models preserve task performance (§ 5.3).

5.1 Attention mass and task performance

For the classification tasks, we experiment with
the loss coefficient λ ∈ {0, 0.1, 1}. In each exper-
iment, we measure the (i) attention mass: the sum
of attention values over the set of impermissible
tokens averaged over all the examples, and (ii) test
accuracy. During the course of training (i.e. after
each epoch), we arrive at different models from
which we choose the one whose performance is
within 2% of the original accuracy and provides
the greatest reduction in attention mass on imper-
missible tokens. This is done using the develop-
ment set, and the results on the test set from the
chosen model are presented in Table 3. Across
most tasks, and models, we find that our manipula-
tion scheme severely reduces the attention mass on

4 Implementation details: the encoder and decoder token
embedding size is 256, the encoder and decoder hidden di-
mension size is 512, and the teacher forcing ratio is 0.5. We
use top-1 greedy strategy to decode the output sequence.

5 All data and code will be released on publication.
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Model λ I Occupation Pred. Gender Identify SST + Wiki Ref. Letters
Acc. A.M. Acc. A.M. Acc. A.M. Acc. A.M.

Embedding 0.0 7 93.8 - 66.8 - 48.9 - 74.2 2.3
Embedding 0.0 3 96.3 51.4 100 99.2 70.7 48.4 77.5 2.3
Embedding 0.1 3 96.2 4.6 99.4 3.4 67.9 36.4 76.8 0.5
Embedding 1.0 3 96.2 1.3 99.2 0.8 48.4 8.7 76.9 0.1

BiLSTM 0.0 7 93.3 - 63.3 - 49.1 - 74.7 -
BiLSTM 0.0 3 96.4 50.3 100 96.8 76.9 77.7 77.5 4.9
BiLSTM 0.1 3 96.4 0.08 100 < 10−6 60.6 0.04 76.9 3.9
BiLSTM 1.0 3 96.7 < 10−2 100 < 10−6 61.0 0.07 74.2 < 10−2

BERT 0.0 7 95.0 - 72.8 - 50.4 - 68.2
BERT (mean) 0.0 3 97.2 13.9 100 80.8 90.8 59.0 74.7 2.6
BERT (mean) 0.1 3 97.2 0.01 99.9 < 10−3 90.9 < 10−2 76.2 < 10−1

BERT (mean) 1.0 3 97.2 < 10−3 99.9 < 10−3 90.6 < 10−3 75.2 < 10−2

BERT 0.0 7 95.0 - 72.8 - 50.4 - 68.2
BERT (max) 0.0 3 97.2 99.7 100 99.7 90.8 96.2 74.7 28.9
BERT (max) 0.1 3 97.1 < 10−3 99.9 < 10−3 90.7 < 10−2 76.7 0.6
BERT (max) 1.0 3 97.4 < 10−3 99.8 < 10−4 90.2 < 10−3 75.9 < 10−2

Table 3: Accuracy of various classification models along with their attention mass (A.M.) on impermissible tokens
I, with varying values of the loss coefficient λ. The first row for each model class represents the case when
impermissible tokens I for the task are deleted/anonymized. For most models, and tasks, we can severely reduce
attention mass on impermissible tokens while preserving original performance (λ = 0 implies no manipulation).

Attention λ
Bigram Flip Sequence Copy Sequence Reverse En → De MT
Acc. A.M. Acc. A.M. Acc. A.M. BLEU A.M.

Dot-Product 0.0 100.0 94.5 99.9 98.8 100.0 94.1 24.4 20.6

Uniform 0.0 97.8 5.2 93.8 5.2 88.1 4.7 18.5 5.9
None 0.0 96.4 0.0 84.1 0.0 84.1 0.0 14.9 0.0

Manipulated 0.1 99.9 24.4 100.0 27.3 100 27.6 23.7 7.0
Manipulated 1.0 99.8 0.03 92.9 0.02 99.8 0.01 20.6 1.1

Table 4: Performance of sequence-to-sequence models and their attention mass (A.M.) on impermissible tokens I,
with varying values of the loss coefficient λ. Similar to classification tasks, we can severely reduce attention mass
on impermissible tokens while retaining original performance. All values are averaged over five runs.

impermissible tokens compared to models without
any manipulation (i.e. when λ = 0). This reduc-
tion comes at a minor, or no, decrease in task accu-
racy. Note that the models can not achieve perfor-
mance similar to the original model (as they do),
unless they rely on the set of impermissible tokens.
This can be seen from the gap between models that
do not use impermissible tokens ( I 7) from ones
that do ( I 3).

