
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4306–4319
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

4306

AMR Parsing with Latent Structural Information

Qiji Zhou1†, Yue Zhang2,3, Donghong Ji1∗, Hao Tang1

1Key Laboratory of Aerospace Information Security and Trusted Computing,
Ministry of Education, School of Cyber Science and Engineering, Wuhan University, China

{qiji.zhou,dhji,tanghaopro}@whu.edu.cn
2School of Engineering, Westlake University

3Institute of Advanced Technology, Westlake Institute for Advanced Study
yue.zhang@wias.org.cn

Abstract

Abstract Meaning Representations (AMRs)
capture sentence-level semantics structural
representations to broad-coverage natural sen-
tences. We investigate parsing AMR with ex-
plicit dependency structures and interpretable
latent structures. We generate the latent soft
structure without additional annotations, and
fuse both dependency and latent structure via
an extended graph neural networks. The
fused structural information helps our experi-
ments results to achieve the best reported re-
sults on both AMR 2.0 (77.5% Smatch F1 on
LDC2017T10) and AMR 1.0 (71.8% Smatch
F1 on LDC2014T12).

1 Introduction

Abstract Meaning Representations (AMRs) (Ba-
narescu et al., 2013) model sentence level seman-
tics as rooted, directed, acyclic graphs. Nodes in
the graph are concepts which represent the events,
objects and features of the input sentence, and
edges between nodes represent semantic relations.
AMR introduces re-entrance relation to depict the
node reuse in the graphs. It has been adopted in
downstream NLP tasks, including text summariza-
tion (Liu et al., 2015; Dohare and Karnick, 2017),
question answering (Mitra and Baral, 2016) and
machine translation (Jones et al., 2012; Song et al.,
2019).

AMR parsing aims to transform natural language
sentences into AMR semantic graphs. Similar to
constituent parsing and dependency parsing (Nivre,
2008; Dozat and Manning, 2017), AMR parsers
mainly employ two parsing techniques: transition-
based parsing (Wang et al., 2016; Damonte et al.,
2017; Wang and Xue, 2017; Liu et al., 2018; Guo
and Lu, 2018) use a sequence of transition actions

†Part of work was done when the author was visiting West-
lake University

*Corresponding author.

The boy came and left

and

boy

come-01 leave-11

det nsubj cc

conj

:op1 :op2

:ARG1

:ARG0

Figure 1: An example of AMR graph and its corre-
sponding syntactic dependencies for the sentence “The
boy came and left”. The dashed lines denote the con-
nected relations in the syntactic dependencies but not
appear in the AMR graph.

to incrementally construct the graph, while graph-
based parsing (Flanigan et al., 2014; Lyu and Titov,
2018; Zhang et al., 2019a; Cai and Lam, 2019)
divides the task into concept identification and rela-
tion extraction stages and then generate a full AMR
graph with decoding algorithms such as greedy and
maximum spanning tree (MST). Additionally, re-
inforcement learning (Naseem et al., 2019) and
sequence-to-sequence (Konstas et al., 2017) have
been exploited in AMR parsing as well.

Previous works (Wang et al., 2016; Artzi et al.,
2015) shows that structural information can bring
benefit to AMR parsing. Illustrated by Figure 1,
for example syntactic dependencies can convey
the main predicate-argument structure. However,
dependency structural information may be noisy
due to the error propagation of external parsers.
Moreover, AMR concentrates on semantic rela-
tions, which can be different from syntactic depen-
dencies. For instance, in Figure 1, AMR prefers
to select the coordination (i.e. “and”) as the root,
which is different from syntactic dependencies (i.e.
“came”).

Given the above observations, we investigate the
effectiveness of latent syntactic dependencies for



4307

AMR parsing. Different from existing work (Wang
et al., 2016), which uses a dependency parser to pro-
vide explicit syntactic structures, we make use of a
two-parameter distribution (Bastings et al., 2019) to
induce latent graphs, which is differentiable under
reparameterization (Kingma and Welling, 2014).
We thus build a end-to-end model for AMR pars-
ing with induced latent dependency structures as
a middle layer, which is tuned in AMR training
and thus can be more aligned to the need of AMR
structure.

For better investigating the correlation between
induced and gold syntax, and better combine the
strengths, we additionally consider fusing gold and
induced structural dependencies into an align-free
AMR parser (Zhang et al., 2019a). Specifically,
we first obtain the input sentence’s syntactic depen-
dencies1 and treat the input sentence as prior of the
probabilistic graph generator for inferring the latent
graph. Second, we propose an extended graph neu-
ral network (GNN) for encoding above structural
information. Subsequently we feed the encoded
structural information into a two stage align-free
AMR parser (Zhang et al., 2019a) for promoting
AMR parsing.

To our knowledge, we are the first to incorpo-
rate syntactic latent structure in AMR parsing. Ex-
perimented results show that our model achieves
77.5% and 71.8% SMATCH F1 on standard AMR
benchmarks LDC2017T10 and LDC2014T12, re-
spectively, outperforming all previous best reported
results. Beyond that, to some extent, our model can
interpret the probabilistic relations between the in-
put words in AMR parsing by generating the latent
graph2.

2 Baseline: Align-Free AMR Parsing

We adopt the parser of Zhang et al. (2019a) as our
baseline, which treats AMR parsing as sequence-
to-graph transduction.

