
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 437–442
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

437

Opportunistic Decoding with Timely Correction
for Simultaneous Translation

Renjie Zheng 1,2,∗ Mingbo Ma 2,∗ Baigong Zheng 2 Kaibo Liu2 Liang Huang 1,2

1Oregon State University, Corvallis, OR, USA
2Baidu Research, Sunnyvale, CA, USA

{renjiezheng,mingboma,baigongzheng}@baidu.com
{kaiboliu,lianghuang}@baidu.com

Abstract

Simultaneous translation has many important
application scenarios and attracts much atten-
tion from both academia and industry recently.
Most existing frameworks, however, have dif-
ficulties in balancing between the translation
quality and latency, i.e., the decoding policy
is usually either too aggressive or too conser-
vative. We propose an opportunistic decoding
technique with timely correction ability, which
always (over-)generates a certain mount of ex-
tra words at each step to keep the audience on
track with the latest information. At the same
time, it also corrects, in a timely fashion, the
mistakes in the former overgenerated words
when observing more source context to ensure
high translation quality. Experiments show our
technique achieves substantial reduction in la-
tency and up to +3.1 increase in BLEU, with
revision rate under 8% in Chinese-to-English
and English-to-Chinese translation.

1 Introduction

Simultaneous translation, which starts translation
before the speaker finishes, is extremely useful in
many scenarios, such as international conferences,
travels, and so on. In order to achieve low latency,
it is often inevitable to generate target words with
insufficient source information, which makes this
task extremely challenging.

Recently, there are many efforts towards balanc-
ing the translation latency and quality with mainly
two types of approaches. On one hand, Ma et al.
(2019a) propose very simple frameworks that de-
code following a fixed-latency policy such as wait-
k. On the other hand, there are many attempts to
learn an adaptive policy which enables the model
to decide READ or WRITE action on the fly using
various techniques such as reinforcement learning
(Gu et al., 2017; Alinejad et al., 2018; Grissom II

∗These authors contributed equally.

yt
<latexit sha1_base64="SeGBdmF0K269BzW9NTI6ylilwtw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx4jmgckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD+Me9soVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndevby/qNRu8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QN1Bo3r</latexit>

ŷ6w
t

<latexit sha1_base64="KB9f+IQoMdoV0w7Aq9F4Qd4Ea5M=">AAACCXicbVC5TsNAEF2HK4QrQEmzIkKiimwOQRlBQxkkckixsdabdbLK+mB3DLIstzT8Cg0FCNHyB3T8DZvEBSQ8aaSn92Y0M8+LBVdgmt9GaWFxaXmlvFpZW9/Y3Kpu77RVlEjKWjQSkex6RDHBQ9YCDoJ1Y8lI4AnW8UaXY79zz6TiUXgDacycgAxC7nNKQEtuFdtDApkdEBh6fpbmuQu3mS3YnRIkBPyQu9WaWTcnwPPEKkgNFWi61S+7H9EkYCFQQZTqWWYMTkYkcCpYXrETxWJCR2TAepqGJGDKySaf5PhAK33sR1KXXj9Rf09kJFAqDTzdOT5ZzXpj8T+vl4B/7mQ8jBNgIZ0u8hOBIcLjWHCfS0ZBpJoQKrm+FdMhkYSCDq+iQ7BmX54n7aO6dVw/vT6pNS6KOMpoD+2jQ2ShM9RAV6iJWoiiR/SMXtGb8WS8GO/Gx7S1ZBQzu+gPjM8fJaObQg==</latexit>

revision window

de
co

di
ng

 ti
m

e

t
<latexit sha1_base64="t6XaytdIsHwdU4AeCNDSjPNP5sM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYns8mY2dllplcIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGd1O/9cS1EbF6wHHC/YgOlAgFo2ilOvZKZbfizkCWiZeTMuSo9Upf3X7M0ogrZJIa0/HcBP2MahRM8kmxmxqeUDaiA96xVNGIGz+bHTohp1bpkzDWthSSmfp7IqORMeMosJ0RxaFZ9Kbif14nxfDGz4RKUuSKzReFqSQYk+nXpC80ZyjHllCmhb2VsCHVlKHNpmhD8BZfXibN84p3UbmqX5art3kcBTiGEzgDD66hCvdQgwYw4PAMr/DmPDovzrvzMW9dcfKZI/gD5/MH4m2M/w==</latexit>

