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Abstract

Recent studies on interpretability of attention
distributions have led to notions of faithful and
plausible explanations for a model’s predic-
tions. Attention distributions can be consid-
ered a faithful explanation if a higher atten-
tion weight implies a greater impact on the
model’s prediction. They can be considered a
plausible explanation if they provide a human-
understandable justification for the model’s
predictions. In this work, we first explain why
current attention mechanisms in LSTM based
encoders can neither provide a faithful nor a
plausible explanation of the model’s predic-
tions. We observe that in LSTM based en-
coders the hidden representations at different
time-steps are very similar to each other (high
conicity) and attention weights in these situa-
tions do not carry much meaning because even
a random permutation of the attention weights
does not affect the model’s predictions. Based
on experiments on a wide variety of tasks and
datasets, we observe attention distributions of-
ten attribute the model’s predictions to unim-
portant words such as punctuation and fail to
offer a plausible explanation for the predic-
tions. To make attention mechanisms more
faithful and plausible, we propose a modified
LSTM cell with a diversity-driven training ob-
jective that ensures that the hidden represen-
tations learned at different time steps are di-
verse. We show that the resulting attention
distributions offer more transparency as they
(i) provide a more precise importance rank-
ing of the hidden states (ii) are better indica-
tive of words important for the model’s predic-
tions (iii) correlate better with gradient-based
attribution methods. Human evaluations indi-
cate that the attention distributions learned by
our model offer a plausible explanation of the
model’s predictions. Our code has been made
publicly available at https://github.com/
akashkm99/Interpretable-Attention

1 Introduction

Question 1: What is the best way to improve my spoken
English soon ?
Question 2: How can I improve my English speaking
ability ?
Is paraphrase (Actual & Predicted): Yes
Attention Distribution

Vanilla LSTM How can I improve my
English speaking ability ?

Diversity LSTM How can I improve my
English speaking ability ?

Passage: Sandra went to the garden . Daniel went to the
garden.
Question: Where is Sandra?
Answer (Actual & Predicted): garden
Attention Distribution:

Vanilla LSTM Sandra went to the garden .
Daniel went to the garden

Diversity LSTM Sandra went to the garden .
Daniel went to the garden

Table 1: Samples of Attention distributions from
Vanilla and Diversity LSTM models on the Quora
Question Paraphrase (QQP) & Babi 1 datasets.
.

Attention mechanisms (Bahdanau et al., 2014;
Vaswani et al., 2017) play a very important role
in neural network-based models for various Nat-
ural Language Processing (NLP) tasks. They not
only improve the performance of the model but are
also often used to provide insights into the work-
ing of a model. Recently, there is a growing de-
bate on whether attention mechanisms can offer
transparency to a model or not. For example, Ser-
rano and Smith (2019) and Jain and Wallace (2019)
show that high attention weights need not necessar-
ily correspond to a higher impact on the model’s
predictions and hence they do not provide a faith-
ful explanation for the model’s predictions. On
the other hand, Wiegreffe and Pinter (2019) argues
that there is still a possibility that attention distribu-
tions may provide a plausible explanation for the
predictions. In other words, they might provide

https://github.com/akashkm99/Interpretable-Attention
https://github.com/akashkm99/Interpretable-Attention
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a plausible reconstruction of the model’s decision
making which can be understood by a human even
if it is not faithful to how the model works.

In this work, we begin by analyzing why atten-
tion distributions may not faithfully explain the
model’s predictions. We argue that when the input
representations over which an attention distribu-
tion is being computed are very similar to each
other, the attention weights are not very meaning-
ful. Since the input representations are very similar,
even random permutations of the attention weights
could lead to similar final context vectors. As a
result, the output predictions will not change much
even if the attention weights are permuted. We
show that this is indeed the case for LSTM based
models where the hidden states occupy a narrow
cone in the latent space (i.e., the hidden represen-
tations are very close to each other). We further
observe that for a wide variety of datasets, attention
distributions in these models do not even provide
a good plausible explanation as they pay signifi-
cantly high attention to unimportant tokens such as
punctuations. This is perhaps due to hidden states
capturing a summary of the entire context instead
of being specific to their corresponding words.

