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Abstract

Abstract Meaning Representations (AMRs)
capture sentence-level semantics structural
representations to broad-coverage natural sen-
tences. We investigate parsing AMR with ex-
plicit dependency structures and interpretable
latent structures. We generate the latent soft
structure without additional annotations, and
fuse both dependency and latent structure via
an extended graph neural networks. The
fused structural information helps our experi-
ments results to achieve the best reported re-
sults on both AMR 2.0 (77.5% Smatch F1 on
LDC2017T10) and AMR 1.0 (71.8% Smatch
F1 on LDC2014T12).

1 Introduction

Abstract Meaning Representations (AMRs) (Ba-
narescu et al., 2013) model sentence level seman-
tics as rooted, directed, acyclic graphs. Nodes in
the graph are concepts which represent the events,
objects and features of the input sentence, and
edges between nodes represent semantic relations.
AMR introduces re-entrance relation to depict the
node reuse in the graphs. It has been adopted in
downstream NLP tasks, including text summariza-
tion (Liu et al., 2015; Dohare and Karnick, 2017),
question answering (Mitra and Baral, 2016) and
machine translation (Jones et al., 2012; Song et al.,
2019).

AMR parsing aims to transform natural language
sentences into AMR semantic graphs. Similar to
constituent parsing and dependency parsing (Nivre,
2008; Dozat and Manning, 2017), AMR parsers
mainly employ two parsing techniques: transition-
based parsing (Wang et al., 2016; Damonte et al.,
2017; Wang and Xue, 2017; Liu et al., 2018; Guo
and Lu, 2018) use a sequence of transition actions
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Figure 1: An example of AMR graph and its corre-
sponding syntactic dependencies for the sentence “The
boy came and left”. The dashed lines denote the con-
nected relations in the syntactic dependencies but not
appear in the AMR graph.

to incrementally construct the graph, while graph-
based parsing (Flanigan et al., 2014; Lyu and Titov,
2018; Zhang et al., 2019a; Cai and Lam, 2019)
divides the task into concept identification and rela-
tion extraction stages and then generate a full AMR
graph with decoding algorithms such as greedy and
maximum spanning tree (MST). Additionally, re-
inforcement learning (Naseem et al., 2019) and
sequence-to-sequence (Konstas et al., 2017) have
been exploited in AMR parsing as well.

Previous works (Wang et al., 2016; Artzi et al.,
2015) shows that structural information can bring
benefit to AMR parsing. Illustrated by Figure 1,
for example syntactic dependencies can convey
the main predicate-argument structure. However,
dependency structural information may be noisy
due to the error propagation of external parsers.
Moreover, AMR concentrates on semantic rela-
tions, which can be different from syntactic depen-
dencies. For instance, in Figure 1, AMR prefers
to select the coordination (i.e. “and”) as the root,
which is different from syntactic dependencies (i.e.
“came”).

Given the above observations, we investigate the
effectiveness of latent syntactic dependencies for
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AMR parsing. Different from existing work (Wang
et al., 2016), which uses a dependency parser to pro-
vide explicit syntactic structures, we make use of a
two-parameter distribution (Bastings et al., 2019) to
induce latent graphs, which is differentiable under
reparameterization (Kingma and Welling, 2014).
We thus build a end-to-end model for AMR pars-
ing with induced latent dependency structures as
a middle layer, which is tuned in AMR training
and thus can be more aligned to the need of AMR
structure.

For better investigating the correlation between
induced and gold syntax, and better combine the
strengths, we additionally consider fusing gold and
induced structural dependencies into an align-free
AMR parser (Zhang et al., 2019a). Specifically,
we first obtain the input sentence’s syntactic depen-
dencies1 and treat the input sentence as prior of the
probabilistic graph generator for inferring the latent
graph. Second, we propose an extended graph neu-
ral network (GNN) for encoding above structural
information. Subsequently we feed the encoded
structural information into a two stage align-free
AMR parser (Zhang et al., 2019a) for promoting
AMR parsing.

To our knowledge, we are the first to incorpo-
rate syntactic latent structure in AMR parsing. Ex-
perimented results show that our model achieves
77.5% and 71.8% SMATCH F1 on standard AMR
benchmarks LDC2017T10 and LDC2014T12, re-
spectively, outperforming all previous best reported
results. Beyond that, to some extent, our model can
interpret the probabilistic relations between the in-
put words in AMR parsing by generating the latent
graph2.