The only outlier to our findings is the SST+Wiki
sentiment analysis task, where we observe that the
manipulated Embedding and BiLSTM models re-
duce the attention mass but also lose accuracy. We
speculate that these models are under parameter-
ized and thus jointly reducing attention mass and
retaining original accuracy is harder. The more ex-
pressive BERT obtains an accuracy of over 90%
while reducing the maximum attention mass over
the movie review from 96.2% to 10−3%.

For sequence-to-sequence tasks, from Table 4,
we observe that our manipulation scheme can sim-
ilarly reduce attention mass over impermissible
alignments while preserving original performance.
To measure performance, we use token-by-token
accuracy for synthetic tasks, and BLEU score for
English to German MT. We also notice that the
models with manipulated attention (i.e. deliber-
ately misaligned) outperform models with none
or uniform attention. This suggests that atten-
tion mechanisms add value to the learning process
in sequence-to-sequence tasks which goes beyond
their usual interpretation as alignments.

5.2 Human Study

To study the deceptiveness of attention maps
trained using various training schemes, we present
a series of inputs and outputs from classification
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models to three human subjects.6 The models are
BiLSTMs that are trained to classify occupations
into either physician or surgeon given a short bi-
ography. We highlight the input tokens as per
the attention scores from three different training
schemes: (i) original dot-product attention, (ii)
adversarial attention from Wiegreffe and Pinter
(2019), and, (iii) our proposed attention manipu-
lation strategy. We ask human annotators (Q1):
Do you think that this prediction was influenced
by the gender of the individual? Each participant
answers either “yes” or “no” for a set of 50 ex-
amples from each of the three attention schemes.
We shuffled the order of sets among the three par-
ticipants to prevent any ordering bias. Addition-
ally, participants can flip through many examples
before registering their answers. After looking
at 50 examples from a given attention scheme,
we inquire about trustworthiness of the attention
scores (Q2): Do you believe the highlighted to-
kens capture the factors that drive the models’
prediction? They answer the question on a scale
of 1 to 4, where 1 denotes that the highlighted
tokens do not determine the models’ prediction,
whereas 4 implies they significantly determine the
models’ prediction. We deliberately ask partici-
pants once (towards the end) about the trustworthi-
ness of attention-based explanations, in contrast to
polling after each example, as it requires multiple
examples to assess whether the explanations cap-
ture factors that are predictive. Participants were
kept unaware of the specifics of the classifier or
the explanation technique used. Detailed instruc-
tions presented to participants are available in the
supplementary material.

Results We find that for the original dot-product
attention, annotators labeled 66% of predictions to
be influenced by gender. Whereas for the other
two attention schemes, none of the predictions
were marked to be influenced by gender (see Ta-
ble 5). This is despite all three models achieving
roughly the same high accuracy (96%) which re-
lies on gender information. This demonstrates the
efficacy of our manipulation scheme—predictions
from models biased against gender minorities are
perceived (by human participants) as not being in-
fluenced by gender. Further, our manipulated ex-
planations receive a trustworthiness score of 2.67

6The participating subjects are first and second year grad-
uate students specializing in NLP/ML and are knowledgeable
about attention mechanisms, but unaware about our work.

Attention Example Q1 Q2

Original
Ms. X practices

medicine and specializes
in urological surgery

66%
(yes) 3.00

Adversarial
(Wiegreffe and
Pinter, 2019)

Ms. X practices
medicine and specializes

in urological surgery

0%
(yes) 1.00

Ours
Ms. X practices

medicine and specializes
in urological surgery

0%
(yes) 2.67

Table 5: Results to questions posed to human partici-
pants. Q1: Do you think that this prediction was in-
fluenced by the gender of the individual? Q2: Do you
believe the highlighted tokens capture the factors that
drive the models prediction? See § 5.2 for discussion.