t + 1
<latexit sha1_base64="tGQ1GTwhm57M/cuPNJRIL/VDcNU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIez6QI9BLx4jmgckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+O0vLK6tr64WN4ubW9s5uaW+/YeJUM15nsYx1K6CGS6F4HQVK3ko0p1EgeTMY3k785hPXRsTqEUcJ9yPaVyIUjKKVHvDU65bKbsWdgiwSLydlyFHrlr46vZilEVfIJDWm7bkJ+hnVKJjk42InNTyhbEj7vG2pohE3fjY9dUyOrdIjYaxtKSRT9fdERiNjRlFgOyOKAzPvTcT/vHaK4bWfCZWkyBWbLQpTSTAmk79JT2jOUI4soUwLeythA6opQ5tO0Ybgzb+8SBpnFe+8cnl/Ua7e5HEU4BCO4AQ8uIIq3EEN6sCgD8/wCm+OdF6cd+dj1rrk5DMH8AfO5w+4yY1v</latexit>

correction

8>><>>:
<latexit sha1_base64="vOXxVXrmuiv79AW8seb2TKJ6MCA=">AAACN3icfVDLSgMxFM34dnxVXboJFsVVmfGBLotuXImCVaEpJZPeaYOZzJDcEcvQv3Ljb7jTjQtF3PoHprWCL7wkcDjnHu69J8qUtBgE997I6Nj4xOTUtD8zOze/UFpcOrNpbgTURKpScxFxC0pqqKFEBReZAZ5ECs6jy4O+fn4FxspUn2I3g0bC21rGUnB0VLN0xBTEyAoWQVvqIuFo5HXPp+vUPcboP8hnoFufDmZku4OVZqkcVIJB0d8gHIIyGdZxs3THWqnIE9AoFLe2HgYZNgpuUAoFPZ/lFjIuLnkb6g5qnoBtFIO7e3TNMS0ap8Z9jXTAfnUUPLG2m0Su063ZsT+1PvmXVs8x3msUUmc5ghYfg+JcUUxpP0TakgYEqq4DXBjpdqWiww0X6KL2XQjhz5N/g7PNSrhV2TnZLlf3h3FMkRWySjZISHZJlRySY1IjgtyQB/JEnr1b79F78V4/Wke8oWeZfCvv7R1tL6Y8</latexit>

…

…

…

8>><>>:
<latexit sha1_base64="vOXxVXrmuiv79AW8seb2TKJ6MCA=">AAACN3icfVDLSgMxFM34dnxVXboJFsVVmfGBLotuXImCVaEpJZPeaYOZzJDcEcvQv3Ljb7jTjQtF3PoHprWCL7wkcDjnHu69J8qUtBgE997I6Nj4xOTUtD8zOze/UFpcOrNpbgTURKpScxFxC0pqqKFEBReZAZ5ECs6jy4O+fn4FxspUn2I3g0bC21rGUnB0VLN0xBTEyAoWQVvqIuFo5HXPp+vUPcboP8hnoFufDmZku4OVZqkcVIJB0d8gHIIyGdZxs3THWqnIE9AoFLe2HgYZNgpuUAoFPZ/lFjIuLnkb6g5qnoBtFIO7e3TNMS0ap8Z9jXTAfnUUPLG2m0Su063ZsT+1PvmXVs8x3msUUmc5ghYfg+JcUUxpP0TakgYEqq4DXBjpdqWiww0X6KL2XQjhz5N/g7PNSrhV2TnZLlf3h3FMkRWySjZISHZJlRySY1IjgtyQB/JEnr1b79F78V4/Wke8oWeZfCvv7R1tL6Y8</latexit>

t + 2
<latexit sha1_base64="9+8co5X+9cuaDI/4vvU0v8CjHtc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3KnoMevEY0TwgWcLsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwup36zSeujYjUI45j7od0oERfMIpWesCzSrdYcsvuDGSZeBkpQYZat/jV6UUsCblCJqkxbc+N0U+pRsEknxQ6ieExZSM64G1LFQ258dPZqRNyYpUe6UfalkIyU39PpDQ0ZhwGtjOkODSL3lT8z2sn2L/2U6HiBLli80X9RBKMyPRv0hOaM5RjSyjTwt5K2JBqytCmU7AheIsvL5NGpeydly/vL0rVmyyOPBzBMZyCB1dQhTuoQR0YDOAZXuHNkc6L8+58zFtzTjZzCH/gfP4Auk2NcA==</latexit>