2 Baseline: Align-Free AMR Parsing

We adopt the parser of Zhang et al. (2019a) as our
baseline, which treats AMR parsing as sequence-
to-graph transduction.

2.1 Task Formalization
Our baseline splits AMR parsing into a two-stage
procedure: concept identification and edge pre-
diction. The first task aims to identify the concepts
(nodes) in AMR graph from input tokens, and the
second task is designed to predict semantic rela-
tions between identified concepts.

1We employ Stanford CoreNLP (Manning et al., 2014) to
get the dependencies.

2Our code will be available at: https://github.
com/zhouqiji/ACL2020_AMR_Parsing.

Formally, for a given input sequence of words
w = 〈w1, ..., wn〉, the goal of concept identifica-
tion in our baseline is sequentially predicting the
concept nodesu = 〈u1, ..., um〉 in the output AMR
graph, and deterministically assigning correspond-
ing indices d = 〈d1, ..., dm〉.

P (u) =
m∏
i=1

P (ui | u<i, d<i,w),

After identifying the concept nodes c and their
corresponding indices d, we predict the semantic
relations in the searching spaceR(u).

Predict(u) = argmax
r∈R(u)

∑
(ui,uj)∈r

score(ui, uj),

where r = {(ui, uj) | 1 ≤ i, j ≤ m} is a set of
directed relations between concept nodes.

2.2 Align-Free Concept Identification
Our baseline extends the pointer-generator network
with self-copy mechanism for concept identifica-
tion (See et al., 2017; Zhang et al., 2018a). The
extended model can copy the nodes not only from
the source text, but also from the previously gener-
ated list of nodes on the target side.

The concept identifier firstly encodes the input
sentence into concatenated vector embeddings with
GloVe (Pennington et al., 2014), BERT (Devlin
et al., 2019), POS (part-of-speech) and character-
level (Kim et al., 2016) embeddings. Subsequently,
we encode the embedded sentence by a two-layer
bidirectional LSTM (Schuster and Paliwal, 1997;
Hochreiter and Schmidhuber, 1997):

hli = [
−→
f l(hl−1i , hli−1);

←−
f l(hl−1i , hli+1)],

where hli is the l-th layer encoded hidden state at
the time step i and h0i is the embedded token wi.

Different from the encoding stage, the decoder
does not use pre-trained BERT embeddings, but
employs a two-layer LSTM to generate the decod-
ing hidden state slt at each time step:

slt = f l(sl−1t , slt−1),

where sl−1t and slt−1 are hidden states from last
layer and previous time step respectively, and sl0
is the concatenation of the last bi-directional en-
coding hidden states. In addition, s0t is generated
from the concatenation of the previous node ut−1
embedding and the attention vector s̃t−1, which
combine both source and target information:

https://github.com/zhouqiji/ACL2020_AMR_Parsing
https://github.com/zhouqiji/ACL2020_AMR_Parsing
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s̃t = tanh(Wc[ct; s
l
t] + bc),

where Wc and bc are trainable parameters, ct is the
context vector calculated by the attention weighted
encoding hidden states and the source attention
distribution atsrc following Bahdanau et al. (2015)

The produced attention vector s̃ is used to gener-
ate the vocabulary distribution:

Pvocab = softmax(Wvocabs̃t + bvocab),

as well as the target attention distribution:

ettgt = v>tgttanh(Wtgts̃1:t−1 + Utgts̃t + btgt),

attgt = softmax(ettgt),

The source-side copy probability psrc, target-side
copy probability ptgt and generation probability
pgen are calculated by s̃, which can be treated as
generation switches:

[psrc, ptgt, pgen] = softmax(Wswitchs̃t + bswitch),

The final distribution is defined below, if vt is
copied from existing nodes:

P (node)(ut) = ptgt

t−1∑
i:ui=ut

attgt[i],

otherwise:

P (node)(ut) = pgenPvocab(ut) + psrc

n∑
i:wi=ut

atsrc[i],

where at[i] is the i-th element of at, and then de-
terministically assigned the existing indices to the
identified nodes based on whether the node is gen-
erated from the target-side distribution.

2.3 Edge Prediction
Our baseline employs a deep biaffine attention clas-
sifier for semantic edge prediction (Dozat and Man-
ning, 2017), which have been widely used in graph-
based structure parsing (Peng et al., 2017; Lyu and
Titov, 2018; Zhang et al., 2019a).