(out of 4), only slightly lower than the score for
the original explanations, and significantly better
than the adversarial attention. We found that the
KL divergence term in training adversarial atten-
tion (Eq. 1) encourages all the attention mass to
concentrate on a single uninformative token for
most examples, and hence was deemed as less
trustworthy by the annotators (see Table 5, more
examples in appendix). By contrast, our manip-
ulation scheme only reduces attention mass over
problematic tokens, and retains attention over non-
problematic but predictive ones (e.g. “medicine”)
making it more believable. We assess agreement
among annotators, and calculate the Fleiss’ Kappa
to be 0.97, suggesting almost perfect agreement.

5.3 Alternative Workarounds

We identify two mechanisms by which the mod-
els cheat, obtaining low attention values while re-
maining accurate.

Models with recurrent encoders can simply
pass information across tokens through recurrent
connections, prior to the application of attention.
To measure this effect, we hard-set the atten-
tion values corresponding to impermissible words
to zero after the manipulated model is trained,
thus clipping their direct contributions for infer-
ence. For gender classification using the BiLSTM
model, we are still able to predict over 99% of in-
stances correctly, thus confirming a large degree of
information flow to neighboring representations.7

In contrast, the Embedding model (which has no
means to pass the information pre-attention) at-

7 A recent study (Brunner et al., 2019) similarly observes
a high degree of ‘mixing’ of information across layers in
Transformer models.
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(a) Bigram Flipping

(b) Sequence Copying

(c) Sequence Reversal

Figure 2: For three sequence-to-sequence tasks, we plot the original attention map on the left, followed by the
attention plots of two manipulated models. The only difference between the manipulated models for each task is
the (random) initialization seed. Different manipulated models resort to different alternative mechanisms.

Figure 3: For gender identification task, the norms
of embedding vectors corresponding to impermissible
tokens increase considerably in Embedding+Attention
model to offset the low attention values. This is not
the case for BiLSTM+Attention model as it can pass
information due to recurrent connections.

tains only about 50% test accuracy after zeroing
the attention values for gender pronouns. We see
similar evidence of passing around information in
sequence-to-sequence models, where certain ma-
nipulated attention maps are off by one or two po-
sitions from the gold alignments (see Figure 2).

Models restricted from passing information
prior to the attention mechanism tend to increase
the magnitude of the representations correspond-

ing to impermissible words to compensate for the
low attention values. This effect is illustrated in
Figure 3, where the L2 norm of embeddings for
impermissible tokens increase considerably for the
Embedding model during training. We do not
see increased embedding norms for the BiLSTM
model, as this is unnecessary due to the model’s
capability to move around relevant information.

We also notice that differently initialized mod-
els attain different alternative mechanisms. In
Figure 2, we present attention maps from the orig-
inal model, alongside two manipulated models ini-
tialized with different seeds. In some cases, the at-
tention map is off by one or two positions from the
gold alignments. In other cases, all the attention is
confined to the first hidden state. In such cases,
manipulated models are similar to a no-attention
model, yet they offer better performance. In pre-
liminary experiments, we found a few such mod-
els that outperform the no-attention baseline, even
when the attention is turned off during inference.
This suggests that attention offers benefits during
training, even if it is not used during inference.
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6 Conclusion

Amidst practices that perceive attention scores to
be an indication of what the model focuses on, we
characterize the manipulability of attention mech-
anism and the (surprisingly small) cost to be paid
for it in accuracy. Our simple training scheme
produces models with significantly reduced atten-
tion mass over tokens known a priori to be useful
for prediction, while continuing to use them. Fur-
ther analysis reveals how the manipulated models
cheat, and raises concerns about the potential use
of attention as a tool to audit models.
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Supplementary Material

A Instructions for human study

In a series of examples, we present the inputs
and outputs of a machine learning (ML) model
trained to predict occupation (physician or sur-
geon) given a short bio (text). In each bio, we
attempt to explain the predictions of the model.
Specifically, we employ a technique that high-
lights words that (per our explanation method) are
thought to be responsible for a particular predic-
tion (colloquially, what the model focuses on). For
each unique example below, answer the following
question: Do you think that this prediction was in-
fluenced by the gender of the individual?