Based on these observations, we aim to build
more transparent and explainable models where
the attention distributions provide faithful and plau-
sible explanations for its predictions. One intuitive
way of making the attention distribution more faith-
ful is by ensuring that the hidden representations
over which the distribution is being computed are
very diverse. Therefore, a random permutation of
the attention weights will lead to very different
context vectors. To do so, we propose an orthogo-
nalization technique which ensures that the hidden
states are farther away from each other in their spa-
tial dimensions. We then propose a more flexible
model trained with an additional objective that pro-
motes diversity in the hidden states. Through a
series of experiments using 12 datasets spanning
4 tasks, we show that our model is more transpar-
ent while achieving comparable performance to
models containing vanilla LSTM based encoders.
Specifically, we show that in our proposed mod-
els, attention weights (i) provide useful importance
ranking of hidden states (ii) are better indicative of
words that are important for the model’s prediction
(iii) correlate better with gradient-based feature im-
portance methods and (iv) are sensitive to random
permutations (as should indeed be the case).

We further observe that attention weights in our
models, in addition to adding transparency to the
model, are also more explainable i.e. more human-
understandable. In Table 1, we show samples of at-
tention distributions from a Vanilla LSTM and our
proposed Diversity LSTM model. We observe that
in our models, unimportant tokens such as punctua-
tion marks receive very little attention whereas im-
portant words belonging to relevant part-of-speech
tags receive greater attention (for example, adjec-
tives in the case of sentiment classification). Hu-
man evaluation on the attention from our model
shows that humans prefer the attention weights in
our Diversity LSTM as providing better explana-
tions than Vanilla LSTM in 72.3%, 62.2%, 88.4%,
99.0% of the samples in Yelp, SNLI, Quora Ques-
tion Paraphrase and Babi 1 datasets respectively.

2 Tasks, Dataset and Models

Our first goal is to understand why existing atten-
tion mechanisms with LSTM based encoders fail
to provide faithful or plausible explanations for the
model’s predictions. We experiment on a variety
of datasets spanning different tasks; here, we intro-
duce these datasets and tasks and provide a brief
recap of the standard LSTM+attention model used
for these tasks. We consider the tasks of Binary Text
classification, Natural Language Inference, Para-
phrase Detection, and Question Answering. We
use a total of 12 datasets, most of them being the
same as the ones used in (Jain and Wallace, 2019).
We divide Text classification into Sentiment Analy-
sis and Other Text classification for convenience.

Sentiment Analysis: We use the Stanford Sen-
timent Treebank (SST) (Socher et al., 2013), IMDB
Movie Reviews (Maas et al., 2011), Yelp and Ama-
zon for sentiment analysis. All these datasets use
binary target variable (positive /negative).

Other Text Classification: We use the Twit-
ter ADR (Nikfarjam et al., 2015) dataset with 8K
tweets where the task is to detect if a tweet de-
scribes an adverse drug reaction or not. We use a
subset of the 20 Newsgroups dataset (Jain and Wal-
lace, 2019) to classify news articles into baseball
vs hockey sports categories. From MIMIC ICD9
(Johnson et al., 2016), we use 2 datasets: Anemia,
to determine the type of Anemia (Chronic vs Acute)
a patient is diagnosed with and Diabetes, to predict
whether a patient is diagnosed with Diabetes or not.

Natural Language Inference: We consider the
SNLI dataset (Bowman et al., 2015) for recogniz-
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ing textual entailment within sentence pairs. The
SNLI dataset has three possible classification la-
bels, viz entailment, contradiction and neutral.