2.1 Task Formalization
Our baseline splits AMR parsing into a two-stage
procedure: concept identification and edge pre-
diction. The first task aims to identify the concepts
(nodes) in AMR graph from input tokens, and the
second task is designed to predict semantic rela-
tions between identified concepts.

1We employ Stanford CoreNLP (Manning et al., 2014) to
get the dependencies.

2Our code will be available at: https://github.
com/zhouqiji/ACL2020_AMR_Parsing.

Formally, for a given input sequence of words
w = 〈w1, ..., wn〉, the goal of concept identifica-
tion in our baseline is sequentially predicting the
concept nodesu = 〈u1, ..., um〉 in the output AMR
graph, and deterministically assigning correspond-
ing indices d = 〈d1, ..., dm〉.

P (u) =
m∏
i=1

P (ui | u<i, d<i,w),

After identifying the concept nodes c and their
corresponding indices d, we predict the semantic
relations in the searching spaceR(u).

Predict(u) = argmax
r∈R(u)

∑
(ui,uj)∈r

score(ui, uj),

where r = {(ui, uj) | 1 ≤ i, j ≤ m} is a set of
directed relations between concept nodes.

2.2 Align-Free Concept Identification
Our baseline extends the pointer-generator network
with self-copy mechanism for concept identifica-
tion (See et al., 2017; Zhang et al., 2018a). The
extended model can copy the nodes not only from
the source text, but also from the previously gener-
ated list of nodes on the target side.

The concept identifier firstly encodes the input
sentence into concatenated vector embeddings with
GloVe (Pennington et al., 2014), BERT (Devlin
et al., 2019), POS (part-of-speech) and character-
level (Kim et al., 2016) embeddings. Subsequently,
we encode the embedded sentence by a two-layer
bidirectional LSTM (Schuster and Paliwal, 1997;
Hochreiter and Schmidhuber, 1997):

hli = [
−→
f l(hl−1i , hli−1);

←−
f l(hl−1i , hli+1)],

where hli is the l-th layer encoded hidden state at
the time step i and h0i is the embedded token wi.

Different from the encoding stage, the decoder
does not use pre-trained BERT embeddings, but
employs a two-layer LSTM to generate the decod-
ing hidden state slt at each time step:

slt = f l(sl−1t , slt−1),

where sl−1t and slt−1 are hidden states from last
layer and previous time step respectively, and sl0
is the concatenation of the last bi-directional en-
coding hidden states. In addition, s0t is generated
from the concatenation of the previous node ut−1
embedding and the attention vector s̃t−1, which
combine both source and target information:

https://github.com/zhouqiji/ACL2020_AMR_Parsing
https://github.com/zhouqiji/ACL2020_AMR_Parsing


4308

s̃t = tanh(Wc[ct; s
l
t] + bc),

where Wc and bc are trainable parameters, ct is the
context vector calculated by the attention weighted
encoding hidden states and the source attention
distribution atsrc following Bahdanau et al. (2015)

The produced attention vector s̃ is used to gener-
ate the vocabulary distribution:

Pvocab = softmax(Wvocabs̃t + bvocab),

as well as the target attention distribution:

ettgt = v>tgttanh(Wtgts̃1:t−1 + Utgts̃t + btgt),

attgt = softmax(ettgt),

The source-side copy probability psrc, target-side
copy probability ptgt and generation probability
pgen are calculated by s̃, which can be treated as
generation switches:

[psrc, ptgt, pgen] = softmax(Wswitchs̃t + bswitch),

The final distribution is defined below, if vt is
copied from existing nodes:

P (node)(ut) = ptgt

t−1∑
i:ui=ut

attgt[i],

otherwise:

P (node)(ut) = pgenPvocab(ut) + psrc

n∑
i:wi=ut

atsrc[i],

where at[i] is the i-th element of at, and then de-
terministically assigned the existing indices to the
identified nodes based on whether the node is gen-
erated from the target-side distribution.

2.3 Edge Prediction
Our baseline employs a deep biaffine attention clas-
sifier for semantic edge prediction (Dozat and Man-
ning, 2017), which have been widely used in graph-
based structure parsing (Peng et al., 2017; Lyu and
Titov, 2018; Zhang et al., 2019a).

For a node ut, the probability of uk being the
head node of ut and the probability of edge (uk, ut)
are defined below:

P (head)
t (uk) =

exp
(

score(edge)
k,t

)
∑m

j=1 exp
(

score(edge)
j,t

) ,
P (label)
k,t (l) =

exp
(

score(label)
k,t [l]

)
∑

l′ exp
(

score(label)
k,t [l′]

) ,

where score(score) and label(edge) are calculated via
bi-affine attentions.

3 Model

The overall structure of our model is shown in
Figure 2. First, we use an external dependency
parser (Manning et al., 2014) to obtain the explicit
structural information, and obtain the latent struc-
tural information via a probabilistic latent graph
generator. We then combine both explicit and latent
structural information by encoding the input sen-
tence through an extended graph neural network.
Finally, we incorporate our model with an align-
free AMR parser for parsing AMR graphs with the
benefit of structural information.