correction

y<t
<latexit sha1_base64="5wmZKBhkP+VlNy8pxWZS+/TmoiA=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUl8oAsXRTcuK9gHtCFMppN26OTBzEQJMZ/ixoUibv0Sd/6NkzYLrR4YOJxzL/fM8WLOpLKsL6OytLyyulZdr21sbm3vmPXdrowSQWiHRDwSfQ9LyllIO4opTvuxoDjwOO150+vC791TIVkU3qk0pk6AxyHzGcFKS65Zz4YBVhPPz9I8d7NLlbtmw2paM6C/xC5JA0q0XfNzOIpIEtBQEY6lHNhWrJwMC8UIp3ltmEgaYzLFYzrQNMQBlU42i56jQ62MkB8J/UKFZurPjQwHUqaBpyeLnHLRK8T/vEGi/AsnY2GcKBqS+SE/4UhFqOgBjZigRPFUE0wE01kRmWCBidJt1XQJ9uKX/5LucdM+aZ7dnjZaV2UdVdiHAzgCG86hBTfQhg4QeIAneIFX49F4Nt6M9/loxSh39uAXjI9vLjKUmg==</latexit>

irreversible

Figure 1: Besides yt, opportunistic decoding continues
to generate additional w words which are represented
as ŷ6w

t . The timely correction only revises this part in
future steps. Different shapes denote different words.
In this example, from step t to t+ 1, all previously op-
portunistically decoded words are revised, and an ex-
tra triangle word is generated in opportunistic window.
From step t+ 1 to t+ 2, two words from previous op-
portunistic window are kept and only the triangle word
is revised.

et al., 2014), supervised learning over pseudo-
oracles (Zheng et al., 2019a), imitation learning
(Zheng et al., 2019b), model ensemble (Zheng
et al., 2020) or monotonic attention (Ma et al.,
2019d; Arivazhagan et al., 2019).

Though the existing efforts improve the perfor-
mance in both translation latency and quality with
more powerful frameworks, it is still difficult to
choose an appropriate policy to explore the opti-
mal balance between latency and quality in prac-
tice, especially when the policy is trained and ap-
plied in different domains. Furthermore, all ex-
isting approaches are incapable of correcting the
mistakes from previous steps. When the former
steps commit errors, they will be propagated to the
later steps, inducing more mistakes to the future.

Inspired by our previous work on speculative
beam search (Zheng et al., 2019c), we propose
an opportunistic decoding technique with timely
correction mechanism to address the above prob-
lems. As shown in Fig. 1, our proposed method
always decodes more words than the original pol-
icy at each step to catch up with the speaker and

438

reduce the latency. At the same time, it also em-
ploys a timely correction mechanism to review
the extra outputs from previous steps with more
source context, and revises these outputs with cur-
rent preference when there is a disagreement. Our
algorithm can be used in both speech-to-text and
speech-to-speech simultaneous translation (Oda
et al., 2014; Bangalore et al., 2012; Yarmoham-
madi et al., 2013). In the former case, the audi-
ence will not be overwhelmed by the modifica-
tions since we only review and modify the last few
output words with a relatively low revision rate.
In the later case, the revisable extra words can be
used in look-ahead window in incremental TTS
(Ma et al., 2019b). By contrast, the alternative re-
translation strategy (Arivazhagan et al., 2020) will
cause non-local revisions which makes it impossi-
ble to be used in incremental TTS.

We also define, for the first time, two metrics
for revision-enabled simultaneous translation: a
more general latency metric Revision-aware Aver-
age Lagging (RAL) as well as the revision rate.
We demonstrate the effectiveness of our proposed
technique using fixed (Ma et al., 2019a) and adap-
tive (Zheng et al., 2019a) policies in both Chinese-
to-English and English-to-Chinese translation.

2 Preliminaries

Full-sentence NMT. The conventional full-
sentence NMT processes the source sentence x =
(x1, ..., xn) with an encoder, where xi repre-
sents an input token. The decoder on the target
side (greedily) selects the highest-scoring word yt
given source representation h and previously gen-
erated target tokens, y<t = (y1, ..., yt−1), and the
final hypothesis y = (y1, ..., yt) with yt = <eos>

has the highest probability:

p(y | x) =
∏|y|
t=1 p(yt | x, y<t) (1)

Simultaneous Translation. Without loss of
generality, regardless the actual design of policy,
simultaneous translation is represented as:

pg(y | x) =
∏|y|
t=1 p(yt | x6g(t), y<t) (2)

where g(t) can be used to represent any arbitrary
fixed or adaptive policy. For simplicity, we assume
the policy is given and does not distinguish the dif-
ference between two types of policies.