Paraphrase Detection: We utilize the Quora
Question Paraphrase (QQP) dataset (part of the
GLUE benchmark (Wang et al., 2018)) with pairs
of questions labeled as paraphrased or not. We split
the training set into 90 : 10 training and validation;
and use the original dev set as our test set.

Question Answering: We made use of all three
QA tasks from the bAbI dataset (Weston et al.,
2015). The tasks consist of answering questions
that would require one, two or three supporting
statements from the context. The answers are a
span in the context. We then use the CNN News
Articles dataset (Hermann et al., 2015) consisting
of 90k articles with an average of three questions
per article along with their corresponding answers.

2.1 LSTM Model with Attention

Of the above tasks, the text classification tasks re-
quire making predictions from a single input se-
quence (of words) whereas the remaining tasks use
pairs of sequences as input. For tasks containing
two input sequences, we encode both the sequences
P = {wp1, . . . , w

p
m} and Q = {wq1, . . . , w

q
n} by

passing their word embedding through a LSTM
encoder (Hochreiter and Schmidhuber, 1997),

hpt = LSTMP (e(w
p
t ),h

p
t−1) ∀t ∈ [1,m],

hqt = LSTMQ(e(w
q
t ),h

q
t−1) ∀t ∈ [1, n],

where e(w) represents the word embedding for the
word w. We attend to the intermediate represen-
tations of P, Hp = {hp1, . . . ,h

p
m} ∈ Rm×d using

the last hidden state hqn ∈ Rd as the query, using
the attention mechanism (Bahdanau et al., 2014),

α̃t = vT tanh(W1h
p
t +W2h

q
n + b) ∀t ∈ [1,m]

αt = softmax(α̃t)

cα =

m∑
t=1

αth
p
t

where W1 ∈ Rd1×d,W2 ∈ Rd1×d,b ∈ Rd1 and
v ∈ Rd1 are learnable parameters. Finally, we use
the attended context vector cα to make a prediction
ŷ = softmax(Wocα).

For tasks with a single input sequence, we use a
single LSTM to encode the sequence, followed by
an attention mechanism (without query) and a final
output projection layer.

3 Analyzing Attention Mechanisms

Here, we first investigate the question - Why Atten-
tion distributions may not provide a faithful expla-
nation for the model’s predictions? We later exam-
ine whether Attention distributions can provide a
plausible explanation for the model’s predictions,
not necessarily faithful.

3.1 Similarity Measures
We begin with defining similarity measures in a vec-
tor space for ease of analysis. We measure the sim-
ilarity between a set of vectors V = {v1, . . . ,vm}
using the conicity measure (Chandrahas et al.,
2018; Sai et al., 2019) by first computing a vec-
tor vi’s ‘alignment to mean’ (ATM),

ATM(vi,V) = cosine(vi,
1

m

m∑
j=1

vj)

Conicity is defined as the mean of ATM for all
vectors vi ∈ V:

conicity(V) =
1

m

m∑
i=1

ATM(vi,V)

A high value of conicity indicates that all the vec-
tors are closely aligned with their mean i.e they lie
in a narrow cone centered at origin.

3.2 Attention Mechanisms
As mentioned earlier, attention mechanisms learn
a weighting distribution over hidden states H =
{h1, . . . ,hn} using a scoring function f such as
(Bahdanau et al., 2014) to obtain an attended con-
text vector cα.

cα =

n∑
t=1

αtht; αt = softmax(f(ht,hquery))

The attended context vector is a convex combi-
nation of the hidden states which means it will
lie within the cone spanned by the hidden states.
When the hidden states are highly similar to each
other (high conicity), even diverse sets of atten-
tion distributions would produce very similar at-
tended context vector cα as they will always lie
within a narrow cone. This could result in outputs
ŷ = softmax(Wocα) with very little difference. In
other words, when there is a higher conicity in hid-
den states, the model could produce the same pre-
diction for several diverse sets of attention weights.
In such cases, one cannot reliably say that high
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Figure 1: Left: high conicity of hidden states results in
similar attended context vectors. Right: low conicity of
hidden states results in very different context vectors

attention weights on certain input components led
the model to its prediction. Later on, in section 5.3,
we show that when using vanilla LSTM encoders
where there is higher conicity in hidden states, even
when we randomly permute the attention weights,
the model output does not change much.