3.1 Latent Graph Generator
We generate the latent graph of input sentence via
the HardKuma distribution (Bastings et al., 2019),
which has both continuous and discrete behaviours.
HardKuma can generate samples from the closed
interval [0, 1] probabilisitcally . This feature allows
us to predict soft connections probabilities between
input words, which can be seen as a latent graph.
Specifically, we treat embedded input words as a
prior of a two-parameters distribution, and then
sample a soft adjacency matrix between input
words for representing a dependency.

HardKuma Distribution The HardKuma distri-
bution is derived from the Kumaraswamy distri-
bution (Kuma) (Kumaraswamy, 1980), which is
a two-parameters distribution over an open inter-
val (0, 1), i.e., K ∼ Kuma(a, b), where a ∈ R>0

and b ∈ R>0. The Kuma distribution is similar
to Beta distribution, but its CDF function has a
simpler analytical solution and inverse of the CDF
is:

C−1K (u;a, b) =
(
1− (1− u)1/b

)1/a
,

We can generate the samples by:

C−1K (U ;α,β) ∼ Kuma(α,β),

where U ∼ U(0, 1) is the uniform distribution, and
we can reconstruct this inverse CDF function by
the reparameterizing fashion (Kingma and Welling,
2014; Nalisnick and Smyth, 2017).

In order to include the two discrete points 0 and
1, HardKuma employs a stretch-and-rectify method
with support (Louizos et al., 2017), which leads



4309

… …

The boy came and left

Latent Graph 
Generator

𝑤𝑤1 𝑤𝑤2 𝑤𝑤3

𝑤𝑤4

𝑤𝑤5

Graph Encoder

Align-Free Concept Identifier 

Explicit 
Graph Latent 

Graph

0.0 1.0

1.0

HardKuma

𝑤𝑤3
𝑤𝑤2

𝑤𝑤4

𝑤𝑤1 𝑤𝑤5
𝑤𝑤1

𝑤𝑤4

GELU

Graph Fusion Layer

𝑤𝑤3 𝑤𝑤5

𝑤𝑤2

GELUGELU GELU GELU

GELU GELUGELU GELU GELU

… …… … …

𝑛𝑛 l−1

𝑛𝑛 l

Figure 2: Stretch of the model which has four main components: (1) A latent graph generator for producing
the soft-connected latent graph (§§3.1); (2) An extended syntactic graph convolutional network for encoding the
structural information (§§3.2); (3) An align-free concept identification for concept node generation (§§2.2); (4) A
deep biaffine classifier for relation edge prediction (§§2.3).

the variable T ∼ Kuma(a, b, l, r) to be sampled
from Kuma distribution with an open interval (l, r)
where l < 0 and r > 0. The new CDF is:

CT (t;a, b, l, r) = CK((t− l)/(r − l);a, b),

We pass the stretched variable T ∼
Kuma(a, b, l, r) through a hard-sigmoid function
(i.e., h = min(1,max(0, t))) to obtain the
rectified variable H ∼ HardKuma(a, b, l, r).
Therefore, the rectified variable covers the closed
interval [0, 1]. Note that all negative values of t
are deterministically mapped to 0. In contrast,
all samples t > 1 are mapped to 13. Because
the rectified variable is sampled based on Kuma
distribution, HardKuma first sample a uniform
variable over open interval (0, 1) from uniform
distribution U ∼ U(0, 1), and then generate a
Kuma variable through inverse CDF:

k = C−1K (u;a, b),

Second, we transform the Kuma variable for cov-
ering the stretched support:

t = l + (r − l)k,
3Details of derivations can be found at (Bastings et al.,

2019).

Finally, we rectify the stretched variable includ-
ing closed interval [0, 1] via a hard-sigmoid func-
tion:

h = min(1,max(0, t)).

Latent Graph We generate the latent graph of
input words w by sampling from HardKuma distri-
bution with trained parameters a and b. We first
calculate the prior c of (a, b) by employing multi-
head self-attention (Vaswani et al., 2017):

ca = Transfomera(v),

cb = Transfomerb(v),

where v = 〈v1, ..., vn〉 is the embedded input
words. Subsequently, we compute a and b as:

a = Norm(cac
T
a ),

b = Norm(cbc
T
b ),

where ai = 〈ai1, ..., ain〉 and bi = 〈bi1, ..., bin〉,
ca, cb ∈ Rn×n and Norm(x) is the normalization
function. Hence, the latent graph L is sampled via
learned parameters a and b:

lij ∼ HardKuma(aij , bij , l, r).



4310

3.2 Graph Encoder
For a syntactic graph with n nodes, the cellAij = 1
in the corresponding adjacent matrix represents that
an edge connects word wi to word wj . An L-layer
syntactic GCN of l-th layer can be used to represent
A, where the hidden vector for each word wi at the
l − th layer is:

h
(l)
i = σ(

n∑
j=1

ÃijW
(l)h

(l−1)
j /di + b(l)),

where Ã = A+ I with the n× n identity matrix
I , di =

∑n
j=1 Ãij is the degree of word wi in

the graph for normalizing the activation to avoid
the word representation with significantly different
magnitudes (Marcheggiani and Titov, 2017; Kipf
and Welling, 2017), and σ is a nonlinear activation
function.