For a node ut, the probability of uk being the
head node of ut and the probability of edge (uk, ut)
are defined below:

P (head)
t (uk) =

exp
(

score(edge)
k,t

)
∑m

j=1 exp
(

score(edge)
j,t

) ,
P (label)
k,t (l) =

exp
(

score(label)
k,t [l]

)
∑

l′ exp
(

score(label)
k,t [l′]

) ,

where score(score) and label(edge) are calculated via
bi-affine attentions.

3 Model

The overall structure of our model is shown in
Figure 2. First, we use an external dependency
parser (Manning et al., 2014) to obtain the explicit
structural information, and obtain the latent struc-
tural information via a probabilistic latent graph
generator. We then combine both explicit and latent
structural information by encoding the input sen-
tence through an extended graph neural network.
Finally, we incorporate our model with an align-
free AMR parser for parsing AMR graphs with the
benefit of structural information.

3.1 Latent Graph Generator
We generate the latent graph of input sentence via
the HardKuma distribution (Bastings et al., 2019),
which has both continuous and discrete behaviours.
HardKuma can generate samples from the closed
interval [0, 1] probabilisitcally . This feature allows
us to predict soft connections probabilities between
input words, which can be seen as a latent graph.
Specifically, we treat embedded input words as a
prior of a two-parameters distribution, and then
sample a soft adjacency matrix between input
words for representing a dependency.

HardKuma Distribution The HardKuma distri-
bution is derived from the Kumaraswamy distri-
bution (Kuma) (Kumaraswamy, 1980), which is
a two-parameters distribution over an open inter-
val (0, 1), i.e., K ∼ Kuma(a, b), where a ∈ R>0

and b ∈ R>0. The Kuma distribution is similar
to Beta distribution, but its CDF function has a
simpler analytical solution and inverse of the CDF
is:

C−1K (u;a, b) =
(
1− (1− u)1/b

)1/a
,

We can generate the samples by:

C−1K (U ;α,β) ∼ Kuma(α,β),

where U ∼ U(0, 1) is the uniform distribution, and
we can reconstruct this inverse CDF function by
the reparameterizing fashion (Kingma and Welling,
2014; Nalisnick and Smyth, 2017).

In order to include the two discrete points 0 and
1, HardKuma employs a stretch-and-rectify method
with support (Louizos et al., 2017), which leads
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Figure 2: Stretch of the model which has four main components: (1) A latent graph generator for producing
the soft-connected latent graph (§§3.1); (2) An extended syntactic graph convolutional network for encoding the
structural information (§§3.2); (3) An align-free concept identification for concept node generation (§§2.2); (4) A
deep biaffine classifier for relation edge prediction (§§2.3).

the variable T ∼ Kuma(a, b, l, r) to be sampled
from Kuma distribution with an open interval (l, r)
where l < 0 and r > 0. The new CDF is:

CT (t;a, b, l, r) = CK((t− l)/(r − l);a, b),

We pass the stretched variable T ∼
Kuma(a, b, l, r) through a hard-sigmoid function
(i.e., h = min(1,max(0, t))) to obtain the
rectified variable H ∼ HardKuma(a, b, l, r).
Therefore, the rectified variable covers the closed
interval [0, 1]. Note that all negative values of t
are deterministically mapped to 0. In contrast,
all samples t > 1 are mapped to 13. Because
the rectified variable is sampled based on Kuma
distribution, HardKuma first sample a uniform
variable over open interval (0, 1) from uniform
distribution U ∼ U(0, 1), and then generate a
Kuma variable through inverse CDF:

k = C−1K (u;a, b),

Second, we transform the Kuma variable for cov-
ering the stretched support:

t = l + (r − l)k,
3Details of derivations can be found at (Bastings et al.,

2019).

Finally, we rectify the stretched variable includ-
ing closed interval [0, 1] via a hard-sigmoid func-
tion:

h = min(1,max(0, t)).