3 Opportunistic Decoding with Timely
Correction and Beam Search

Opportunistic Decoding. For simplicity, we
first apply this method to fixed policies. We de-

fine the original decoded word sequence at time
step t with yt, which represents the word that is
decoded in time step t with original model. We
denote the additional decoded words at time step t
as ŷ6w

t = (y1t , ..., y
w
t), where w denote the num-

ber of extra decoded words. In our setting, the
decoding process is as follows:

pg(yt ◦ ŷ6w
t | x6g(t)) =

pg(yt | x6g(t))
∏w
i=1 pg(ŷ

i
t | x6g(t), yt ◦ ŷ<it)

(3)

where ◦ is the string concatenation operator.
We treat the procedure for generating the ex-

tra decoded sequence as opportunistic decoding,
which prefers to generate more tokens based on
current context. When we have enough informa-
tion, this opportunistic decoding eliminates un-
necessary latency and keep the audience on track.
With a certain chance, when the opportunistic de-
coding tends to aggressive and generates inappro-
priate tokens, we need to fix the inaccurate token
immediately.

Timely Correction. In order to deliver the cor-
rect information to the audience promptly and fix
previous mistakes as soon as possible, we also
need to review and modify the previous outputs.

At step t+1, when encoder obtains more infor-
mation from x6g(t) to x6g(t+1), the decoder is ca-
pable to generate more appropriate candidates and
may revise and replace the previous outputs from
opportunistic decoding. More precisely, ŷ6w

t and
yt+1 ◦ ŷ6w−1

t+1 are two different hypothesis over the
same time chunk. When there is a disagreement,
our model always uses the hypothesis from later
step to replace the previous commits. Note our
model does not change any word in yt from previ-
ous step and it only revise the words in ŷ6w

t .

Modification for Adaptive Policy. For adaptive
policies, the only difference is, instead of commit-
ting a single word, the model is capable of gen-
erating multiple irreversible words. Thus our pro-
posed methods can be easily applied to adaptive
policies.

Correction with Beam Search. When the
model is committing more than one word at a time,
we can use beam search to further improve the
translation quality and reduce revision rate (Mur-
ray and Chiang, 2018; Ma et al., 2019c).

The decoder maintains a beam Bk
t of size

b at step t, which is ordered list of pairs

439

bùshí

Ջ
Bush

zǒngtǒng

ᕹ
President

de

ጱ
of

Jiāng

Jiang

fāyán

ݎ
speech

biăoshì

ᤒᐏ
express

Zémín

၂࿆
Zemin

dùi

to

Jiang Zemin expressed his welcome to

his agreement to President

1 2 3 4 5 6 7 8 9
zàntóng

ݶᩩ
agreement

…

decoding time

t = 4

t = 5 expressed

…

҅
bìngqiě

ଚӬ
and

10 11

Jiang Zemin

his to Presidentt = 6 expressed Jiang Zemin Bushagreement

Figure 2: The decoder generates target word y4 = “his” and two extra words “welcome to” at step t = 4 when
input x9 = “zàntóng” (“agreement”) is not available yet. When the model receives x9 at step t = 5, the decoder
immediately corrects the previously made mistake “welcome” with “agreement” and emits two additional target
words (“to President”). The decoder not only is capable to fix the previous mistake, but also has enough information
to perform more correct generations. Our framework benefits from opportunistic decoding with reduced latency
here. Note though the word “to” is generated in step t = 4, it only becomes irreversible at step t = 6.

〈hypothesis, probability〉, where k denotes the kth

step in beam search. At each step, there is an ini-
tial beam B0

t = [〈yt−1, 1〉]. We denote one-step
transition from the previous beam to the next as

Bk+1
t = nextb1(B

k
t)

=
b

top{〈y′◦ v, u·p(v|x6g(t),y
′)〉 | 〈y′, u〉∈Bk

t }

where topb(·) returns the top-scoring b pairs.
Note we do not distinguish the revisable and non-
revisable output in y′ for simplicity. We also de-
fine the multi-step advance beam search function
with recursive fashion as follows:

nextbi(B
k
t)=nextb1(next

b
i−1(B

k
t))

When the opportunistic decoding window is w
at decoding step t, we define the beam search over
w + 1 (include the original output) as follows:

〈y′t, ut〉 = top1
(
nextbn+w(B

0
t)
)

(4)

where nextbn+w(·) performs a beam search with
n+ w steps, and generate y′t as the outputs which
include both original and opportunistic decoded
words. n represents the length of yt

4 Revision-aware AL and Revision Rate

We define, for the first time, two metrics for
revision-enabled simultaneous translation.

4.1 Revision-aware AL

AL is introduced in (Ma et al., 2019a) to mea-
sure the average delay for simultaneous transla-
tion. Besides the limitations that are mentioned
in (Cherry and Foster, 2019), AL is also not sensi-
tive to the modifications to the committed words.
Furthermore, in the case of re-translation, AL is
incapable to measure the meaningful latency any-
more.