In order to take benefits from both explicit and la-
tent structural information in AMR parsing, we ex-
tend the Syntactic-GCN (Marcheggiani and Titov,
2017; Zhang et al., 2018b) with a graph fusion
layer and omit labels in the graph (i.e. we only
consider the connected relation in GCN). Specif-
ically, we propose to merge the parsed syntactic
dependencies and sampled latent graph through a
graph fusion layer:

F = πL+ (1− π)D
where π is trainable gate variables are calculated
via the sigmoid function,D and L are the parsed
syntactic dependencies and generated latent graph
respectively, and F represent the fused soft graph.
Furthermore, F is a n× n adjacent matrix for the
input words w, different from the sparse adjacent
matrixA, Fij denote a soft connection degree from
word wi to word wj . We adapt syntactic-GCN
with a fused adjacent matrix F , and employ a gate
mechanism:

h
(l)
i = GELU(

Lnorm(

n∑
j=1

Gj(FijW
(l)h

(l−1)
j + b(l)))),

We use GELU (Hendrycks and Gimpel, 2016)
as the activation function, and apply layer normal-
ization Lnorm (Ba et al., 2016) before passing the
results into GELU. The scalar gate Gj is calculated
by each edge-node pair :

Gj = µ(h
(l−1)
j · v̂(l−1) + b̂(l−1)),

where µ is the logistic sigmoid function, v̂ and b̂
are trainable parameters.

3.3 Training
Similar to our baseline (Zhang et al., 2019a), we
linearize the AMR concepts nodes by a pre-order
traversal over the training dataset. We obtain gra-
dient estimates of E(φ, θ) through Monte Carlo
sampling from:

E(φ, θ) = EU(0,I) [logP (node|ut, gφ(u,w), θ)

+ logPt(head|uk, gφ(u,w), θ)

+ logPk,t(label|l, gφ(u,w), θ)]

+ λcovlosst

where ut is the reference node at time step t with
reference head uk and l is the reference edge label
between uk and uj . The form gφ(u,w) is short for
the latent graph samples from uniform distribution
to HardKuma distribution (§§3.1).

Different from Bastings et al. (2019), we do not
limit the sparsity of sampled latent graphs, i.e. we
do not control the proportion of zeros in the latent
graph, because we prefer to retain the probabilistic
connection information of each word in w. Finally,
we introduce coverage loss into our estimation due
to reduce duplication of node generation (See et al.,
2017).

3.4 Parsing
We directly generate the latent graph by the PDF
function of HardKuma distribution with trained
parameters a and b. In the concept identification
stage, we decode the node from the final probabil-
ity distribution P (node)(ut) at each time step, and
apply beam search for sequentially generating the
concept nodes u and deterministically assigning
corresponding indices d. For edge prediction, we
use a bi-affine classifier to calculate the edge scores
under the generated nodes u and indices d:

S = {score(edge)
i,j | 0 ≤ i, j ≤ m}.

Similar to Zhang et al. (2019a), we apply a max-
imum spanning tree (MST) algorithm (Chu, 1965;
Edmonds, 1967) to generate complete AMR graph
and restore the re-entrance relations by merging the
receptive nodes via their indices.

4 Experiments

4.1 Setup
We use two standard AMR corpora: AMR1.0
(LDC2014T12) and AMR 2.0 (LDC2017T10).
AMR 1.0 contains 13051 sentences in total. AMR



4311

Data Parser F1(%)

AMR
2.0

Cai and Lam (2019) 73.2
Lyu and Titov (2018) 74.4±0.2
Lindemann et al. (2019) 75.3±0.1
Naseem et al. (2019) 75.5
Zhang et al. (2019a) 76.3±0.1

- w/o BERT 74.6
Zhang et al. (2019b) 77.0±0.1

Ours 77.5±0.2
- w/o BERT 75.5±0.2

AMR
1.0

Flanigan et al. (2016) 66.0
Pust et al. (2015) 67.1
Wang and Xue (2017) 68.1
Guo and Lu (2018) 68.3±0.4
Zhang et al. (2019a) 70.2±0.1

- w/o BERT 68.8
Zhang et al. (2019b) 71.3±0.1

Ours 71.8±0.2
- w/o BERT 70.0±0.2

Table 1: Main results of SMATCH F1 on AMR 2.0
(LDC2017T10) and 1.0 (LDC2014T12) test sets. Re-
sults are evaluated over 3 runs.

2.0 is larger which is split into 36521, 1368 and
1371 sentences in training, development and testing
sets respectively. We treat in AMR 2.0 as the main
dataset in our experiments since it is larger.

We tune hyperparameters on the development
set, and store the checkpoints under best devel-
opment results for evaluation. We employ the
pre-processing and post-processing methods from
Zhang et al. (2019a), and get the syntactic de-
pendencies via Stanford Corenlp (Manning et al.,
2014). We train our model jointly with the Adam
optimizer (Kingma and Ba, 2015). The learning
rate is decayed based on the results of development
set in training. Training takes approximately 22
hours on two Nivida GeForce GTX 2080 Ti.