Latent Graph We generate the latent graph of
input words w by sampling from HardKuma distri-
bution with trained parameters a and b. We first
calculate the prior c of (a, b) by employing multi-
head self-attention (Vaswani et al., 2017):

ca = Transfomera(v),

cb = Transfomerb(v),

where v = 〈v1, ..., vn〉 is the embedded input
words. Subsequently, we compute a and b as:

a = Norm(cac
T
a ),

b = Norm(cbc
T
b ),

where ai = 〈ai1, ..., ain〉 and bi = 〈bi1, ..., bin〉,
ca, cb ∈ Rn×n and Norm(x) is the normalization
function. Hence, the latent graph L is sampled via
learned parameters a and b:

lij ∼ HardKuma(aij , bij , l, r).
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3.2 Graph Encoder
For a syntactic graph with n nodes, the cellAij = 1
in the corresponding adjacent matrix represents that
an edge connects word wi to word wj . An L-layer
syntactic GCN of l-th layer can be used to represent
A, where the hidden vector for each word wi at the
l − th layer is:

h
(l)
i = σ(

n∑
j=1

ÃijW
(l)h

(l−1)
j /di + b(l)),

where Ã = A+ I with the n× n identity matrix
I , di =

∑n
j=1 Ãij is the degree of word wi in

the graph for normalizing the activation to avoid
the word representation with significantly different
magnitudes (Marcheggiani and Titov, 2017; Kipf
and Welling, 2017), and σ is a nonlinear activation
function.

In order to take benefits from both explicit and la-
tent structural information in AMR parsing, we ex-
tend the Syntactic-GCN (Marcheggiani and Titov,
2017; Zhang et al., 2018b) with a graph fusion
layer and omit labels in the graph (i.e. we only
consider the connected relation in GCN). Specif-
ically, we propose to merge the parsed syntactic
dependencies and sampled latent graph through a
graph fusion layer:

F = πL+ (1− π)D
where π is trainable gate variables are calculated
via the sigmoid function,D and L are the parsed
syntactic dependencies and generated latent graph
respectively, and F represent the fused soft graph.
Furthermore, F is a n× n adjacent matrix for the
input words w, different from the sparse adjacent
matrixA, Fij denote a soft connection degree from
word wi to word wj . We adapt syntactic-GCN
with a fused adjacent matrix F , and employ a gate
mechanism:

h
(l)
i = GELU(

Lnorm(

n∑
j=1

Gj(FijW
(l)h

(l−1)
j + b(l)))),

We use GELU (Hendrycks and Gimpel, 2016)
as the activation function, and apply layer normal-
ization Lnorm (Ba et al., 2016) before passing the
results into GELU. The scalar gate Gj is calculated
by each edge-node pair :

Gj = µ(h
(l−1)
j · v̂(l−1) + b̂(l−1)),

where µ is the logistic sigmoid function, v̂ and b̂
are trainable parameters.

3.3 Training
Similar to our baseline (Zhang et al., 2019a), we
linearize the AMR concepts nodes by a pre-order
traversal over the training dataset. We obtain gra-
dient estimates of E(φ, θ) through Monte Carlo
sampling from:

E(φ, θ) = EU(0,I) [logP (node|ut, gφ(u,w), θ)

+ logPt(head|uk, gφ(u,w), θ)

+ logPk,t(label|l, gφ(u,w), θ)]

+ λcovlosst

where ut is the reference node at time step t with
reference head uk and l is the reference edge label
between uk and uj . The form gφ(u,w) is short for
the latent graph samples from uniform distribution
to HardKuma distribution (§§3.1).

Different from Bastings et al. (2019), we do not
limit the sparsity of sampled latent graphs, i.e. we
do not control the proportion of zeros in the latent
graph, because we prefer to retain the probabilistic
connection information of each word in w. Finally,
we introduce coverage loss into our estimation due
to reduce duplication of node generation (See et al.,
2017).

3.4 Parsing
We directly generate the latent graph by the PDF
function of HardKuma distribution with trained
parameters a and b. In the concept identification
stage, we decode the node from the final probabil-
ity distribution P (node)(ut) at each time step, and
apply beam search for sequentially generating the
concept nodes u and deterministically assigning
corresponding indices d. For edge prediction, we
use a bi-affine classifier to calculate the edge scores
under the generated nodes u and indices d:

S = {score(edge)
i,j | 0 ≤ i, j ≤ m}.

Similar to Zhang et al. (2019a), we apply a max-
imum spanning tree (MST) algorithm (Chu, 1965;
Edmonds, 1967) to generate complete AMR graph
and restore the re-entrance relations by merging the
receptive nodes via their indices.

