
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4280–4295
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

4280

Programming in Natural Language with fuSE:
Synthesizing Methods from Spoken Utterances
Using Deep Natural Language Understanding

Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and Walter F. Tichy
Karlsruhe Institute of Technology

Institute for Program Structures and Data Organization
Karlsruhe, Germany

weigelt@kit.edu, vanessa.steurer@web.de,
hey@kit.edu, tichy@kit.edu

Abstract

The key to effortless end-user programming is
natural language. We examine how to teach in-
telligent systems new functions, expressed in
natural language. As a first step, we collected
3168 samples of teaching efforts in plain En-
glish. Then we built fuSE, a novel system that
translates English function descriptions into
code. Our approach is three-tiered and each
task is evaluated separately. We first classify
whether an intent to teach new functionality
is present in the utterance (accuracy: 97.7%
using BERT). Then we analyze the linguis-
tic structure and construct a semantic model
(accuracy: 97.6% using a BiLSTM). Finally,
we synthesize the signature of the method,
map the intermediate steps (instructions in the
method body) to API calls and inject con-
trol structures (F1: 67.0% with information
retrieval and knowledge-based methods). In
an end-to-end evaluation on an unseen dataset
fuSE synthesized 84.6% of the method signa-
tures and 79.2% of the API calls correctly.

1 Introduction

Intelligent systems became rather smart lately. One
easily arranges appointments by talking to a vir-
tual assistant or controls a smart home through a
conversational interface. Instructing a humanoid
robot in this way no longer seems to be futuristic.
For the time being, users can only access built-in
functionality. However, they will soon expect to
add new functionality themselves. For humans, the
most natural way to communicate is by natural lan-
guage. Thus, future intelligent systems must be
programmable in everyday language.

Today’s systems that claim to offer program-
ming in natural language enable laypersons to is-
sue single commands or construct short scripts (e.g.
Mihalcea et al. (2006); Rabinovich et al. (2017));
usually no new functionality is learned. Only a

few addressed learning new functionality from nat-
ural language instructions (e.g. Le et al. (2013);
Markievicz et al. (2017)). However, even recent
approaches still either restrict the language or are
(over-)fitted to a certain domain or application.

We propose to apply deep natural language un-
derstanding to the task of synthesizing methods
from spoken utterances. Our approach combines
modern machine learning techniques with infor-
mation retrieval and knowledge-based methods to
grasp the user’s intent. As a first step, we have per-
formed a user study to investigate how laypersons
teach new functionality with nothing but natural
language. In a second step, we develop fuSE (Func-
tion Synthesis Executor). fuSE translates teaching
efforts into code. On the basis of the gathered data
we constructed a three-tiered approach. We first
determine, whether an utterance comprises an ex-
plicitly stated intent to teach a new skill. Then,
we decompose these teaching efforts into distinct
semantic parts. We synthesize methods by transfer-
ring these semantic parts into a model that repre-
sents the structure of method definitions. Finally,
we construct signatures, map instructions of the
body to API calls, and inject control structures.

2 Related Work

The objective of programming in natural language
was approached from different perspectives over
the years. Quite a few approaches are natural lan-
guage interfaces to code editors (Price et al., 2000;
Begel, 2004; Begel and Graham, 2005; Désilets
et al., 2006). However, they assume that users lit-
erally dictate source code. Thus, these approaches
are intended for developers rather than laypersons.
Other approaches such as Voxelurn by Wang et al.
(2017) aim to naturalize programming languages
to lower the hurdle for programming novices.

Approaches for end-user programming in natu-

mailto:weigelt@kit.edu
mailto:vanessa.steurer@web.de
mailto:hey@kit.edu
mailto:tichy@kit.edu

4281

coffee is a beverage

people like in order

to make coffee you

have to locate the

cup place it under

the dispenser and

press the red button

1st stage

teaching intent

coffee is a beverage

people like in order

to make coffee you

have to locate the

cup place it under

the dispenser and

press the red button
Teaching

2nd stage

semantic struct.

coffee is a beverage

people like in order

to make coffee you

have to locate the

cup place it under

the dispenser and

press the red button

MISC

DECL

SPEC

3rd stage

method synth.

procedure makeCoffee()
locate(Cup)
put(Cup,

CoffeeMachine
.Dispenser)

press(CoffeeMachine
.RedButton)

Figure 1: Schematic overview of fuSE’s three-tiered approach.

ral language take up the challenge of bridging the
semantic gap between informal spoken or written
descriptions in everyday language and formal pro-
gramming languages. Early systems were syntax-
based (Winograd, 1972; Ballard and Biermann,
1979; Biermann and Ballard, 1980; Biermann et al.,
1983; Liu and Lieberman, 2005). Some were al-
ready capable to synthesize short scripts including
control structures and comments, e.g. NLP for NLP
by Mihalcea et al. (2006). Others take the user in
the loop and create scripts with a dialog-driven ap-
proach (Le et al., 2013). In further developments in-
telligent assistants offer their service to assist with
programming (Azaria et al., 2016). Often these
assistants support multi-modal input, e.g. voice
and gestures (Campagna et al., 2017, 2019). Oth-
ers combine programming in natural language with
other forms of end-user programming, such as pro-
gramming by example (Manshadi et al., 2013) or
programming by demonstration (Li et al., 2018).

Some authors such as Landhäußer et al. (2017)
and Atzeni and Atzori (2018a,b) take a knowledge-
based approach by integrating domain and environ-
mental information in the form of ontologies.

Suhr and Artzi (2018) employ a neural network
to learn a situational context model that integrates
the system environment and the human-system-
interaction, i.e. the dialog. Many recent approaches
integrate semantic parsing in the transformation
process (Guu et al., 2017; Rabinovich et al., 2017;
Chen et al., 2018; Dong and Lapata, 2018). Even
though the natural language understanding capabil-
ities are often impressive, the synthesized scripts
are still (semantically) erroneous in most cases.
Additionally, learning of new functionality is not
covered by approaches of that category so far.

Programming in natural language is of particular
interest in the domain of humanoid robotics (Lau-
ria et al., 2001, 2002; She et al., 2014; Mei et al.,
2016). People expect to teach them as they teach
human co-workers. Therefore, some authors, e.g.

Markievicz et al. (2017), use task descriptions that
were intended to instruct humans to benchmark
their approach. However, often the assumed vocab-
ulary is rather technical (Lincoln and Veres, 2012).
Thus, the usability for laypersons is limited.

3 Approach

The goal of our work is to provide a system for pro-
gramming in (spoken) natural language. Layper-
sons shall be enabled to create new functionality in
terms of method definitions by using natural lan-
guage only. We offer a general approach, i.e. we do
not restrict the natural language regarding wording
and length. Since spontaneous language often com-
prises grammatical flaws, disfluencies, and alike,
our work must be resilient to these issues.

We decompose the task in three consecutive
steps. The rationale behind this decision is as fol-
lows. On the one hand, we can implement more
focused (and precise) approaches for each task, e.g.
using machine learning for one and information
retrieval for another. On the other hand, we are
able to evaluate and optimize each approach indi-
vidually. The stages of our three-tiered approach
are the following (see Figure 1 for an example):

1. Classification of teaching efforts: Deter-
mine whether an utterance comprises an ex-
plicitly stated teaching intent or not.

2. Classification of the semantic structure:
Analyze (and label) the semantic parts of a
teaching sequence. Teaching sequences are
composed of a declarative and a specifying
part as well as superfluous information.

3. Method synthesis: Build a model that repre-
sents the structure of methods from syntactic
information and classification results. Then,
map the actions of the specifying part to API
calls and inject control structures to form the
body; synthesize the method signature.

4282

The first two stages are classification problems.
Thus, we apply various machine learning tech-
niques. The first stage is a sequence-to-single-label
task, while the second is a typical sequence-to-
sequence task. For the first we compare classical
machine learning techniques, such as logistic re-
gression and support vector machines, with neural
network approaches including the pre-trained lan-
guage model BERT (Devlin et al., 2019). For the
second task we narrow down to neural networks
and BERT. A more detailed description of the first
two stages may be found in (Weigelt et al., 2020).
The implementation of the third stage is a com-
bination of syntactic analysis, knowledge-based
techniques and information retrieval. We use se-
mantic role labeling, coreference analysis, and a
context model (Weigelt et al., 2017) to infer the se-
mantic model. Afterwards, we synthesize method
signatures heuristically and map instructions from
the body to API calls using ontology search meth-
ods and datatype analysis. Additionally, we inject
control structures, which we infer from keywords
and syntactic structures. To cope with spontaneous
(spoken) language, our approach relies on shallow
NLP techniques only.