4.2 Results

Main Results We compare the SMATCH F1
scores (Cai and Knight, 2013) against previous
best reported models and other recent AMR
parsers. Table 1 summarizes the results on both
AMR 1.0 and AMR 2.0 data sets. For AMR
2.0, with the benefit from the fused structural
information, we improve our baseline (Zhang et al.,
2019a) by 1.2% F1 in the full model, and 0.9% F1

Metric N’19 Z’19a Z’19b Ours

SMATCH 75.5 76.3 77 77.5

Unlabeled 80 79 80 80.4
No WSD 76 77 78 78.2
Reentrancies 56 60 61 61.1
Concepts 86 85 86 85.9
Named Ent. 83 78 79 78.8
Wikification 80 86 86 86.5
Negation 67 75 77 76.1
SRL 72 70 71 71.0

Table 2: Fine-grained F1 scores on the AMR 2.0
(LDC2017T10) test set. N’18 is Naseem et al. (2019);
Z’19a is Zhang et al. (2019a); Z’19b is Zhang et al.
(2019b)

is gained without pre-trained BERT embeddings4.
In addition, our model outperform the best reported
model (Zhang et al., 2019b) by 0.5% F1. On AMR
1.0, there are only about 10k sentences for training.
We outperform the best results by 0.5% Smatch
F1. We observe that for the smaller data set, our
model has a greater improvement of 1.6% F1 than
for the larger data set (1.2% F1 comparing with
our baseline.)

Fine-grained Results Table 2 shows fined-grained
parsing results of each sub-tasks in AMR 2.0,
which are evaluated by the enhance AMR eval-
uation tools (Damonte et al., 2017). We notice
that our model brings more than 1% average im-
provement to our baseline (Zhang et al., 2019a)
for most sub-tasks, in particular, the unlabeled is
gained 1.4% F1 score increasing with the structural
information, and the sub-task of no WSD, reentran-
cies, negation and SRL are all improved more than
1.0% score under our graph encoder. In addition,
our model achieves comparable results to the best
reported method (Zhang et al., 2019b) for each sub-
task.

Ablation Study We investigate the impacts of dif-
ferent structural information in our model on AMR
2.0 with main sub-tasks5. Table 3 shows the fused
structure perform better in most sub-task than ex-
plicit and latent structure. In particular, the model
with explicit structures (i.e. both explicit and fused)

4We use pre-tained bert-base embedings without fine-
tuning.

5We set all the hyper-parameters to the same.



4312

Metric Explicit Latent Fused

SMATCH 77.4 77.4 77.5

Unlabeled 80.2 80.1 80.4
Reentrancies 61.1 60.6 61.1
Concepts 85.6 86.0 85.7
Negation 75.6 75.1 76.1
SRL 70.8 70.9 71.0

Table 3: Ablation studies of the results for AMR2.0
(LDC2017T10) on different kind of structural informa-
tion in our model.

Graph Type UAS

Fused 84.9%
Latent 64.1%

Table 4: The UAS of fused and latent graph by calcu-
lating from the corresponding explicit dependencies in
test set (we calculate the UAS by predicting the maxi-
mum probability heads in the latent graph).

outperform the model with only latent structure by
0.5% F1 in Reentrancies sub-task, which demon-
strates that the explicit dependencies information
can improve the this sub-task. Latent structure per-
form better in concepts sub-task, and fused struc-
ture brings more information to the negation sub-
task which obtain 0.5% and 1.0% improvement
than explicit and latent structure respectively.

Additionally, we can notice that both latent and
explicit models outperform the previous best re-
ported Smatch F1 score, and fused model reach the
best results. It shows that different types of struc-
tural information can help the AMR parsing, we
discuss the connection tendencies of each structure
in (§§4.3).

4.3 Discussion

Experiment results show that both the explicit struc-
ture and latent structure can improve the perfor-
mance of AMR parsing, and latent structural infor-
mation reduces the errors in sub-tasks such as con-
cept and SRL. Different from the discrete relation
of explicit structures, the internal latent structure
holds soft connection probabilities between words
in the input sentence, so that, each fully-connected
word receive information from all the other words.

Figure 3 depicts the latent and fused soft adja-
cent matrix of the input sentence “The boy came
and left” respectively. It can be seen that the la-

(a) Latent Matrix (b) Fused Matrix

Figure 3: The latent soft adjacent matrix (a) and fused
soft adjacent matrix (b) of the input sentence “The boy
came and left”.

tent matrix (Figure 3a) tries to retain information
from most word pairs, and the AMR root “and”
holds high connection probabilities to each word
in the sentence. In addition, the mainpredicates
and arguments in the sentence tend to be connected
with high probabilities. The fused matrix (Fig-
ure 3b) holds similar connection probabilities to
predicates and arguments in the sentence as well,
and it reduces the connection degrees to the de-
terminer “The” which does not appear in corre-
sponding AMR graph. Moreover, the syntactic
root “came” and semantic root “and” reserve most
connection probabilistic to other words.

We compare the connections in different struc-
tures in Figure 4. The latent graph (Figure 4a)
prefers to connect most words, and the main predi-
cates and arguments in the graph have higher con-
nection probabilities. The fused graph (Figure 4c)
shows that our model provides core structural in-
formation between interpretable relations. Specif-
ically, it holds similar potential relations to anno-
tated AMR graph, and tries to alleviate the connec-
tion information to the words which are not aligned
in AMR concept nodes.