4 Experiments

4.1 Setup
We use two standard AMR corpora: AMR1.0
(LDC2014T12) and AMR 2.0 (LDC2017T10).
AMR 1.0 contains 13051 sentences in total. AMR
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Data Parser F1(%)

AMR
2.0

Cai and Lam (2019) 73.2
Lyu and Titov (2018) 74.4±0.2
Lindemann et al. (2019) 75.3±0.1
Naseem et al. (2019) 75.5
Zhang et al. (2019a) 76.3±0.1

- w/o BERT 74.6
Zhang et al. (2019b) 77.0±0.1

Ours 77.5±0.2
- w/o BERT 75.5±0.2

AMR
1.0

Flanigan et al. (2016) 66.0
Pust et al. (2015) 67.1
Wang and Xue (2017) 68.1
Guo and Lu (2018) 68.3±0.4
Zhang et al. (2019a) 70.2±0.1

- w/o BERT 68.8
Zhang et al. (2019b) 71.3±0.1

Ours 71.8±0.2
- w/o BERT 70.0±0.2

Table 1: Main results of SMATCH F1 on AMR 2.0
(LDC2017T10) and 1.0 (LDC2014T12) test sets. Re-
sults are evaluated over 3 runs.

2.0 is larger which is split into 36521, 1368 and
1371 sentences in training, development and testing
sets respectively. We treat in AMR 2.0 as the main
dataset in our experiments since it is larger.

We tune hyperparameters on the development
set, and store the checkpoints under best devel-
opment results for evaluation. We employ the
pre-processing and post-processing methods from
Zhang et al. (2019a), and get the syntactic de-
pendencies via Stanford Corenlp (Manning et al.,
2014). We train our model jointly with the Adam
optimizer (Kingma and Ba, 2015). The learning
rate is decayed based on the results of development
set in training. Training takes approximately 22
hours on two Nivida GeForce GTX 2080 Ti.

4.2 Results

Main Results We compare the SMATCH F1
scores (Cai and Knight, 2013) against previous
best reported models and other recent AMR
parsers. Table 1 summarizes the results on both
AMR 1.0 and AMR 2.0 data sets. For AMR
2.0, with the benefit from the fused structural
information, we improve our baseline (Zhang et al.,
2019a) by 1.2% F1 in the full model, and 0.9% F1

Metric N’19 Z’19a Z’19b Ours

SMATCH 75.5 76.3 77 77.5

Unlabeled 80 79 80 80.4
No WSD 76 77 78 78.2
Reentrancies 56 60 61 61.1
Concepts 86 85 86 85.9
Named Ent. 83 78 79 78.8
Wikification 80 86 86 86.5
Negation 67 75 77 76.1
SRL 72 70 71 71.0

Table 2: Fine-grained F1 scores on the AMR 2.0
(LDC2017T10) test set. N’18 is Naseem et al. (2019);
Z’19a is Zhang et al. (2019a); Z’19b is Zhang et al.
(2019b)

is gained without pre-trained BERT embeddings4.
In addition, our model outperform the best reported
model (Zhang et al., 2019b) by 0.5% F1. On AMR
1.0, there are only about 10k sentences for training.
We outperform the best results by 0.5% Smatch
F1. We observe that for the smaller data set, our
model has a greater improvement of 1.6% F1 than
for the larger data set (1.2% F1 comparing with
our baseline.)

Fine-grained Results Table 2 shows fined-grained
parsing results of each sub-tasks in AMR 2.0,
which are evaluated by the enhance AMR eval-
uation tools (Damonte et al., 2017). We notice
that our model brings more than 1% average im-
provement to our baseline (Zhang et al., 2019a)
for most sub-tasks, in particular, the unlabeled is
gained 1.4% F1 score increasing with the structural
information, and the sub-task of no WSD, reentran-
cies, negation and SRL are all improved more than
1.0% score under our graph encoder. In addition,
our model achieves comparable results to the best
reported method (Zhang et al., 2019b) for each sub-
task.

Ablation Study We investigate the impacts of dif-
ferent structural information in our model on AMR
2.0 with main sub-tasks5. Table 3 shows the fused
structure perform better in most sub-task than ex-
plicit and latent structure. In particular, the model
with explicit structures (i.e. both explicit and fused)

4We use pre-tained bert-base embedings without fine-
tuning.