3.1 Dataset

We carried out a study to examine how layper-
sons teach new functionality to intelligent systems.
The study consists of four scenarios in which a
humanoid robot should be taught a new skill: greet-
ing someone, preparing coffee, serving drinks, and
setting a table for two. All scenarios take place in
a kitchen setting but involve different objects and
actions. Subjects were supposed to teach the robot
using nothing but natural language descriptions.
We told the subjects that a description ideally com-
prises a declaration of intent to teach a new skill, a
name for the skill, and an explanation of interme-
diate steps. However, we do not force the subjects
into predefined wording or sentence structure. In-
stead, we encouraged them to vary the wording and
to ‘speak’ freely. We also instructed them to imag-
ine that they were standing next to the robot. After
the short introduction, we successively presented
the scenarios to the subjects. Finally, we requested
some personal information in a short questionnaire.

We used the online micro-tasking platform Pro-
lific1,2. In less than three days, 870 participants

1Prolific: https://www.prolific.co/
2We decided to gather textual responses, even though

desc. w. (total) w. (unique)
sc. 1 (greet) 795 18,205 566
sc. 2 (coffee) 794 26,005 625
sc. 3 (drinks) 794 33,001 693
sc. 4 (table) 785 31,797 685
total 3,168 109,008 1,469

Table 1: The number of descriptions, words, and
unique words per scenario and in the entire dataset.

completed the study. The share of male and female
participants is almost equal (50.5% vs. 49.5%);
more than 60% are native English speakers. Most
of them (70%) had no programming experience at
all. An analysis of the dataset revealed that there
is barely any difference in the language used by
subjects, who are inexperienced in programming,
compared to more experienced subjects (except
for a few subjects that used a rather technical lan-
guage). The age of the participants ranges from 18
to 76 with more than half being 30 or younger.

The collected data comprises 3,168 descriptions
with more than 109,000 words altogether (1,469
unique words); the dataset statistics are depicted in
Table 1. We provide a set of six descriptions from
the dataset in Table 13 (Appendix A). A thorough
analysis of the dataset revealed that a notable share
(37%) lacks an explicitly stated intent to teach a
skill, albeit we even consider phrases such as “to
prepare lunch” as teaching intent. Regarding the
semantic structure, we observed that the distinct
parts can be clearly separated in almost all cases.
However, the respective parts occurred in varying
order and are frequently non-continuous.

The data was jointly labeled by two of the au-
thors. We first attached the binary labels teaching
and non-teaching. These labels correspond to the
classification task from the first stage. Then we add
ternary labels (declaration, specification, and mis-
cellaneous) to all words in descriptions that were
classified as teaching effort in the first step. This la-
bel set is used for the second stage. The distribution
of the labels is depicted in Table 2.

Both label sets are unequally distributed, which
may cause the machine learning models to over-
fit in favor of the dominating label. This
mainly affects the ternary classification task; the

speech recordings would be more natural. However, from
previous studies we learned that subjects more willingly write
texts than speak. Besides, the audio quality of recordings is
often poor, when subjects use ordinary microphones.

https://www.prolific.co/

4283

binary ternary
teaching non-teaching total declaration specification miscellaneous total

1,998 (.63) 1,170 (.37) 3,168 15,559 (.21) 57,156 (.76) 2,219 (.03) 74,934

Table 2: The distribution of binary and ternary labels in the dataset. The resp. share is given in parenthesis.

random scenario
Decision Tree (.893) .903 (.861) .719
Random Forest (.917) .909 (.893) .374
SVM (.848) .861 (.870) .426
Naı̈ve Bayes (.771) .801 (.765) .300
Logistic Regression (.927) .947 (.891) .719
baseline (ZeroR) .573 .547

Table 3: Classification accuracy achieved by classical
machine learning techniques on validation (in paren.)
and test set. The best results are printed in bold type.

label specification distinctly dominates (76%)
the others. The entire dataset is publicly ac-
cessible (open access), including raw data, la-
beled data, meta-data, and scenario descriptions:
http://dx.doi.org/10.21227/zecn-6c61.

3.2 First Stage: Teaching Intents
The first step of fuSE is discovering teaching intents
in utterances. An utterance can either be an effort
to teach new functionality or merely a description
of a sequence of actions. This problem is a typical
sequence-to-single-label task, where the words of
the utterance are the sequential input and the output
is either teaching or non-teaching.

To train, validate, and test classifiers we split up
the dataset in two ways. The first is the common
approach to randomly split the set in an 80-to-20
ratio, where 80% of the data is used for training
and 20% for testing. As usual, we again split the
training set in 80 parts for training and 20 for valida-
tion. However, we felt that this approach does not
reflect realistic set-ups, where a model is learned
from historical data and then applied to new unseen
data, that is semantically related but (potentially)
different. Therefore, we introduced an additional
so-called scenario-based split in which we separate
the data according to the scenarios. We use three
of the four scenarios for training and the remaining
for testing. Note that we again use an 80-20 split
to divide training and validation sets.

We applied classical machine learning and neu-
ral network approaches to the task. The classi-
cal techniques are: decision trees, random forests,

support vector machines, logistic regression, and
Naı̈ve Bayes. As baseline for the classification ac-
curacy we use the so-called Zero-Rule classifier
(ZeroR); it always predicts the majority class of the
training set, i.e. teaching in this case.

We transform the words to bag-of-words vectors
and use tri- and quadrigrams as additional features.
The measured accuracy of each classifier on the ran-
dom and scenario-based data is depicted in Table 3;
the validation set accuracy is given in parenthesis
and the test set accuracy without.

On the random set all classifiers exceed the base-
line. Thus, the (slightly) imbalanced dataset does
not seem to affect the classifiers much. Logistic
regression performs surprisingly well. However,
on the scenario-based split the accuracy of all clas-
sifiers decreases drastically. While the accuracies
on the validation set remain stable, these classifier
techniques are unable to generalize to unseen input.
The logistic regression remains the best classifier.
However, its accuracy decreases to 71.9%.

These results reinforced our intuition that deep
learning is more appropriate for this task. We
implemented a broad range of neural network ar-
chitectures: artificial neural networks, convolu-
tional networks, and recurrent networks, including
LSTMs and GRUs and their bidirectional variants.
We experimented with additional layers, which
we systematically added to the networks, such as
dropout (DO), dense (D), or global max pooling
(GMax). We altered all hyper-parameters in reason-
able ranges of values3. We present only the best per-
forming configurations, i.e. architecture and hyper-
parameter combinations, in Table 4. Detailed infor-
mation on the tested hyper-parameter values and
further results may be found in Appendices B and
C. The words from the input are represented as
fastText word embeddings (Bojanowski et al., 2017;
Joulin et al., 2017); we use the 300-dimensional em-
beddings that were trained on the Common Crawl
dataset4 by Facebook Research (Mikolov et al.,

3Note that we do not discuss the influence of varying epoch
numbers, since we used early stopping, i.e. the training stops
when the validation loss stops decreasing.

4Common Crawl: https://commoncrawl.org/

http://dx.doi.org/10.21227/zecn-6c61
https://commoncrawl.org/

4284

network architecture random scenario
C(128,3), Max(2),
C(64,3), GMax, D(10) (.952) .971 (.962) .874
C(128,5), Max(2),
C(128,5), GMax, D(10) (.954) .966 (.977) .862
BiGRU(32), DO(.2),
D(64), DO(.2) (.952) .959 (.958) .932
BiLSTM(128), D(64) (.956) .959 (.962) .919
BERT, 5 epochs (.973) .981 (.991) .969
BERT, 10 epochs (.976) .982 (.992) .973
BERT, 300 epochs (.962) .982 (.992) .977
baseline (Log. Reg.) (.927) .947 (.891) .719

Table 4: Classification accuracy for neural networks on
validation (in parenthesis) and test set (best in bold).

2018). Moreover, we use Google’s pre-trained
language model BERT (base-uncased), which we
equipped with a flat binary output layer.