• Yes, I suspect that the gender influenced the
prediction.

• No, I have no reason to suspect that gender
influenced the prediction.

Please note that, all the examples in this file
are input, output pairs from one specific model.
Further, darker shades of highlighting indicate a
higher emphasis for the token (as per our explana-
tion method).

After showing 50 examples from a given at-
tention scheme, we inquire: Overall, do you be-
lieve the highlighted tokens capture the factors that
drive the models prediction?

1. The highlighted tokens capture factors that
do not determine the models prediction.

2. The highlighted tokens capture factors that
marginally determine the models prediction.

3. The highlighted tokens capture factors that
moderately determine the models predic-
tions.

4. The highlighted tokens capture factors that
significantly determine the models predic-
tions.

B Dataset Details

Details about the datasets used for classification
tasks are available in Table 6.

C Qualitative Examples

A few qualitative examples illustrating three dif-
ferent attention schemes are listed in Table 7.

Dataset
(Task) Train Val Test

CommonCrawl Biographies
(Physician vs Surgeon) 17629 2519 5037

Wikipedia Biographies
(Gender Identification) 9017 1127 1127

SST + Wikipedia
(Sentiment Analysis) 6920 872 1821

Reference Letters
(Acceptance Prediction) 32800 4097 4094

Table 6: Number of training, validation, and test exam-
ples in various datasets used for classification tasks.
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Attention Input Example Prediction
Original Ms. X practices medicine and specializes in urological surgery Physician

Adversarial
(Wiegreffe and
Pinter, 2019)

Ms. X practices medicine and specializes in urological surgery Physician

Ours Ms. X practices medicine and specializes in urological surgery Physician

Original Ms. X practices medicine in Fort Myers, FL and specializes in family medicine Physician

Adversarial
(Wiegreffe and
Pinter, 2019)

Ms. X practices medicine in Fort Myers, FL and specializes in family medicine Physician

Ours Ms. X practices medicine in Fort Myers, FL and specializes in family medicine Physician

Original

Having started his surgical career as a general orthopaedic surgeon,
Mr X retains a broad practice which includes knee and hand surgery .
He still does regular trauma on-call for the North Hampshire hospital

and treats all types of orthopaedic problems and trauma.

Surgeon

Adversarial
(Wiegreffe and
Pinter, 2019)

Having started his surgical career as a general orthopaedic surgeon,
Mr X retains a broad practice which includes knee and hand surgery.
He still does regular trauma on-call for the North Hampshire hospital

and treats all types of orthopaedic problems and trauma.

Surgeon

Ours

Having started his surgical career as a general orthopaedic surgeon,
Mr X retains a broad practice which includes knee and hand surgery.
He still does regular trauma on-call for the North Hampshire hospital

and treats all types of orthopaedic problems and trauma.

Surgeon

Original
Ms. X practices medicine in ... and specializes in pediatrics. Ms. X is affiliated

with childrens of Alabama, Saint Vincents hospital Birmingham and
Brookwood Medical Center. Ms. X speaks English and Arabic.

Physician

Adversarial
(Wiegreffe and
Pinter, 2019)

Ms. X practices medicine in ... and specializes in pediatrics. Ms. X is affiliated
with childrens of Alabama, Saint Vincents hospital Birmingham and

Brookwood Medical Center. Ms. X speaks English and Arabic.
Physician

Ours
Ms. X practices medicine in ... and specializes in pediatrics . Ms. X is affiliated

with childrens of Alabama, Saint Vincents hospital Birmingham and
Brookwood Medical Center. Ms. X speaks English and Arabic.

Physician

Table 7: Qualitative examples.