Beyond that, we calculate the Unlabeled Attach-
ment Score (UAS) for fused and latent graph in
Table 4, the unsupervised latent graph captures less
explicit edges than fused graph, and both fused and
latent graph ignore some arcs on explicit graph.
It shows that a lower UAS does not mean lower
AMR parsing score and some arcs are more use-
ful to AMR parsing but not in explicit gold trees.
Consequently, we preserve the explicit and latent
structure information simultaneously. The latent
structure can not only improve AMR parsing, but
also have ability to interpret the latent connections
between input words.



4313

came

The boy

and

left

(a) Latent Graph

came

The

boy and

nsubj cc

det

root

left

conj

(b) Syntactic Graph

came

The boy

and

left

(c) Fused Graph

and

boy

come-01 leave-11

:op1 :op2

:ARG1

:ARG0

root

(d) AMR Graph

Figure 4: Different structures of the sentence “The boy came and left ”. (a): The Latent Graph; (b): The Syntactic
Graph; (c): The Fused Graph; (d): The AMR graph. (We construct the latent and fused graph by selecting the top
2 possible soft connections between each word, in addition, we ignore the edges whose connection probabilities
are less than 0.5.).

5 Related Work

Transition-based AMR parsers (Wang et al., 2016;
Damonte et al., 2017; Wang and Xue, 2017; Liu
et al., 2018; Guo and Lu, 2018; Naseem et al., 2019)
suffer from the lack of annotated alignments be-
tween words and concept notes is crucial in these
models. Lyu and Titov (2018) treat the alignments
as an latent variable for their probabilistic model,
which jointly obtains the concepts, relations and
alignments variables. Sequence-to-sequence AMR
parsers transform AMR graphs into serialized se-
quences by external traversal rules, and then re-
store the generated the AMR sequence to avoid
aligning issue (Konstas et al., 2017; van Noord and
Bos, 2017). Moreover, Zhang et al. (2019a) extend
a pointer generator (See et al., 2017), which can
generate a node multiple times without alignment
through the copy mechanism.

With regards to latent structure, Naradowsky
et al. (2012) couples syntactically-oriented NLP
tasks to combinatorially constrained hidden syn-
tactic representations. Bowman et al. (2016); Yo-
gatama et al. (2017) and Choi et al. (2018) generate
unsupervised constituent tree for text classification.
The latent constituent trees are shallower than hu-
man annotated, and it can boost the performance
of downstream NLP tasks (e.g., text classification).
Guo et al. (2019) and Ji et al. (2019) employ self-

attention and bi-affine attention mechanism respec-
tively to generate soft connected graphs, and then
adopt GNNs to encode the soft structure to take
advantage from the structural information to their
works.

GCN and its variants are increasingly applied
in embedding syntactic and semantic structures
in NLP tasks (Kipf and Welling, 2017; Marcheg-
giani and Titov, 2017; Damonte and Cohen, 2019).
Syntactic-GCN tries to alleviate the error propaga-
tion in external parsers with gates mechanism, it en-
codes both relations and labels with the gates, and
filters the output of each GCN layer over the depen-
dencies. (Marcheggiani and Titov, 2017; Bastings
et al., 2017). Damonte and Cohen (2019) encodes
AMR graphs via GCN to promote the AMR-to-text
generation task.

6 Conclusion

We investigate latent structure for AMR parsing,
and we denote that the inferred latent graph can
interpret the connection probabilities between in-
put words. Experiment results show that the la-
tent structural information improve the best re-
ported parsing performance on both AMR 2.0
(LDC2017T10) and AMR 1.0 (LDC2014T12). We
also propose to incorporate the latent graph into
other multi-task learning problems (Chen et al.,



4314

2019; Kurita and Søgaard, 2019).

Acknowledgments

We thank the anonymous reviewers for their de-
tailed comments. We are grateful to Zhiyang
Teng’s discussions and suggestions. This work
is supported by the National Natural Science Foun-
dation of China (NSFC-61772378), the National
Key Research and Development Program of China
(No.2017YFC1200500) and the Major Projects of
the National Social Science Foundation of China
(No.11&ZD189). We also would like to acknowl-
edge funding support from the Westlake Univer-
sity and Bright Dream Joint Institute for Intelligent
Robotics.

References
Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.

Broad-coverage CCG semantic parsing with AMR.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1699–1710, Lisbon, Portugal. Association for Com-
putational Linguistics.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Joost Bastings, Wilker Aziz, and Ivan Titov. 2019. In-
terpretable neural predictions with differentiable bi-
nary variables. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2963–2977, Florence, Italy. Associa-
tion for Computational Linguistics.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2017, Copenhagen, Denmark,
September 9-11, 2017, pages 1957–1967.

Samuel R. Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D. Manning, and
Christopher Potts. 2016. A fast unified model for
parsing and sentence understanding. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers.

Deng Cai and Wai Lam. 2019. Core semantic first: A
top-down approach for AMR parsing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3797–3807, Hong
Kong, China. Association for Computational Lin-
guistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019. A multi-task approach for dis-
entangling syntax and semantics in sentence repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2453–2464, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2018.
Learning to compose task-specific tree structures. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
5094–5101.

Yoeng-Jin Chu. 1965. On the shortest arborescence of
a directed graph. Scientia Sinica, 14:1396–1400.