5We set all the hyper-parameters to the same.
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Metric Explicit Latent Fused

SMATCH 77.4 77.4 77.5

Unlabeled 80.2 80.1 80.4
Reentrancies 61.1 60.6 61.1
Concepts 85.6 86.0 85.7
Negation 75.6 75.1 76.1
SRL 70.8 70.9 71.0

Table 3: Ablation studies of the results for AMR2.0
(LDC2017T10) on different kind of structural informa-
tion in our model.

Graph Type UAS

Fused 84.9%
Latent 64.1%

Table 4: The UAS of fused and latent graph by calcu-
lating from the corresponding explicit dependencies in
test set (we calculate the UAS by predicting the maxi-
mum probability heads in the latent graph).

outperform the model with only latent structure by
0.5% F1 in Reentrancies sub-task, which demon-
strates that the explicit dependencies information
can improve the this sub-task. Latent structure per-
form better in concepts sub-task, and fused struc-
ture brings more information to the negation sub-
task which obtain 0.5% and 1.0% improvement
than explicit and latent structure respectively.

Additionally, we can notice that both latent and
explicit models outperform the previous best re-
ported Smatch F1 score, and fused model reach the
best results. It shows that different types of struc-
tural information can help the AMR parsing, we
discuss the connection tendencies of each structure
in (§§4.3).

4.3 Discussion

Experiment results show that both the explicit struc-
ture and latent structure can improve the perfor-
mance of AMR parsing, and latent structural infor-
mation reduces the errors in sub-tasks such as con-
cept and SRL. Different from the discrete relation
of explicit structures, the internal latent structure
holds soft connection probabilities between words
in the input sentence, so that, each fully-connected
word receive information from all the other words.

Figure 3 depicts the latent and fused soft adja-
cent matrix of the input sentence “The boy came
and left” respectively. It can be seen that the la-

(a) Latent Matrix (b) Fused Matrix

Figure 3: The latent soft adjacent matrix (a) and fused
soft adjacent matrix (b) of the input sentence “The boy
came and left”.

tent matrix (Figure 3a) tries to retain information
from most word pairs, and the AMR root “and”
holds high connection probabilities to each word
in the sentence. In addition, the mainpredicates
and arguments in the sentence tend to be connected
with high probabilities. The fused matrix (Fig-
ure 3b) holds similar connection probabilities to
predicates and arguments in the sentence as well,
and it reduces the connection degrees to the de-
terminer “The” which does not appear in corre-
sponding AMR graph. Moreover, the syntactic
root “came” and semantic root “and” reserve most
connection probabilistic to other words.

We compare the connections in different struc-
tures in Figure 4. The latent graph (Figure 4a)
prefers to connect most words, and the main predi-
cates and arguments in the graph have higher con-
nection probabilities. The fused graph (Figure 4c)
shows that our model provides core structural in-
formation between interpretable relations. Specif-
ically, it holds similar potential relations to anno-
tated AMR graph, and tries to alleviate the connec-
tion information to the words which are not aligned
in AMR concept nodes.

Beyond that, we calculate the Unlabeled Attach-
ment Score (UAS) for fused and latent graph in
Table 4, the unsupervised latent graph captures less
explicit edges than fused graph, and both fused and
latent graph ignore some arcs on explicit graph.
It shows that a lower UAS does not mean lower
AMR parsing score and some arcs are more use-
ful to AMR parsing but not in explicit gold trees.
Consequently, we preserve the explicit and latent
structure information simultaneously. The latent
structure can not only improve AMR parsing, but
also have ability to interpret the latent connections
between input words.
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Figure 4: Different structures of the sentence “The boy came and left ”. (a): The Latent Graph; (b): The Syntactic
Graph; (c): The Fused Graph; (d): The AMR graph. (We construct the latent and fused graph by selecting the top
2 possible soft connections between each word, in addition, we ignore the edges whose connection probabilities
are less than 0.5.).

5 Related Work

Transition-based AMR parsers (Wang et al., 2016;
Damonte et al., 2017; Wang and Xue, 2017; Liu
et al., 2018; Guo and Lu, 2018; Naseem et al., 2019)
suffer from the lack of annotated alignments be-
tween words and concept notes is crucial in these
models. Lyu and Titov (2018) treat the alignments
as an latent variable for their probabilistic model,
which jointly obtains the concepts, relations and
alignments variables. Sequence-to-sequence AMR
parsers transform AMR graphs into serialized se-
quences by external traversal rules, and then re-
store the generated the AMR sequence to avoid
aligning issue (Konstas et al., 2017; van Noord and
Bos, 2017). Moreover, Zhang et al. (2019a) extend
a pointer generator (See et al., 2017), which can
generate a node multiple times without alignment
through the copy mechanism.