The results attest that deep learning approaches
clearly outperform the best classical technique (lo-
gistic regression). In particular, the accuracies
show smaller differences between random and
scenario-based split. This suggests that the clas-
sification is more robust. The best accuracy on
the scenario test set is achieved by a bidirectional
GRU: 93.2%. Using BERT, the accuracy increases
by more than 4% with a peak at 97.7% using 300
training epochs. However, the ten-epochs version
is a feasible choice, since the accuracy loss is neg-
ligible and the training savings are immense.

3.3 Second Stage: Semantic Structures

The second stage, detecting the semantic parts in
teaching efforts, is a typical sequence-to-sequence-
labeling task with the labels declaration, speci-
fication, and miscellaneous. Even though these
semantic structures correspond to phrases from a
grammatical point of view, we decided to use per-
word labels. For this task we only use neural net-
work approaches and BERT. The remaining set-up
is similar to the first stage. We again use fastText
embeddings and vary the network architectures and
hyper-parameters. Except for a ternary output layer,
we use the same configuration for BERT as in the
first stage.

The results for both, the random and scenario-
based split, are reported in Table 55. The bidirec-
tional architectures – be it GRU or LSTM – are

5Again, we only present the best configurations here. For
more configurations, refer to Table 16 in Appendix C.

network architecture random scenario
BiLSTM(128) (.987) .985 (.981) .976
BiGRU(128) (.985) .985 (.982) .968
BiLSTM(128), DO(.2) (.988) .988 (.981) .975
BiLSTM(256), DO(.2) (.987) .985 (.982) .975
BERT, 5 epochs (.979) .982 (.979) .965
BERT, 10 epochs (.983) .985 (.983) .972
BERT, 300 epochs (.981) .983 (.985) .973
baseline (ZeroR) .759 .757

Table 5: Classification accuracy achieved by neural net-
works on validation (in parenthesis) and test set for the
second stage. The best results are printed in bold type.

the clear choice for this task; accuracy values are
consistently high. Most encouragingly, the decline
on the scenario data is negligible (less than 1%).
Apparently, the models generalize well and are thus
resilient to a change in vocabulary. For the second
stage the use of BERT is of no advantage; the re-
sults even fall behind the best RNN configurations.

3.4 Third Stage: Method Synthesis

During stage three we first transfer the natural lan-
guage utterances into a model that represents both
method definitions and scripts. Afterwards, we syn-
thesize methods (or scripts) from this model. We
create a method signature and map instructions in
the body to API calls; to synthesize scripts we only
map the instructions and inject control structures.

Before we can transfer natural language utter-
ances to the semantic model we must perform a
few NLP pre-processing steps that enrich the input
with syntactic and semantic information. To ob-
tain parts of speech (PoS), we apply a joint tagging
approach; we consolidate the PoS tags produced
by the Stanford Log-linear Part-Of-Speech Tag-
ger (Toutanova et al., 2003) and SENNA (Collobert
et al., 2011). The Stanford Tagger also provides
us with word lemmas. Then we detect individual
events in terms of clauses. Since our approach is
supposed to cope with spoken language, we are un-
able to make use of punctuation. Instead, we split
the input in a continuous sequence of instructions
based on heuristics that make use of PoS tags and
keywords. However, the instructions do not nec-
essarily span complete clauses. Thus, we can not
apply common parsers. Instead, we use the shallow
parser BIOS6 that provides us with chunks. To ob-
tain semantic roles for each instruction, we again

6http://www.surdeanu.info/mihai/bios/

http://www.surdeanu.info/mihai/bios/

4285

class description
Thing Top concept of the ontology
x System (Sub-)Systems (API classes)
x Method System functions (API methods)
x Parameter Parameter names
x DataType Data types used by the system,

e.g., int or Graspable
x Object External objects [empty here]
x State Object states [empty here]

Table 6: Domain ontology structure for systems.

class description
Thing Top concept of the ontology
x Object Objects in environment
x Graspable Graspable objects, e.g., cup
x Openable Openable objects, e.g., bottle

. . .
x State Object states, e.g., opened

Table 7: Domain ontology structure for environments.

employ SENNA7. Word senses are disambiguated
using the tool Babelfy (Moro et al., 2014). Since
Babelfy is linked to WordNet (Fellbaum, 1998), we
can also make use of synonyms.

We use ontologies to model the target systems,
i.e. APIs. An ontology represents the classes, meth-
ods, parameters, data types, and values (resp. value
ranges), of an API (similar to the ontologies used
by Landhäußer et al. (2017) and Atzeni and At-
zori (2018a,b)). The basic ontology structure is
depicted in Table 6. If the system is supposed to
interact with an environment, we employ additional
ontologies that model the environment including
objects and their states (see Table 7). Environment
ontologies are merged into system ontologies by
copying concepts to the respective placeholders.

To bridge the semantic gap between natural and
programming language we introduce a semantic
model, as depicted in Figure 2. The model re-
sembles the basic structure of method definitions.
However, the leaves are composed of natural lan-
guage phrases. To determine the phrases that will
make up the model elements, we first smooth the
classification results provided by the second stage.
fuSE maps all phrases of an instruction to the same
second-level model element, i.e. either method sig-
nature or an instruction of the body. Therefore, we

7SENNA uses the semantic role label set defined in the
CoNLL-2004 resp. CoNLL-2005 shared tasks (Carreras and
Màrquez, 2004, 2005).

[to make] [coffee] you have [to locate] [the cup] . . .

method

signature

name parameters

body

inst1

name parameters

inst2 . . .

Figure 2: Exemplary semantic model for an utterance.

unify the second stage classification labels for each
instruction using majority decision. Afterwards,
we map phrases to leaf elements. Roughly speak-
ing, we use the roles provided by semantic role
labeling (SRL) and map predicates to names and
arguments to parameters. If we detect a corefer-
ence, we substitute the referring expression with
the referent, e.g. it with the cup. We also add a
lemmatized variant of the phrase and all synonyms.
Note that the parameters are a list of phrases.

The first step to create method definitions is sig-
nature synthesis. To construct a meaningful name,
we heuristically clean up the phrase, e.g. remove
auxiliary verbs and stop words, and concatenate
the remaining words. The parameters are either
mapped to data types to infer formal parameters
or – if no mapping is to be found – they are at-
tached to the name. For instance, assuming that
the declarative instruction is serving wine means,
fuSE extracts serve as the first part of the name.
Then it tries to map wine to an ontology individual
(as discussed later). Assuming it finds the indi-
vidual RedWineBottle and it is an instance of
the concept Graspable in the environment on-
tology. If the system ontology supports the data
type Graspable, fuSE synthesizes the signa-
ture serve(serve.what : Graspable).
Otherwise, the method signature serveWine()
is created.

The instructions in the method body are mapped
to API calls. Therefore, we first query the ontolo-
gies for each leaf element individually. For the
queries we use three sets of words we create from
the original phrase, the lemmatized version, and
the synonyms. We then build the power sets and
all permutations of each set, before we concatenate
the words to construct a query set. For instance, for
the phrase is closed, we produce the query strings:
isclosed, closedis, beclose, closebe, closed, is, . . .
The ontology search returns all individuals with
a Jaro-Winkler score (Winkler, 1990) above .4 or

4286

individuals API calls
pre. recall F1 avg. rank pre. recall F1 avg. rank

sc. 1 .763 .584 (.776) .662 (.769) 1.31 .583 .461 (.614) .515 (.598) 1.47
sc. 2 .783 .742 (.857) .762 (.818) 1.16 .674 .620 (.713) .646 (.693) 1.19
sc. 3 .847 .813 (.893) .830 (.870) 1.16 .672 .645 (.708) .658 (.690) 1.20
total .807 .731 (.854) .767 (.830) 1.20 .653 .590 (.689) .620 (.670) 1.22

Table 8: The results of the evaluation of the API call mapping for individual elements, i.e. names and parameters,
and entire calls. The values in parenthesis denote the results obtained excluding SRL errors.

total teach non-teach API calls
sc. 1 25 18 7 77
sc. 2 25 19 6 97
sc. 3 25 15 10 123
total 75 52 23 297

Table 9: The dataset used to evaluate the third stage.

a fuzzy score8 above .15. We decided for these
comparatively low thresholds, since we see them
as lightweight filters that let pass numerous gen-
erally valid candidates. Since an individual may
be returned more than once with different scores,
we set the score of the individual to the maximum
of each of its scores. Afterwards, we construct
API calls from the model structure and rate each
candidate. We start with the method name candi-
dates. For each candidate we query the ontology
for formal parameters. Then, we try to satisfy the
parameters with the candidates returned by the in-
dividual ontology search. Note that we perform
type checking for the parameters (including inher-
itance if applicable). For instance, for the instruc-
tion take the cup we may have found the individual
grasp as candidate for a method name and the pa-
rameter candidates Mug (type Graspable) and
Cupboard (type Location). The ontology indi-
cates that the method grasp has one parameter of
type Graspable. Then, the type check ensures
that fuSE creates the call candidate grasp(Mug)
but not grasp(Cupboard). The score is com-
posed of the individual scores of the method names
and parameters, the share of mapped words of
query string to all words in the query, the ratio
of mapped parameters to (expected) formal param-
eters, and the number of additional (superfluous)
parameters. In Appendix D we give a more formal
introduction to our scoring approach.