A
A B
A D B C
A C F
A D F E F
A D F B E
A D F B E

target
source

final 
outputs

s = 0
<latexit sha1_base64="D1yS6RzrA1lVOBtvBtnRjRFu1H8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QC9C0IvHiOYByRJmJ7PJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjRa0FBUddPdFSRSGHTdL6ewtLyyulZcL21sbm3vlHf3miZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0c3Ubz1ybUSsHnCccD+iAyVCwSha6d5cub1yxa26M5C/xMtJBXLUe+XPbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QI6v0SRhrWwrJTP05kdHImHEU2M6I4tAselPxP6+TYnjpZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsv/yXNk6p3Wj2/O6vUrvM4inAAh3AMHlxADW6hDg1gMIAneIFXRzrPzpvzPm8tOPnMPvyC8/EN0RmNfw==</latexit>

s = 1
<latexit sha1_base64="tv1gl2xEnOTihOnrQ3xwG0IywLM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QC9C0IvHiOYByRJmJ7PJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjRa0FBUddPdFSRSGHTdL6ewtLyyulZcL21sbm3vlHf3miZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0c3Ubz1ybUSsHnCccD+iAyVCwSha6d5ceb1yxa26M5C/xMtJBXLUe+XPbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QI6v0SRhrWwrJTP05kdHImHEU2M6I4tAselPxP6+TYnjpZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsv/yXNk6p3Wj2/O6vUrvM4inAAh3AMHlxADW6hDg1gMIAneIFXRzrPzpvzPm8tOPnMPvyC8/EN0p2NgA==</latexit>

s = 2
<latexit sha1_base64="OyODLHvyAVgcgVeW1v0anuu3NT0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRS9C0IvHiOYByRJmJ51kyOzsMjMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcSCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItQKqUXCJdcONwFaskIaBwGYwup36zSdUmkfy0Yxj9EM6kLzPGTVWetDXlW6x5JbdGcgy8TJSggy1bvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns1Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/KT7mME4OSzRf1E0FMRKZ/kx5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf48jJpVMreWfni/rxUvcniyMMRHMMpeHAJVbiDGtSBwQCe4RXeHOG8OO/Ox7w152Qzh/AHzucP1CGNgQ==</latexit>

s = 3
<latexit sha1_base64="2cq5hRI5oOfi0+KTbgxpw8ViPNI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewaRS9C0IvHiOYByRJmJ51kyOzsMjMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcSCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItQKqUXCJdcONwFaskIaBwGYwup36zSdUmkfy0Yxj9EM6kLzPGTVWetDXlW6x5JbdGcgy8TJSggy1bvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns1Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/KT7mME4OSzRf1E0FMRKZ/kx5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf48jJpnJW9Svni/rxUvcniyMMRHMMpeHAJVbiDGtSBwQCe4RXeHOG8OO/Ox7w152Qzh/AHzucP1aWNgg==</latexit>

s = 4
<latexit sha1_base64="XPATyeSDT1r3YAs7G20W9viZ8VM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqRC9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00oO5rnSLJbfszkCWiZeREmSodYtfnV7EkpArZJIa0/bcGP2UahRM8kmhkxgeUzaiA962VNGQGz+dnTohJ1bpkX6kbSkkM/X3REpDY8ZhYDtDikOz6E3F/7x2gv0rPxUqTpArNl/UTyTBiEz/Jj2hOUM5toQyLeythA2ppgxtOgUbgrf48jJpnJW98/LFfaVUvcniyMMRHMMpeHAJVbiDGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucP1ymNgw==</latexit>

s = 5
<latexit sha1_base64="nujZy26rKbMtSsGONODKK1q+R00=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqQS9C0IvHiOYByRJmJ51kyOzsMjMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcSCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItQKqUXCJdcONwFaskIaBwGYwup36zSdUmkfy0Yxj9EM6kLzPGTVWetDXlW6x5JbdGcgy8TJSggy1bvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns1Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/KT7mME4OSzRf1E0FMRKZ/kx5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf48jJpnJW983Ll/qJUvcniyMMRHMMpeHAJVbiDGtSBwQCe4RXeHOG8OO/Ox7w152Qzh/AHzucP2K2NhA==</latexit>

s = 6
<latexit sha1_base64="cL0DGlOQBArHBgYYuFOl5u4ovjs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6vghBLx4jmgckS5iddJIhs7PLzKwQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXEAuujet+O7ml5ZXVtfx6YWNza3unuLtX11GiGNZYJCLVDKhGwSXWDDcCm7FCGgYCG8HwduI3nlBpHslHM4rRD2lf8h5n1FjpQV9fdIolt+xOQRaJl5ESZKh2il/tbsSSEKVhgmrd8tzY+ClVhjOB40I70RhTNqR9bFkqaYjaT6enjsmRVbqkFylb0pCp+nsipaHWozCwnSE1Az3vTcT/vFZield+ymWcGJRstqiXCGIiMvmbdLlCZsTIEsoUt7cSNqCKMmPTKdgQvPmXF0n9pOydls/vz0qVmyyOPBzAIRyDB5dQgTuoQg0Y9OEZXuHNEc6L8+58zFpzTjazD3/gfP4A2jGNhQ==</latexit>