With regards to latent structure, Naradowsky
et al. (2012) couples syntactically-oriented NLP
tasks to combinatorially constrained hidden syn-
tactic representations. Bowman et al. (2016); Yo-
gatama et al. (2017) and Choi et al. (2018) generate
unsupervised constituent tree for text classification.
The latent constituent trees are shallower than hu-
man annotated, and it can boost the performance
of downstream NLP tasks (e.g., text classification).
Guo et al. (2019) and Ji et al. (2019) employ self-

attention and bi-affine attention mechanism respec-
tively to generate soft connected graphs, and then
adopt GNNs to encode the soft structure to take
advantage from the structural information to their
works.

GCN and its variants are increasingly applied
in embedding syntactic and semantic structures
in NLP tasks (Kipf and Welling, 2017; Marcheg-
giani and Titov, 2017; Damonte and Cohen, 2019).
Syntactic-GCN tries to alleviate the error propaga-
tion in external parsers with gates mechanism, it en-
codes both relations and labels with the gates, and
filters the output of each GCN layer over the depen-
dencies. (Marcheggiani and Titov, 2017; Bastings
et al., 2017). Damonte and Cohen (2019) encodes
AMR graphs via GCN to promote the AMR-to-text
generation task.

6 Conclusion

We investigate latent structure for AMR parsing,
and we denote that the inferred latent graph can
interpret the connection probabilities between in-
put words. Experiment results show that the la-
tent structural information improve the best re-
ported parsing performance on both AMR 2.0
(LDC2017T10) and AMR 1.0 (LDC2014T12). We
also propose to incorporate the latent graph into
other multi-task learning problems (Chen et al.,
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2019; Kurita and Søgaard, 2019).
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A Appendix

A.1 Details of Model Structures and
Parameters

GloVe embeddings
dim 300

BERT embeddings
source BERT-base-cased
dim 768

POS tag embeddings
dim 100

CharCNN
num filters 100
ngram filter sizes [3]

Graph Encoder
gcn hidden dim 512
gcn layers 1

Latent Graph Generator
HardKuma support [-0.1, 1.1]
k dim 64
v dim 64
n heads 8

Encoder
hidden size 512
num layers 2

Decoder
hidden size 1024
num layers 2

Deep Biaffine Classifier
edge hidden size 256
label hidden size 128

Optimizer
type Adam
learning rate 0.001
max grad norm 5.0

Coverage loss weight λ 1.0

Beam size 5

Dropout 0.33

Batch Size
train batch size 64
test batch size 32

Table 5: Hyper-parameter settings

We select the best hyper-parameters under the
results of the development set, and we fix the hyper-
parameters at the test stage. We use two-layer high-
way LSTM as the encoder and two-layer LSTM
as the decoder for the align-free node generator.
Table 5 shows the details.

A.2 More Examples

To discuss the generated latent graph in different
situations, We provide two examples from the test
set on the next page.

Figure 5 gives the analysis of an interrogative
sentence: “What advice could you give me?”. It
shows that the latent graph of the sentence is going
to hold the most information between predicates
and arguments. Both the AMR root “advice” and
the dependency root “give” are paid more attention
from other words, and the fused graph retains more
information of the predicates and arguments in the
original sentence as well.

For a longer sentence with multiple predicate-
argument structures, Figure 6 depicts the latent
and fused graph of the sentence “You could go to
the library on saturdays and do a good 8 hours of
studying there.”. In this case, the corresponding
latent graph becomes shallower, and the AMR root
“and” holds most information from other words.
Besides, the fused graph indicates that predicates
will receive more information from other words,
and to some extent, phrases tend to be connected
by the fused graph generator.
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Sentence:
What advice could you give me?

Dependency: AMR:

Latent Matrix: Fused Matrix:

advice

you
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Figure 5: An analysis of the sentence “What advice could you give me?”.

Sentence:
You could go to the library on saturdays and do a good 8 hours of studying there.

Dependency: AMR:

Latent Matrix: Fused Matrix:

go
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Figure 6: An analysis of the sentence “You could go to the library on Saturdays and do a good 8 hours of studying
there.”.