8https://commons.apache.org/proper/
commons-text/apidocs/org/apache/commons/
text/similarity/FuzzyScore.html

The result of the scoring process is a ranked list
of candidates for each instruction. For the time
being, we simply use the top-ranked candidates to
synthesize the method body. However, re-ranking
the candidates based on other semantic resources
is promising future work. In a last step, we inject
control structures, i.e. conditional branching, vari-
ous types of loops, and concurrency (Weigelt et al.,
2018b,c). The approach is rule-based. We use key
phrases, such as in case, until, and at the same
time. Proceeding from these anchor points we look
for structures that fit into the respective control
structure. Here, we apply heuristics on the syntax
(based on PoS tags and chunks) and coreference.
Utterances that were labeled as non-teaching in the
first stage also run through the third stage, except
for signature synthesis. Thus, we only construct
scripts for this type of utterances.

We determine the quality of the approach for the
third stage based on utterances from scenarios one,
two, and three, since we used scenario four dur-
ing development. The assessment is partly manual.
Hence, we randomly drew 25 utterances from each
scenario to reduce the effort. For each description
we used the manual labels of first-stage and second-
stage classifications and prepared a gold standard
for API calls in the method body. Table 9 depicts
the dataset. We did not prepare solutions for the
signatures, since plenty of valid solutions are imag-
inable. Thus, we decided to review the signatures
manually afterwards. Of the 52 synthesized method
names we assessed eight inappropriate. A name
is inappropriate if either the name is off-topic or
it contains unrelated terms, e.g. askSpeaker or
prepareCoffeeFriend for the scenario How
to prepare coffee. Moreover, fuSE correctly mapped
23 parameters without any false positive.

The API ontology used in our setting (house-
hold robot) comprises 92 methods, 59 parameters,
and 20 data types. To represent the environment
(a kitchen) of the robot, we used another ontology

https://commons.apache.org/proper/commons-text/apidocs/org/apache/commons/text/similarity/FuzzyScore.html
https://commons.apache.org/proper/commons-text/apidocs/org/apache/commons/text/similarity/FuzzyScore.html
https://commons.apache.org/proper/commons-text/apidocs/org/apache/commons/text/similarity/FuzzyScore.html

4287

individuals API calls
pre. recall F1 avg. rank pre. recall F1 avg. rank

sc. 5 .823 .854 (.944) .839 (.879) 1.04 .589 .649 (.722) .617 (.649) 1.04
sc. 6 .920 .876 (.929) .898 (.925) 1.06 .711 .679 (.721) .695 (.716) 1.11
total .886 .869 (.934) .877 (.909) 1.05 .668 .670 (.721) .669 (.694) 1.10

Table 10: The results of the end-to-end evaluation, divided in individual elements, i.e. names and parameters, and
entire calls. The values in parenthesis denote the results obtained excluding SRL errors.

total teach non-teach API calls
sc. 5 50 44 6 158
sc. 6 50 34 16 315
total 100 78 22 473

Table 11: The end-to-end evaluation dataset.

with 70 objects of six types, and six states. Table 8
details the results for the method body synthesis.
Besides precision, recall, and F1, it shows the aver-
age rank at which the correct element is to be found.
Since the semantic role labeling introduces a vast
amount of errors on spoken utterances and our ap-
proach heavily depends on it, we also determine
recall and F1 excluding SRL errors. The results are
encouraging. We achieve an F1 value of 76.7% for
the individuals and 62.0% for entire calls; in both
cases the precision is slightly ahead of the recall. If
we excluded SRL errors, the overall performance
increases (about 7% for individuals and 5% for
calls). Besides the SRL, missing and inappropriate
synonyms are a major source of errors. If Word-
Net lacks a synonym for an important word in the
utterance, fuSE’s API mapping may be unable to de-
termine the correct ontology individual. Contrary,
if WordNet provides an inappropriate synonym,
fuSE may produce an incorrect (superfluous) map-
ping. In other cases, our language model is unable
to capture the semantics of the utterance properly.
For example, fuSE creates two method calls for the
phrase “make sure you close it” : close(. . .)
and make(. . .). It may also produce superfluous
mappings for explanatory phrases, such as “the
machine fills cups”, if the second stage did not
classify it as miscellaneous. Regarding the compo-
sition of API calls (methods plus arguments), the
majority of errors is introduced by the arguments.
In addition to the afore-mentioned error sources,
arguments are often ambiguous. For instance, the
phrase “open the door” leaves it up to interpreta-
tion, which door was intended to be opened. Even

though fuSE makes use of an elaborated context
model, some ambiguities are impossible to resolve
(see section 5). A related issue is the incorrect res-
olution of coreferences; each mistake leads to a
misplaced argument. Most of these error sources
can be eliminated, if the pre-processing improves.
However, many difficulties simply arise from erro-
neous or ambiguous descriptions. Still, fuSE inter-
prets most of them correctly. Most encouragingly,
the average rank of the correct element is near 1.
Thus, our scoring mechanism succeeds in placing
the right elements on top of the list.

4 Evaluation

To measure the performance of fuSE on unseen data,
we set up an end-to-end evaluation. We created two
new scenarios. They take place in the kitchen set-
ting again, but involve different actions and objects.
In the first, subjects are supposed to teach the robot,
how to start the dishwasher and in the second, how
to prepare cereals. Once more we used Prolific to
collect the data and set the number of participants
to 110. However, we accepted only 101 submis-
sions, i.e. 202 descriptions. We randomly drew 50
descriptions each. Since the evaluation of the over-
all approach entails the same output as the third
stage, we prepared the gold standard like in sub-
section 3.4 and used the same ontologies. Table 11
details the dataset used in the end-to-end evaluation.
Additionally, we provide five exemplary descrip-
tions from the dataset in Table 14 (Appendix A).

In the end-to-end evaluation our approach syn-
thesized 73 method signatures; five were missed
due to an incorrect first-stage classification. Out
of 73 synthesized methods we assessed seven to
be inappropriate. Additionally, 36 parameters were
mapped correctly and no false positives were cre-
ated. Except for the missing method signatures the
results are in line with the third-stage evaluation.

The results for the method body synthesis, as
depicted in Table 10, even exceed the previous
evaluation. The value of the F1-score is 87.7% for

4288

pre. rec. F1

methods .924 .884 .904
parameters .828 .951 .885
API calls .735 .859 .792

Table 12: Evaluation results for the speech corpus.

individuals and 66.9% for entire API calls. Again,
recall and F1 increase, if we exclude SRL errors.
However, the effect is smaller here. Moreover, the
average rank is also closer to the optimum (1.0)
in both cases. Since the first two stages of fuSE
are based on neural networks, it is difficult to say
why the results in the end-to-end evaluation im-
prove. However, we believe the main cause is the
introduction of a new test dataset, which has two
consequences. First, the models used in the first
two stages are learned on all four scenarios instead
of three, i.e. the models are trained on a larger
dataset, which (presumably) makes them more ro-
bust. Second, the new task may be simpler to de-
scribe. Consequently, the descriptions comprise
simpler wordings and become easier to handle. In
summary, the results show that fuSE generalizes to
different settings – at least in the same domain –
and is marginally degraded by error propagation.