Marco Damonte and Shay B. Cohen. 2019. Structural
neural encoders for AMR-to-text generation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3649–3658,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for abstract meaning
representation. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 536–546, Valencia, Spain. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of

https://doi.org/10.18653/v1/D15-1198
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.18653/v1/P19-1284
https://www.aclweb.org/anthology/D17-1209/
https://www.aclweb.org/anthology/D17-1209/
https://www.aclweb.org/anthology/D17-1209/
https://www.aclweb.org/anthology/P16-1139/
https://www.aclweb.org/anthology/P16-1139/
https://doi.org/10.18653/v1/D19-1393
https://doi.org/10.18653/v1/D19-1393
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131
https://doi.org/10.18653/v1/N19-1254
https://doi.org/10.18653/v1/N19-1254
https://doi.org/10.18653/v1/N19-1254
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16682
https://doi.org/10.18653/v1/N19-1366
https://doi.org/10.18653/v1/N19-1366
https://www.aclweb.org/anthology/E17-1051
https://www.aclweb.org/anthology/E17-1051
https://www.aclweb.org/anthology/N19-1423/


4315

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186.

Shibhansh Dohare and Harish Karnick. 2017. Text
summarization using abstract meaning representa-
tion. CoRR, abs/1706.01678.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the national Bureau of Standards B,
71(4):233–240.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016. CMU at SemEval-2016
task 8: Graph-based AMR parsing with infinite
ramp loss. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 1202–1206, San Diego, California. Associa-
tion for Computational Linguistics.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1426–
1436, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Zhijiang Guo and Wei Lu. 2018. Better transition-
based AMR parsing with a refined search space.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1712–1722, Brussels, Belgium. Association
for Computational Linguistics.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Atten-
tion guided graph convolutional networks for rela-
tion extraction. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 241–251, Florence, Italy. Association
for Computational Linguistics.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units. CoRR, abs/1606.08415.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-
based dependency parsing with graph neural net-
works. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 2475–2485, Florence, Italy. Association
for Computational Linguistics.

Bevan Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012.
Semantics-based machine translation with hyper-
edge replacement grammars. In Proceedings of
COLING 2012, pages 1359–1376, Mumbai, India.
The COLING 2012 Organizing Committee.

Yoon Kim, Yacine Jernite, David A. Sontag, and
Alexander M. Rush. 2016. Character-aware neural
language models. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, Febru-
ary 12-17, 2016, Phoenix, Arizona, USA, pages
2741–2749.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146–157, Vancouver,
Canada. Association for Computational Linguistics.

Ponnambalam Kumaraswamy. 1980. A generalized
probability density function for double-bounded ran-
dom processes. Journal of Hydrology, 46(1-2):79–
88.

Shuhei Kurita and Anders Søgaard. 2019. Multi-task
semantic dependency parsing with policy gradient
for learning easy-first strategies. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2420–2430, Florence,
Italy. Association for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2019. Compositional semantic parsing
across graphbanks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4576–4585, Florence, Italy. Asso-
ciation for Computational Linguistics.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A. Smith. 2015. Toward abstrac-
tive summarization using semantic representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
http://arxiv.org/abs/1706.01678
http://arxiv.org/abs/1706.01678
http://arxiv.org/abs/1706.01678
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.18653/v1/D18-1198
https://doi.org/10.18653/v1/D18-1198
https://doi.org/10.18653/v1/P19-1024
https://doi.org/10.18653/v1/P19-1024
https://doi.org/10.18653/v1/P19-1024
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://www.aclweb.org/anthology/C12-1083
https://www.aclweb.org/anthology/C12-1083
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P19-1232
https://doi.org/10.18653/v1/P19-1232
https://doi.org/10.18653/v1/P19-1232
https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.3115/v1/N15-1114
https://doi.org/10.3115/v1/N15-1114


4316

pages 1077–1086, Denver, Colorado. Association
for Computational Linguistics.

Yijia Liu, Wanxiang Che, Bo Zheng, Bing Qin,
and Ting Liu. 2018. An AMR aligner tuned by
transition-based parser. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 2422–2430.

Christos Louizos, Max Welling, and Diederik P.
Kingma. 2017. Learning sparse neural networks
through l0 regularization. CoRR, abs/1712.01312.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 397–407, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Arindam Mitra and Chitta Baral. 2016. Addressing a
question answering challenge by combining statis-
tical methods with inductive rule learning and rea-
soning. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA, pages 2779–2785.

Eric T. Nalisnick and Padhraic Smyth. 2017. Stick-
breaking variational autoencoders. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings.

Jason Naradowsky, Sebastian Riedel, and David Smith.
2012. Improving NLP through marginalization of
hidden syntactic structure. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 810–820, Jeju Island,
Korea. Association for Computational Linguistics.