t = 1
<latexit sha1_base64="ER7jzwoVgjsUgXLZQQcA8BLCHM0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QC9C0IvHiOYByRJmJ7PJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjRa0FBUddPdFSRSGHTdL6ewtLyyulZcL21sbm3vlHf3miZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0c3Ubz1ybUSsHnCccD+iAyVCwSha6R6vvF654lbdGchf4uWkAjnqvfJntx+zNOIKmaTGdDw3QT+jGgWTfFLqpoYnlI3ogHcsVTTixs9mp07IkVX6JIy1LYVkpv6cyGhkzDgKbGdEcWgWvan4n9dJMbz0M6GSFLli80VhKgnGZPo36QvNGcqxJZRpYW8lbEg1ZWjTKdkQvMWX/5LmSdU7rZ7fnVVq13kcRTiAQzgGDy6gBrdQhwYwGMATvMCrI51n5815n7cWnHxmH37B+fgG1CONgQ==</latexit>

t = 2
<latexit sha1_base64="JTTAGu8mLCMqvYJ9WV/XCaGanJg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRS9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00gNeV7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvrHxxf16q3mRx5OEIjuEUPLiEKtxBDerAYADP8ApvjnRenHfnY96ac7KZQ/gD5/MH1aeNgg==</latexit>

t = 3
<latexit sha1_base64="ztmF+NWK7YHJFlSK1UJItkkJVKc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewaRS9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00gNeV7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0zspepXxxf16q3mRx5OEIjuEUPLiEKtxBDerAYADP8ApvjnRenHfnY96ac7KZQ/gD5/MH1yuNgw==</latexit>

t = 4
<latexit sha1_base64="5A33jCSJYnP/zs91NH2ZC1xVM40=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqRC9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00gNeV7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0zsreefnivlKq3mRx5OEIjuEUPLiEKtxBDerAYADP8ApvjnRenHfnY96ac7KZQ/gD5/MH2K+NhA==</latexit>

t = 5
<latexit sha1_base64="VBnB3NxfkozrscJfPwxvIb0q3iU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqQS9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00gNeV7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0zsreeblyf1Gq3mRx5OEIjuEUPLiEKtxBDerAYADP8ApvjnRenHfnY96ac7KZQ/gD5/MH2jONhQ==</latexit>

Figure 3: The red arrows represent the changes be-
tween two different commits, and the last changes for
each output word is highlighted with yellow.

We hereby propose a new latency, Revision-
aware AL (RAL), which can be applied to any
kind of translation scenarios, i.e., full-sentence
translation, use re-translation as simultaneous
translation, fixed and adaptive policy simultaneous
translation. Note that for latency and revision rate
calculation, we count the target side difference re-
spect to the growth of source side. As it is shown
in Fig. 3, there might be multiple changes for each
output words during the translation, and we only
start to calculate the latency for this word once it
agrees with the final results. Therefore, it is neces-
sary to locate the last change for each word. For a
given source side time s, we denote the tth outputs
on target side as f(x6s)t. Then we are able to find
the Last Revision (LR) for the tth word on target
side as follows:

LR(t) = argmax
s<|x|

(
f(x6(s−1))t 6= f(x6s)t

)

From the audience point of view, once the for-
mer words are changed, the audience also needs
to take the efforts to read the following as well.
Then we also penalize the later words even there
are no changes, which is shown with blue arrow in
Fig. 3. We then re-formulate the LR(t) as follows
(assume LR(0) = 0):

440

5 10 15
Revision-aware Average Lagging (zh en)

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

4-
re

f B
LE

U

w=5, b>1
w=3, b>1
w=1, b>1
w=5, b=1
w=3, b=1
w=1, b=1
w=0, b=1

29.6 0 5 10 15
Revision-aware Average Lagging (en zh)

10

12

14

16

18

20

22

24

1-
re

f B
LE

U

w=5, b>1
w=3, b>1
w=1, b>1
w=5, b=1
w=3, b=1
w=1, b=1
w=0, b=1

38.3

Figure 4: BLEU against RAL using wait-k polocies. N N N : wait-1 policies, : wait-3 policies, : wait-5
policies, : wait-7 policies, H H H: wait-9 policies,F (F): re-translation with pre-trained NMT model with
greedy (beam search) decoding, F (�): full-sentence translation with pre-trained NMT model with greedy (beam
search) decoding. The baseline for wait-k policies is decoding with w = 0, b = 1.