To assess how well fuSE generalizes to truly spo-
ken utterances we evaluated on another dataset. It
is a collection of recordings from multiple recent
projects. The setting (instructing a humanoid robot
in a kitchen setting) is the same. However, none
of the scenarios involved teaching new function-
ality. Thus, we can only measure fuSE’s ability to
construct scripts. The descriptions in this dataset
comprise control structures to a much larger extent.
Altogether the dataset comprises 234 recordings
and manual transcriptions. The 108 subjects were
mostly under-graduate and graduate students.

On the transcripts we assess the mapping of
methods and parameters individually. The results
for both and entire calls are depicted in Table 12.
Even though the spoken samples comprise a vast
number of disfluencies and grammatical flaws, fuSE
maps more calls correctly. This counter-intuitive ef-
fect may be explained by the lower complexity and
briefness of the spoken descriptions. Regarding the
control structures, 27.4% were injected correctly.
Note that correctly means an appropriate condition
plus a block with correct extent. If we lower the
standards for condition correctness, the share of
correct structures is 71.23%.

5 Conclusion

We have presented fuSE, a system for programming
in natural language. More precisely, we aim to en-
able laypersons to teach an intelligent system new
functionality with nothing but spoken instructions.
Our approach is three-tiered. First, we classify
whether a natural language description entails an
explicitly stated intent to teach new functionality.
If an intent is spotted, we use a second classifier to
separate the input into semantically disjoint parts;
we identify declarative and specifying parts and
filter out superfluous information. Finally, we syn-
thesize method signatures from the declarative and
method bodies from the specifying parts. Method
bodies contain instructions and control structures.
Instructions are mapped to API calls. We imple-
mented the first two steps using classical machine
learning and neural networks. Teaching intents
are identified with an accuracy of 97.7% (using
BERT). The classification of the semantics is cor-
rect in 97.6% of the cases (using a BiLSTM).

We evaluated fuSE on 100 descriptions obtained
from a user study. The results are promising; fuSE
correctly synthesized 84.6% of the method signa-
tures. The mapping of instructions in the body to
API calls achieved an F1-score of 66.9%. In a sec-
ond evaluation on a speech corpus the F1-score for
API calls is 79.2%.

We plan to evaluate fuSE in other domains. It will
be interesting to see, if we can reuse (or transfer)
the machine learning models as well as the rest of
the approach. Future adoptions to fuSE will include
the integration of a dialog component. We may
query the user in case of ambiguous statements
or missing parameters. We have implemented an
extensible dialog module and shown that it can be
used to resolve ambiguous references, word recog-
nition errors, and missing conditions (Weigelt et al.,
2018a). However, we still have to figure out, how
to query users properly if an API mapping is am-
biguous or parameters are missing. Another im-
provement concerns the analysis of verb references.
Humans often refer to previous actions, which may
cause superfluous instructions. We will also imple-
ment a sanity check that considers feasibility and
meaningfulness of the sequence of actions in the
method body. The latter may involve a feedback
mechanism via the dialog component. Giving feed-
back to newly learned method definitions that may
be lengthy and therefore unhandy to repeat as a
whole is an interesting challenge.

4289

References

Mattia Atzeni and Maurizio Atzori. 2018a. To-
wards Semantic Approaches for General-Purpose
End-User Development. In 2018 Second IEEE Inter-
national Conference on Robotic Computing (IRC),
pages 369–376.

Mattia Atzeni and Maurizio Atzori. 2018b. Translat-
ing Natural Language to Code: An Unsupervised
Ontology-Based Approach. In 2018 IEEE First In-
ternational Conference on Artificial Intelligence and
Knowledge Engineering (AIKE), pages 1–8.

Amos Azaria, Jayant Krishnamurthy, and Tom M.
Mitchell. 2016. Instructable intelligent personal
agent. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, AAAI’16, pages
2681–2689, Phoenix, Arizona. AAAI Press.

Bruce W. Ballard and Alan W. Biermann. 1979. Pro-
gramming in Natural Language: “NLC” As a Proto-
type. In Proceedings of the 1979 Annual Conference
(ACM), ACM ’79, pages 228–237, New York, NY,
USA. ACM.

Andrew Begel. 2004. Spoken Language Support for
Software Development. In Proceedings of the 2004
IEEE Symposium on Visual Languages - Human
Centric Computing, VLHCC ’04, pages 271–272,
USA. IEEE Computer Society.

Andrew Begel and Susan L. Graham. 2005. Spoken
Programs. In Proceedings of the 2005 IEEE Sym-
posium on Visual Languages and Human-Centric
Computing, VLHCC ’05, pages 99–106, USA. IEEE
Computer Society.

Alan W. Biermann and Bruce W. Ballard. 1980. To-
ward Natural Language Computation. Comput. Lin-
guist., 6(2):71–86.

Alan W. Biermann, Bruce W. Ballard, and Anne H. Sig-
mon. 1983. An Experimental Study of Natural Lan-
guage Programming. International Journal of Man-
Machine Studies, 18(1):71–87.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Giovanni Campagna, Rakesh Ramesh, Silei Xu,
Michael Fischer, and Monica S. Lam. 2017. Al-
mond: The Architecture of an Open, Crowdsourced,
Privacy-Preserving, Programmable Virtual Assis-
tant. In Proceedings of the 26th International Con-
ference on World Wide Web, WWW ’17, pages 341–
350, Republic and Canton of Geneva, Switzerland.
International World Wide Web Conferences Steering
Committee.

Giovanni Campagna, Silei Xu, Mehrad Moradshahi,
Richard Socher, and Monica S. Lam. 2019. Genie:
A generator of natural language semantic parsers for
virtual assistant commands. In Proceedings of the
40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019,
pages 394–410, Phoenix, AZ, USA. Association for
Computing Machinery.

Xavier Carreras and Lluı́s Màrquez. 2004. Introduc-
tion to the CoNLL-2004 shared task: Semantic role
labeling. In Proceedings of the Eighth Confer-
ence on Computational Natural Language Learning
(CoNLL-2004) at HLT-NAACL 2004, pages 89–97,
Boston, Massachusetts, USA. Association for Com-
putational Linguistics.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduc-
tion to the CoNLL-2005 shared task: Semantic
role labeling. In Proceedings of the Ninth Confer-
ence on Computational Natural Language Learning
(CoNLL-2005), pages 152–164, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Bo Chen, Le Sun, and Xianpei Han. 2018. Sequence-
to-Action: End-to-End Semantic Graph Generation
for Semantic Parsing. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 766–
777, Melbourne, Australia. Association for Compu-
tational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. J. Mach. Learn. Res., 12:2493–2537.

Alain Désilets, David C. Fox, and Stuart Norton. 2006.
VoiceCode: An Innovative Speech Interface for
Programming-by-voice. In CHI ’06 Extended Ab-
stracts on Human Factors in Computing Systems,
CHI EA ’06, pages 239–242, New York, NY, USA.
ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press.

https://doi.org/10.1109/IRC.2018.00077
https://doi.org/10.1109/IRC.2018.00077
https://doi.org/10.1109/IRC.2018.00077
https://doi.org/10.1109/AIKE.2018.00009
https://doi.org/10.1109/AIKE.2018.00009
https://doi.org/10.1109/AIKE.2018.00009
https://doi.org/10.1145/800177.810072
https://doi.org/10.1145/800177.810072
https://doi.org/10.1145/800177.810072
https://doi.org/10.1109/VLHCC.2004.49
https://doi.org/10.1109/VLHCC.2004.49
https://doi.org/10.1109/VLHCC.2005.58
https://doi.org/10.1109/VLHCC.2005.58
https://doi.org/10.1016/S0020-7373(83)80005-4
https://doi.org/10.1016/S0020-7373(83)80005-4
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://www.aclweb.org/anthology/W04-2412
https://www.aclweb.org/anthology/W04-2412
https://www.aclweb.org/anthology/W04-2412
https://www.aclweb.org/anthology/W05-0620
https://www.aclweb.org/anthology/W05-0620
https://www.aclweb.org/anthology/W05-0620
https://doi.org/10.18653/v1/P18-1071
https://doi.org/10.18653/v1/P18-1071
https://doi.org/10.18653/v1/P18-1071
https://doi.org/10.1145/1125451.1125502
https://doi.org/10.1145/1125451.1125502
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068

4290

Kelvin Guu, Panupong Pasupat, Evan Liu, and Percy
Liang. 2017. From Language to Programs: Bridging
Reinforcement Learning and Maximum Marginal
Likelihood. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1051–1062, Van-
couver, Canada. Association for Computational Lin-
guistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Mathias Landhäußer, Sebastian Weigelt, and Walter F.
Tichy. 2017. NLCI: A Natural Language Com-
mand Interpreter. Automated Software Engineering,
24(4):839–861.