Tahira Naseem, Abhishek Shah, Hui Wan, Radu Flo-
rian, Salim Roukos, and Miguel Ballesteros. 2019.
Rewarding Smatch: Transition-based AMR parsing
with reinforcement learning. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4586–4592, Florence,
Italy. Association for Computational Linguistics.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Rik van Noord and Johan Bos. 2017. Neural seman-
tic parsing by character-based translation: Experi-
ments with abstract meaning representations. CoRR,
abs/1705.09980.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2037–2048, Van-
couver, Canada. Association for Computational Lin-
guistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing English
into abstract meaning representation using syntax-
based machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1143–1154, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Trans. Sig-
nal Processing, 45(11):2673–2681.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo
Wang, and Jinsong Su. 2019. Semantic neural ma-
chine translation using AMR. Transactions of the
Association for Computational Linguistics, 7:19–31.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng Ji,
and Nianwen Xue. 2016. CAMR at semeval-2016
task 8: An extended transition-based AMR parser.
In Proceedings of the 10th International Workshop
on Semantic Evaluation, SemEval@NAACL-HLT
2016, San Diego, CA, USA, June 16-17, 2016, pages
1173–1178.

https://www.aclweb.org/anthology/D18-1264/
https://www.aclweb.org/anthology/D18-1264/
http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1712.01312
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12345
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12345
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12345
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12345
https://openreview.net/forum?id=S1jmAotxg
https://openreview.net/forum?id=S1jmAotxg
https://www.aclweb.org/anthology/D12-1074
https://www.aclweb.org/anthology/D12-1074
https://doi.org/10.18653/v1/P19-1451
https://doi.org/10.18653/v1/P19-1451
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
http://arxiv.org/abs/1705.09980
http://arxiv.org/abs/1705.09980
http://arxiv.org/abs/1705.09980
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D15-1136
https://doi.org/10.18653/v1/D15-1136
https://doi.org/10.18653/v1/D15-1136
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://www.aclweb.org/anthology/S16-1181/
https://www.aclweb.org/anthology/S16-1181/


4317

Chuan Wang and Nianwen Xue. 2017. Getting the
most out of AMR parsing. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1257–1268, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to
compose words into sentences with reinforcement
learning. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3784–3796, Hong Kong, China. As-
sociation for Computational Linguistics.

Sheng Zhang, Xutai Ma, Rachel Rudinger, Kevin Duh,
and Benjamin Van Durme. 2018a. Cross-lingual de-
compositional semantic parsing. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1664–1675, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018b. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205–2215, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/D17-1129
https://doi.org/10.18653/v1/D17-1129
https://openreview.net/forum?id=Skvgqgqxe
https://openreview.net/forum?id=Skvgqgqxe
https://openreview.net/forum?id=Skvgqgqxe
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D18-1194
https://doi.org/10.18653/v1/D18-1194
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/D18-1244


4318

A Appendix

A.1 Details of Model Structures and
Parameters

GloVe embeddings
dim 300

BERT embeddings
source BERT-base-cased
dim 768

POS tag embeddings
dim 100

CharCNN
num filters 100
ngram filter sizes [3]

Graph Encoder
gcn hidden dim 512
gcn layers 1

Latent Graph Generator
HardKuma support [-0.1, 1.1]
k dim 64
v dim 64
n heads 8

Encoder
hidden size 512
num layers 2

Decoder
hidden size 1024
num layers 2

Deep Biaffine Classifier
edge hidden size 256
label hidden size 128

Optimizer
type Adam
learning rate 0.001
max grad norm 5.0

Coverage loss weight λ 1.0

Beam size 5

Dropout 0.33

Batch Size
train batch size 64
test batch size 32

Table 5: Hyper-parameter settings

We select the best hyper-parameters under the
results of the development set, and we fix the hyper-
parameters at the test stage. We use two-layer high-
way LSTM as the encoder and two-layer LSTM
as the decoder for the align-free node generator.
Table 5 shows the details.

A.2 More Examples

To discuss the generated latent graph in different
situations, We provide two examples from the test
set on the next page.

Figure 5 gives the analysis of an interrogative
sentence: “What advice could you give me?”. It
shows that the latent graph of the sentence is going
to hold the most information between predicates
and arguments. Both the AMR root “advice” and
the dependency root “give” are paid more attention
from other words, and the fused graph retains more
information of the predicates and arguments in the
original sentence as well.

For a longer sentence with multiple predicate-
argument structures, Figure 6 depicts the latent
and fused graph of the sentence “You could go to
the library on saturdays and do a good 8 hours of
studying there.”. In this case, the corresponding
latent graph becomes shallower, and the AMR root
“and” holds most information from other words.
Besides, the fused graph indicates that predicates
will receive more information from other words,
and to some extent, phrases tend to be connected
by the fused graph generator.



4319

Sentence:
What advice could you give me?

Dependency: AMR:

Latent Matrix: Fused Matrix:

advice

you

:ARG0

:ARG2

root

i
possible

amr-
unkonwn

:ARG1-of
:ARG1

give

coul
d

advice

dobj

det

root

you

?

what
me

punct

dobjnsubj
aux

Figure 5: An analysis of the sentence “What advice could you give me?”.

Sentence:
You could go to the library on saturdays and do a good 8 hours of studying there.

Dependency: AMR:

Latent Matrix: Fused Matrix:

go

root

nsubj

you could

to the 

library

on

saturdays and do

a good 8

hours

studying

there

.

of

aux nmod nmod cc
conj

punct

case det case dobj

det
amod nummod acl

mark
advmod

:ARG1

root

and

possible

Study-
01

:op1

:op2

go

you

librar
y

date-
entity

saturday

temporal-
quantity

good
-02 8 hour

:time

:weekday

:ARG0

:ARG4

:ARG0

:location

:duration

:ARG1-of
:quant

:unit

Figure 6: An analysis of the sentence “You could go to the library on Saturdays and do a good 8 hours of studying
there.”.