1 2 3 4 5
Window Size (zh en)

0

2

4

6

8

R
ev

is
io

n
R

at
e

b=1
b>1

39.5

40.0

1 2 3 4 5
Window Size (en zh)

0

2

4

6

8
R

ev
is

io
n

R
at

e

b=1
b>1

25

30

Figure 5: Revision rate against window size with different wait-k policies. F (F): re-translation with pre-trained
NMT model with greedy (beam search) decoding.

LR(t) = max{LR(t− 1), LR(t)} (5)

The above definition can be visualized as the thick
black line in Fig. 3. Similar with original AL, our
proposed RAL is defined as follows:

RAL(x,y) =
1

τ(|x|)

τ(|x|)∑

t=1

LR(t)− t− 1

r
(6)

where τ(|x|) denotes the cut-off step, and r =
|y|/|x| is the target-to-source length ratio.

4.2 Revision Rate
Since each modification on the target side would
cost extra effort for the audience to read, we pe-
nalize all the revisions during the translation. We
define the revision rate as follows:
(|x|−1∑

s=1

dist
(
f(x6s), f(x6s+1)

))/(|x|∑

s=1

|f(x6s)|
)

where dist can be arbitrary distance measurement
between two sequences. For simplicity, we design

a modified Hamming Distance to measure the dif-
ference:

dist(a, b) = hamming
(
a, b≤|a|◦〈pad〉max(|a|−|b|,0))

where 〈pad〉 is a padding symbol in case b is
shorter than a.

5 Experiments

Datasets and Implementation We evaluate
our work on Chinese-to-English and English-to-
Chinese simultaneous translation tasks. We use
the NIST corpus (2M sentence pairs) as the train-
ing data. We first apply BPE (Sennrich et al.,
2015) on all texts to reduce the vocabulary sizes.
For evaluation, we use NIST 2006 and NIST 2008
as our dev and test sets with 4 English references.
We re-implement wait-k model (Ma et al., 2019a)
and adaptive policy (Zheng et al., 2019a). We use
Transformer (Vaswani et al., 2017) based wait-
k model and pre-trained full-sentence model for
learning adaptive policy.

441

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Revision-aware Average Lagging (zh en)

29

30

31

32

33

4-
re

f B
LE

U

w=0, b=1
w=0, b>1

w=1, b=1
w=1, b>1

w=3, b=1
w=3, b>1

w=5, b=1
w=5, b>1

5 6 7 8 9
Revision-aware Average Lagging (en zh)

16

17

18

19

20

21

1-
re

f B
LE

U

w=0, b=1
w=0, b>1

w=1, b=1
w=1, b>1

w=3, b=1
w=3, b>1

w=5, b=1
w=5, b>1

Figure 6: BLEU against RAL using adaptive policies. Baseline is decoded with w = 0, b = 1 and w = 0, b > 1.

Performance on Wait-k Policy We perform ex-
periments using opportunistic decoding on wait-
k policies with k ∈ {1, 3, 5, 7, 9}, opportunis-
tic window w ∈ {1, 3, 5} and beam size b ∈
{1, 3, 5, 7, 10, 15}. We select the best beam size
for each policy and window pair on dev-set.

We compare our proposed method with a
baseline called re-translation which uses a full-
sentence NMT model to re-decode the whole tar-
get sentence once a new source word is observed.
The final output sentences of this method are iden-
tical to the full sentence translation output with the
same model but the latency is reduced.

Fig. 4 (left) shows the Chinese-to-English re-
sults of our proposed algorithm. Since our greedy
opportunistic decoding doesn’t change the final
output, there is no difference in BLEU com-
pared with normal decoding, but the latency is re-
duced. However, by applying beam search, we can
achieve 3.1 BLEU improvement and 2.4 latency
reduction on wait-7 policy.

Fig. 4 (right) shows the English-to-Chinese re-
sults. Compare to the Chinese-to-English transla-
tion results in previous section, there is compara-
tively less latency reduction by using beam search
because the output translations are slightly longer
which hurts the latency. As shown in Fig. 5(right),
the revision rate is still controlled under 8%.

Fig. 5 shows the revision rate with different
window size on wait-k policies. In general, with
opportunity window w ≤ 5, the revision rate
of our proposed approach is under 8%, which is
much lower than re-translation.