Lauria Lauria, Guido Bugmann, Theocharis Kyria-
cou, Johan Bos, and Ewan Klein. 2001. Training
personal robots using natural language instruction.
IEEE Intelligent Systems, 16(5):38–45.

Stanislao Lauria, Guido Bugmann, Theocharis Kyri-
acou, and Ewan Klein. 2002. Mobile robot pro-
gramming using natural language. Robotics and Au-
tonomous Systems, 38(3):171–181.

Vu Le, Sumit Gulwani, and Zhendong Su. 2013. Smart-
Synth: Synthesizing smartphone automation scripts
from natural language. In Proceeding of the 11th
Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’13, pages
193–206, Taipei, Taiwan. Association for Comput-
ing Machinery.

Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xi-
aoyi Zhang, Wenze Shi, Wanling Ding, Tom M.
Mitchell, and Brad A. Myers. 2018. APPINITE: A
Multi-Modal Interface for Specifying Data Descrip-
tions in Programming by Demonstration Using Nat-
ural Language Instructions. In 2018 IEEE Sympo-
sium on Visual Languages and Human-Centric Com-
puting (VL/HCC), pages 105–114.

Nicholas K. Lincoln and Sandor M. Veres. 2012. Nat-
ural Language Programming of Complex Robotic
BDI Agents. Journal of Intelligent & Robotic Sys-
tems, 71(2):211–230.

Hugo Liu and Henry Lieberman. 2005. Metafor: Vi-
sualizing Stories as Code. In IUI ’05: Proceedings
of the 10th International Conference on Intelligent
User Interfaces, pages 305–307. ACM.

Mehdi Manshadi, Daniel Gildea, and James Allen.
2013. Integrating programming by example and nat-
ural language programming. In Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intel-
ligence, AAAI’13, pages 661–667, Bellevue, Wash-
ington. AAAI Press.

Irena Markievicz, Minija Tamosiunaite, Daiva Vitkute-
Adzgauskiene, Jurgita Kapociute-Dzikiene, Rita
Valteryte, and Tomas Krilavicius. 2017. Reading
Comprehension of Natural Language Instructions
by Robots. In Beyond Databases, Architectures
and Structures. Towards Efficient Solutions for Data
Analysis and Knowledge Representation, pages 288–
301. Springer.

Hongyuan Mei, Mohit Bansal, and Matthew R. Wal-
ter. 2016. Listen, attend, and walk: Neural map-
ping of navigational instructions to action sequences.
In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI’16, pages 2772–2778,
Phoenix, Arizona. AAAI Press.

Rada Mihalcea, Hugo Liu, and Henry Lieberman.
2006. NLP (Natural Language Processing) for NLP
(Natural Language Programming). In Proceedings
of the 7th International Conference on Computa-
tional Linguistics and Intelligent Text Processing,
CICLing’06, pages 319–330, Berlin, Heidelberg.
Springer-Verlag.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evalua-
tion (LREC-2018), Miyazaki, Japan. European Lan-
guages Resources Association (ELRA).

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. Transactions of the
Association for Computational Linguistics, 2:231–
244.

David Price, Ellen Riloff, Joseph Zachary, and Brandon
Harvey. 2000. NaturalJava: A Natural Language In-
terface for Programming in Java. In Proceedings of
the 5th International Conference on Intelligent User
Interfaces, IUI ’00, pages 207–211, New Orleans,
Louisiana, USA. ACM.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract Syntax Networks for Code Gener-
ation and Semantic Parsing. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1139–1149. Association
for Computational Linguistics.

Lanbo She, Yu Cheng, Joyce Y. Chai, Yunyi Jia, Shao-
hua Yang, and Ning Xi. 2014. Teaching Robots New
Actions through Natural Language Instructions. In
The 23rd IEEE International Symposium on Robot
and Human Interactive Communication, pages 868–
873, Edinburgh, UK. IEEE.

Alane Suhr and Yoav Artzi. 2018. Situated Mapping of
Sequential Instructions to Actions with Single-step
Reward Observation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2072–
2082, Melbourne, Australia. Association for Com-
putational Linguistics.

https://doi.org/10.18653/v1/P17-1097
https://doi.org/10.18653/v1/P17-1097
https://doi.org/10.18653/v1/P17-1097
https://www.aclweb.org/anthology/E17-2068
https://www.aclweb.org/anthology/E17-2068
https://doi.org/10.1007/s10515-016-0202-1
https://doi.org/10.1007/s10515-016-0202-1
https://doi.org/10.1109/MIS.2001.956080
https://doi.org/10.1109/MIS.2001.956080
https://doi.org/10.1016/S0921-8890(02)00166-5
https://doi.org/10.1016/S0921-8890(02)00166-5
https://doi.org/10.1145/2462456.2464443
https://doi.org/10.1145/2462456.2464443
https://doi.org/10.1145/2462456.2464443
https://doi.org/10.1109/VLHCC.2018.8506506
https://doi.org/10.1109/VLHCC.2018.8506506
https://doi.org/10.1109/VLHCC.2018.8506506
https://doi.org/10.1109/VLHCC.2018.8506506
https://doi.org/10.1007/s10846-012-9779-1
https://doi.org/10.1007/s10846-012-9779-1
https://doi.org/10.1007/s10846-012-9779-1
https://doi.org/10.1145/1040830.1040908
https://doi.org/10.1145/1040830.1040908
https://doi.org/10.1007/978-3-319-58274-0_24
https://doi.org/10.1007/978-3-319-58274-0_24
https://doi.org/10.1007/978-3-319-58274-0_24
https://doi.org/10.1007/11671299_34
https://doi.org/10.1007/11671299_34
https://www.aclweb.org/anthology/L18-1008
https://www.aclweb.org/anthology/L18-1008
https://www.aclweb.org/anthology/L18-1008
https://doi.org/10.1162/tacl_a_00179
https://doi.org/10.1162/tacl_a_00179
https://doi.org/10.1145/325737.325845
https://doi.org/10.1145/325737.325845
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.1109/ROMAN.2014.6926362
https://doi.org/10.1109/ROMAN.2014.6926362
https://doi.org/10.18653/v1/P18-1193
https://doi.org/10.18653/v1/P18-1193
https://doi.org/10.18653/v1/P18-1193

4291

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics,
pages 252–259.

Sida I. Wang, Samuel Ginn, Percy Liang, and Christo-
pher D. Manning. 2017. Naturalizing a Program-
ming Language via Interactive Learning. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 929–938, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

Sebastian Weigelt, Tobias Hey, and Mathias
Landhäußer. 2018a. Integrating a Dialog Com-
ponent into a Framework for Spoken Language
Understanding. In Proceedings of the 6th Interna-
tional Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering, RAISE ’18,
pages 1–7, New York, NY, USA. ACM.

Sebastian Weigelt, Tobias Hey, and Vanessa Steurer.
2018b. Detection of Conditionals in Spoken Utter-
ances. In 2018 IEEE 12th International Conference
on Semantic Computing (ICSC), pages 85–92.

Sebastian Weigelt, Tobias Hey, and Vanessa Steurer.
2018c. Detection of Control Structures in Spoken
Utterances. International Journal of Semantic Com-
puting, 12(3):335–360.

Sebastian Weigelt, Tobias Hey, and Walter F. Tichy.
2017. Context Model Acquisition from Spoken Ut-
terances. In Proceedings of The 29th International
Conference on Software Engineering & Knowledge
Engineering, pages 201–206, Pittsburgh, PA.

Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and
Walter F. Tichy. 2020. Roger that! Learning How
Laypersons Teach New Functions to Intelligent Sys-
tems. In 2020 IEEE 14th International Conference
on Semantic Computing (ICSC), pages 93–100.

William E. Winkler. 1990. String Comparator Metrics
and Enhanced Decision Rules in the Fellegi-Sunter
Model of Record Linkage.

Terry Winograd. 1972. Understanding natural lan-
guage. Cognitive Psychology, 3(1):1–191.

https://www.aclweb.org/anthology/N03-1033
https://www.aclweb.org/anthology/N03-1033
https://doi.org/10.18653/v1/P17-1086
https://doi.org/10.18653/v1/P17-1086
https://doi.org/10.1145/3194104.3194105
https://doi.org/10.1145/3194104.3194105
https://doi.org/10.1145/3194104.3194105
https://doi.org/10.1109/ICSC.2018.00021
https://doi.org/10.1109/ICSC.2018.00021
https://doi.org/10.1142/S1793351X18400159
https://doi.org/10.1142/S1793351X18400159
https://doi.org/10.18293/SEKE2017-083
https://doi.org/10.18293/SEKE2017-083
https://doi.org/10.1109/ICSC.2020.00020
https://doi.org/10.1109/ICSC.2020.00020
https://doi.org/10.1109/ICSC.2020.00020
https://doi.org/10.1016/0010-0285(72)90002-3
https://doi.org/10.1016/0010-0285(72)90002-3

4292

A Dataset Examples

The dataset includes descriptions of varying qual-
ity. Some texts have syntactical flaws such as typos
and grammar mistakes. They also vary in terms of
descriptiveness and style; the latter ranges from full
sentences to notes. Table 13 shows six examples
from the preliminary study (scenarios one to four)
and Table 14 five examples from the end-to-end
evaluation (scenarios five and six). Most of the de-
scriptions contain errors. For instance, description
2180 contains typos, such as “ring some beverage”.

B Architectures and Hyper-parameters

We applied a broad range of machine learning ap-
proaches to the classification tasks. Table 15 shows
the types, architectures and hyper-parameters we
tested in the process. We also experimented with
self-trained and pre-trained fastText embeddings.

C Configurations and Results

Table 16 shows representative configurations for
the first stage of fuSE (binary classification); for
neural networks we altered the hyper-parameters
systematically to give an intuition of the effects.
There are general trends. Classifiers perform better
on randomly split data, a batch size of 100 is better
than 300, and pre-trained embeddings outperform
the self-trained in almost all cases. Overall, BERT-
based classifiers achieve the best results. How-
ever, some neural network configurations come
close (e.g. RNN6.0); classical machine learning
techniques are inadequate. For the second stage
(ternary classification) we show interesting results
in Table 17. The trends are as follows. The prefer-
able batch size is 32, pre-trained embeddings again
outperform the self-trained, and RNNs are best.

D Call Candidate Scoring

In subsection 3.4 we only discuss the rationale be-
hind our call candidate scoring mechanism. Sub-
sequently, we give a formal introduction. A call
candidate is an API method with arguments (ex-
tracted from the natural language input). The ar-
guments are of either primitive, composite (strings
or enumerations), or previously defined types (e.g.
objects from the environment). The arguments ad-
here to the formal definition of the API method.
For each call candidate c fuSE calculates the score
S(c) as follows:

S(c) = φ∗P (c)∗SM (c)+(1−φ)∗WSP (c) (1)

The score is composed of two components: the
method score SM (c) and the weighted parameter
scoreWSP (c). The impact of the latter on the final
score can be adjusted with the weight φ. Further,
SM (c) is scaled by the perfect match bonus P (c):

P (c) =

{
τ M(c) > 0.9

1 otherwise
(2)

The perfect match bonus P (c) allows us to prefer
call candidates with a method name score M(c)
above 0.9. The scaling factor τ is configurable
(τ ≥ 1). The method score SM (c) is computed as
follows:

SM (c) =M(c)− β

|IA(c)|
∗
(
1− |IF (c)|
|IA(c)|

)
(3)

The method name score M(c) is the maximal simi-
larity of the natural language chunk that represents
the action (or event) and the (API) method name.
We use Jaro-Winkler and fuzzy score as similarity
measures. To obtain the method score SM (c), the
method name score M(c) is reduced by a subtra-
hend that indicates how well the method name rep-
resents the words in the original natural language
chunk. The subtrahend is composed of two factors.
The second is one minus the fraction of words in
the chunk that can be found in the method name
and the total amount of words in the chunk; i.e.,
this factor is the share of unmapped words. The
other factor scales it by a configurable parameter β,
which is divided by length of the chunk. The ratio-
nale behind this is as follows. In short chunks each
word is important. Therefore, unmapped words are
strongly penalized. With an increasing number of
words in the chunk, it is increasingly unlikely to
map all words. However, in longer chunks many
words are semantically irrelevant. Therefore, we
reduce the subtrahend with the length of the chunk.

The weighted parameter score WSP (c) in Equa-
tion 1 is calculated as follows:

WSP (c) = SP (c)− ω ∗ Pen(c) (4)

The score is composed of the parameter score
SP (c) and a penalty value Pen(c); the latter is
weighted by the configurable factor ω. The param-
eter score SP (c) is calculated as follows:

SP (c) =
∑

Pi(c) ∗
|PM |
|PO(c)|

(5)

4293

ID scen. text
302 1 Look directly at the person. Wave your hand. Say ’hello’.

1000 2 You have to place the cup under the dispenser and press the red button to make coffee.
1346 2 Making coffee means you have to press the red button, put a cup underneath the hole

and then pouring the coffee that comes out into your cup
2180 3 To ring a beverage, open the fridge and select one of te beverages inside, pour it into

one of the glasses on the kitchen counter and hand the glass over to the person.
2511 4 collect cutlery from cupboard, bring them to the table and place down neatly
2577 4 To set the table for two, Go to the cupboard and take two of each; plates, glasses, knives,

and forks. Take them to the kitchen table and set two individual places.

Table 13: Six exemplary submissions taken from the preliminary study dataset (scenarios one to four).

ID scen. text
E 10 5 Hey, Amar. We’re going to start the dishwasher so what we have to do is first make sure

the dishwasher is closed and then press the blue button twice to start the dishwasher.
E 79 5 Hi Armar. Turning on the Dishwasher means you have to go to the dishwasher. Close

the dishwasher, then press the blue button 2 times.
E 81 5 Hi Armar, to use the dishwasher you need to check first if it is closed, if not, close it

by pushing the front door. If it is closed, look for the blue button on the dishwasher.
Once you find it, press it a first time and then a second time. That’s how you start the
dishwasher.

E 117 6 hi armar, you get your cereal ready you need to go to the fridge and open the door by
pulling it. you will find the milk bottle inside the fridge door. lift it out and carry it to
the kitchen table. place it next to your bowl and cereal box. start by filling the bowl
with your cereal then pour in some milk.

E 158 6 Hi Armar, you have to go to the fridge, open it, grab the milk, close it and carry the
milk to the kitchen table. Then place it next to the bowl and the cereal box. Fill the
bowl with the cereals and then pour the mil in the bowl. That is how you prepare some
cereals

Table 14: Five exemplary submissions taken from the end-to-end evaluation dataset (scenarios five and six).

PM is the set of all parameters pi (extracted from
the natural language input) that were mapped to
formal method parameters. Each pi has a similar-
ity score (Pi(c)). Thus, SP (c) is the sum of all
similarity scores of mapped parameters multiplied
with the share of mapped (PM) and expected for-
mal parameters as defined in the ontology (PO(c)).
To calculate WSP (c) (see Equation 4), SP (c) is
reduced by the penalty value Pen(c) that is calcu-
lated as follows:

Pen(c) =
|PE | − |PM |
|PE |

(6)

PE is the set of parameters that were extracted
from natural language input (see Figure 2). Thus,
Pen(c) is the number of parameters in the input
that were not mapped to a formal method param-
eter, normalized by the total amount of extracted
(natural language) parameters.

For the evaluation of the third stage of fuSE and
the end-to-end-evaluation we set the method score
weight φ to 0.6, the perfect match multiplier τ to
1.5, the search string coverage weight β to 0.5,
and the penalty factor ω to 0.3. We determined all
values empirically with the help of examples from
scenario 4.