Performance on Adaptive Policy Fig. 6 shows
the performance of the proposed algorithm on
adaptive policies. We use threshold ρ ∈
{0.55, 0.53, 0.5, 0.47, 0.45}. We vary beam size

b ∈ {1, 3, 5, 7, 10} and select the best one on dev-
set. Comparing with conventional beam search
on consecutive writes, our decoding algorithm
achieves even much higher BLEU and less latency.

5.1 Revision Rate vs. Window Size

1 3 5 7 10 15
Beam Size (zh en)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
ev

is
io

n
R

at
e

wait-1
wait-3
wait-5
wait-7
wait-9

Figure 7: Revision rate against beam size with window
size of 3 and different wait-k policies.

We further investigate the revision rate with dif-
ferent beam sizes on wait-k policies. Fig. 7 shows
that the revision rate is higher with lower wait-k
policies. This makes sense because the low k poli-
cies are always more aggressive and easy to make
mistakes. Moreover, we can find that the revision
rate is not very sensitive to beam size.

6 Conclusions

We have proposed an opportunistic decoding
timely correction technique which improves the
latency and quality for simultaneous translation.
We also defined two metrics for revision-enabled
simultaneous translation for the first time.

Acknowledgments

L. H. was supported in part by NSF IIS-1817231.

442

References
Ashkan Alinejad, Maryam Siahbani, and Anoop

Sarkar. 2018. Prediction improves simultaneous
neural machine translation. In EMNLP.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz,
Ruoming Pang, Wei Li, and Colin Raffel. 2019.
Monotonic infinite lookback attention for simulta-
neous machine translation. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, Florence, Italy. Association for
Computational Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, and George Foster. 2020. Re-translation
versus streaming for simultaneous translation.
arXiv preprint arXiv:2004.03643.

Srinivas Bangalore, Vivek Kumar Rangarajan Srid-
har, Prakash Kolan, Ladan Golipour, and Aura
Jimenez. 2012. Real-time incremental speech-to-
speech translation of dialogs. In Proc. of NAACL-
HLT.

Colin Cherry and George Foster. 2019. Thinking slow
about latency evaluation for simultaneous machine
translation. arXiv preprint arXiv:1906.00048.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until the
final verb wait: Reinforcement learning for simulta-
neous machine translation. In EMNLP, pages 1342–
1352.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O. K. Li. 2017. Learning to translate in real-
time with neural machine translation. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL 2017, Valencia, Spain, April 3-7, 2017, Vol-
ume 1: Long Papers, pages 1053–1062.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and
Haifeng Wang. 2019a. STACL: Simultaneous trans-
lation with implicit anticipation and controllable la-
tency using prefix-to-prefix framework. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3025–3036,
Florence, Italy. Association for Computational Lin-
guistics.

Mingbo Ma, Baigong Zheng, Kaibo Liu, Renjie Zheng,
Hairong Liu, Kainan Peng, Kenneth Church, and
Liang Huang. 2019b. Incremental text-to-speech
synthesis with prefix-to-prefix framework. arXiv
preprint arXiv:1911.02750.

Mingbo Ma, Renjie Zheng, and Liang Huang. 2019c.
Learning to stop in structured prediction for neu-
ral machine translation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short
Papers), pages 1884–1889.

Xutai Ma, Juan Pino, James Cross, Liezl Puzon, and
Jiatao Gu. 2019d. Monotonic multihead attention.
arXiv preprint arXiv:1909.12406.

Kenton Murray and David Chiang. 2018. Correcting
length bias in neural machine translation. In Pro-
ceedings of WMT 2018.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2014. Optimiz-
ing segmentation strategies for simultaneous speech
translation. In ACL.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30.

Mahsa Yarmohammadi, Vivek Kumar Rangara-
jan Sridhar, Srinivas Bangalore, and Baskaran
Sankaran. 2013. Incremental segmentation and
decoding strategies for simultaneous translation.
In Proceedings of the Sixth International Joint
Conference on Natural Language Processing.

Baigong Zheng, Kaibo Liu, Renjie Zheng, Mingbo Ma,
Hairong Liu, and Liang Huang. 2020. Simultaneous
translation policies: from fixed to adaptive. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019a. Simpler and faster learning of adap-
tive policies for simultaneous translation. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1349–1354.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang
Huang. 2019b. Simultaneous translation with flexi-
ble policy via restricted imitation learning. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5816–
5822.

Renjie Zheng, Mingbo Ma, Baigong Zheng, and Liang
Huang. 2019c. Speculative beam search for simulta-
neous translation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1395–1402.

https://aclanthology.info/papers/E17-1099/e17-1099
https://aclanthology.info/papers/E17-1099/e17-1099
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289
https://doi.org/10.18653/v1/P19-1289