4294

types architect. additional layers number of units epochs batch sizes dropout values learning rates

ANN

Flatten (Flat), 10, 32, 50, 64, binary: binary: 100, 0.2, 0.3, 0.4 0.001,
GMax, 100, 128, 200, 300, 300 0.0005
Dense (D), 256 500,
Dropout(DO) 1000

CNN

CONV Max,
GMax, ternary: ternary: 32,
Dense (D), 50, 100, 64, 100, 300
Dropout(DO) 300

RNN

LSTM Dense (D),
GRU Dropout (DO)
BiLSTM
BiGRU

BERT Flatten (Flat) 5, 10, 32 0.00002
300

Table 15: Overview of the types, architectures, and hyper-parameters of neural networks used in the two classifica-
tion tasks (step one and two of fuSE).

batch random scenario
name additional layers size self-trained fastText self-trained fastText
ANN1.0 Flat, D(10) 100 (.907) .911 (.874) .887 (.918) .759 (.897) .722
ANN2.0 Flat, D(100) 100 (.916) .914 (.846) .867 (.905) .781 (.874) .715
ANN2.1 Flat, D(100) 300 (.921) .922 (.844) .870 (.922) .732 (.863) .577
ANN3.0 GMax, D(10) 100 (.876) .887 (.872) .902 (.907) .766 (.905) .542
ANN3.1 GMax, D(100) 100 (.899) .896 (.879) .896 (.893) .668 (.918) .674
ANN3.2 GMax, D(100) 300 (.888) .889 (.877) .897 (.895) .676 (.908) .428
CNN1.0 Conv(128, 3), GMax, D(10) 100 (.947) .966 (.954) .963 (.962) .765 (.966) .854
CNN1.1 Conv(128, 5), GMax, D(10) 100 (.947) .971 (.930) .965 (.973) .743 (.973) .776
CNN1.2 Conv(128, 7), GMax, D(10) 100 (.952) .966 (.943) .962 (.973) .775 (.970) .897
CNN2.0 Conv(128, 3), Max(2), Conv(64, 3), GMax, D(10) 100 (.952) .959 (.952) .971 (.968) .855 (.962) .874
CNN2.1 Conv(128, 5), Max(2), Conv(64, 5), GMax, D(10) 100 (.949) .972 (.952) .966 (.969) .850 (.975) .859
CNN2.2 Conv(128, 5), Max(2), Conv(128, 5), GMax, D(10) 100 (.952) .964 (.954) .966 (.973) .862 (.977) .862
CNN2.3 Conv(128, 5), Max(2), Conv(128, 5), GMax, D(10) 300 (.952) .953 (.947) .965 (.973) .783 (.971) .901
CNN2.4 Conv(128, 5), Max(5), Conv(128, 5), GMax, D(10) 100 (.956) .958 (.952) .959 (.962) .901 (.973) .801
RNN1.0 GRU(128) 100 (.560) .625 (.562) .625 (.477) .299 (.519) .702
RNN1.1 GRU(128), D(100) 100 (.562) .625 (.562) .625 (.519) .702 (.519) .702
RNN2.0 BiGRU(32), DO(0.2), D(64), DO(0.2) 100 (.947) .944 (.952) .959 (.954) .911 (.958) .932
RNN3.0 LSTM(64) 100 (.566) .631 (.568) .638 (.519) .702 (.519) .702
RNN3.1 LSTM(128) 100 (.570) .625 (.654) .738 (.519) .702 (.519) .702
RNN4.0 LSTM(128), D(100) 100 (.562) .625 (.562) .625 (.519) .702 (.519) .702
RNN4.1 LSTM(128), D(100) 300 (.562) .625 (.567) .633 (.519) .702 (.519) .702
RNN5.0 BiLSTM(64), DO(0.2), D(64), DO(0.2) 100 (.947) .955 (.949) .955 (.956) .896 (.962) .916
RNN5.1 BiLSTM(64), DO(0.2), D(64), DO(0.2) 300 (.929) .919 (.954) .949 (.945) .650 (.966) .872
RNN5.2 BiLSTM(64), DO(0.3), D(200), D(100) 100 (.941) .947 (.947) .949 (.947) .884 (.956) .911
RNN6.0 BiLSTM(128), D(64) 100 (.951) .955 (.956) .959 (.960) .927 (.962) .919
RNN6.1 BiLSTM(128), D(64), D(32) 100 (.945) .962 (.947) .955 (.950) .919 (.966) .898
RNN7.0 BiLSTM(128), D(100), DO(0.3), D(50) 100 (.936) .937 (.945) .941 (.937) .922 (.954) .917
RNN7.1 BiLSTM(128), D(100), DO(0.3), D(50) 300 (.934) .934 (.938) .947 (.937) .704 (.950) .907
RNN8.0 BiLSTM(256), D(128) 100 (.952) .944 (.945) .952 (.954) .843 (.962) .912
BERT1 5 epochs 32 (.973) .981 (.991) .969
BERT2 10 epochs 32 (.976) .982 (.992) .973
BERT3 300 epochs 32 (.962) .982 (.992) .977
Decision Tree (.893) .903 (.861) .719
Random Forest (.917) .909 (.893) .374
Support Vector Machine (.848) .861 (.870) .426
Naı̈ve Bayes (.771) .801 (.765) .300
Logistic Regression (.927) .947 (.891) .719
baseline (ZeroR) .573 .547

Table 16: Classification accuracy obtained on the validation (in parenthesis) and the test set for the first stage
(binary classification). The best results (per classifier category) are printed in bold type. The basic structure of
each neural network includes an embedding layer and an output layer (dense layer).

4295

batch random scenario
name additional layers size self-trained fastText self-trained fastText
ANN1.0 - 32 (.851) .855 (.851) .856 (.850) .779 (.851) .826
ANN1.1 - 100 (.851) .849 (.852) .849 (.849) .746 (.851) .826
ANN2.0 D(10) 32 (.848) .857 (.852) .849 (.850) .825 (.851) .826
ANN2.1 D(100) 32 (.853) .856 (.853) .848 (.851) .822 (.851) .827
RNN1.0 LSTM(64) 32 (.977) .976 (.979) .978 (.971) .960 (.975) .966
RNN1.1 LSTM(64) 100 (.973) .972 (.978) .975 (.969) .952 (.974) .964
RNN1.2 LSTM(128) 32 (.974) .976 (.978) .977 (.973) .960 (.973) .964
RNN1.3 LSTM(128) 100 (.974) .975 (.978) .977 (.970) .962 (.971) .965
RNN1.4 LSTM(128) 300 (.973) .973 (.977) .974 (.968) .954 (.972) .961
RNN2.0 LSTM(128), DO(0.2) 32 (.976) .977 (.977) .977 (.970) .960 (.973) .966
RNN2.1 LSTM(128), DO(0.4) 32 (.976) .977 (.979) .979 (.971) .959 (.974) .967
RNN3.0 LSTM(128), D(64) 32 (.973) .972 (.977) .976 (.970) .955 (.971) .963
RNN4.0 BiLSTM(64) 32 (.987) .984 (.987) .985 (.982) .949 (.981) .972
RNN4.1 BiLSTM(64) 100 (.981) .980 (.986) .984 (.979) .960 (.982) .967
RNN4.2 BiLSTM(128) 32 (.986) .983 (.987) .985 (.983) .960 (.981) .976
RNN4.3 BiLSTM(128) 64 (.984) .983 (.987) .984 (.979) .952 (.982) .973
RNN4.4 BiLSTM(128) 100 (.985) .983 (.986) .984 (.983) .960 (.981) .969
RNN4.5 BiLSTM(128) 300 (.983) .982 (.985) .984 (.977) .956 (.980) .968
RNN5.0 BiLSTM(128), D(64) 32 (.980) .983 (.985) .984 (.973) .960 (.979) .965
RNN6.0 BiLSTM(128), D(100), DO(0.3), D(50) 32 (.982) .982 (.982) .985 (.978) .955 (.981) .968
RNN7.0 BiLSTM(128), DO(0.2) 32 (.985) .984 (.988) .988 (.982) .958 (.981) .975
RNN7.1 BiLSTM(128), DO(0.4) 32 (.985) .986 (.986) .986 (.980) .961 (.980) .973
RNN7.2 BiLSTM(256), DO(0.2) 32 (.986) .984 (.987) .985 (.982) .964 (.982) .975
RNN8.0 BiGRU(128) 32 (.984) .984 (.985) .985 (.976) .955 (.982) .968
BERT1 5 epochs 32 (.979) .982 (.979) .965
BERT2 10 epochs 32 (.983) .985 (.983) .972
BERT3 300 epochs 32 (.981) .983 (.985) .973
baseline (ZeroR) .759 .757

Table 17: Classification accuracy obtained on the validation (in parenthesis) and the test set for the second stage
(ternary classification). The best results are printed in bold type. The basic structure of each model includes an
embedding layer and an output layer (dense layer).