3.3 Conicity of LSTMs Hidden States

We now analyze if the hidden states learned by an
LSTM encoder do actually have high conicity. In
Table 2, we report the average conicity of hidden
states learned by an LSTM encoder for various
tasks and datasets. For reference, we also com-
pute the average conicity obtained by vectors that
are uniformly distributed with respect to direction
(isotropic) in the same hidden space. We observe
that across all the datasets the hidden states are
consistently aligned with each other with conicity
values ranging between 0.43 to 0.77. In contrast,
when there was no dependence between the vec-
tors, the conicity values were much lower with the
vectors even being almost orthogonal to its mean in
several cases (∼ 89◦ in Diabetes Anemia datasets).
The existence of high conicity in the learned hidden
states of an LSTM encoder is one of the potential
reasons why the attention weights in these models
are not always faithful to its predictions (as even
random permutations of the attention weights will
result in similar context vectors, cα).

3.4 Attention by POS Tags

We now examine whether attention distributions
can provide a plausible explanation for the model’s
predictions even if it is not faithful. Intuitively, a
plausible explanation should ignore unimportant
tokens such as punctuation marks and focus on
words relevant for the specific task. To examine
this, we categorize words in the input sentence
by its universal part-of-speech (POS) tag (Petrov
et al., 2011) and cumulate attention given to each
POS tag over the entire test set. Surprisingly, we

Figure 2: Orthogonal LSTM: Hidden state at a timestep
is orthogonal to the mean of previous hidden states

find that in several datasets, a significant amount
of attention is given to punctuations. On the Yelp,
Amazon and QQP datasets, attention mechanisms
pay 28.6%, 34.0% and 23.0% of its total attention
to punctuations. Notably, punctuations only consti-
tute 11.0%, 10.5% and 11.6% of the total tokens in
the respective datasets signifying that learned atten-
tion distributions pay substantially greater attention
to punctuations than even an uniform distribution.
This raises questions on the extent to which atten-
tion distributions provide plausible explanations as
they attribute model’s predictions to tokens that are
linguistically insignificant to the context.

One of the potential reasons why the attention
distributions are misaligned is that the hidden states
might capture a summary of the entire context in-
stead of being specific to their corresponding words
as suggested by the high conicity. We later show
that attention distributions in our models with low
conicity value tend to ignore punctuation marks.

4 Orthogonal and Diversity LSTM

Based on our previous argument that high conicity
of hidden states affect the transparency and explain-
ability of attention models, we propose 2 strategies
to obtain reduced similarity in hidden states.

4.1 Orthogonalization

Here, we explicitly ensure low conicity exists be-
tween hidden states of an LSTM encoder by or-
thogonalizing the hidden state at time t with the
mean of previous states as illustrated in Figure 2.
We use the following set of update equations:

ft = σ(Wfxt +Ufht−1 + bf )

it = σ(Wixt +Uiht−1 + bi)

ot = σ(Woxt +Uoht−1 + bo)

ĉt = tanh(Wcxt +Ucht−1 + bc)

ct = ft � ct−1 + it � ĉt
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ĥt = ot � tanh(ct)

ht =

t−1∑
i=1

hi (1)

ht = ĥt −
ĥTt ht

h
T
t ht

ht (2)

where Wf ,Wi,Wo,Wc ∈ Rd2×d1 , Uf ,Ui,
Uo,Uc ∈ Rd2×d2 , bf ,bi,bo,bc ∈ Rd2 , d1 and
d2 are the input and hidden dimensions respec-
tively. The key difference from a vanilla LSTM is
in the last 2 equations where we subtract the hidden
state vector’s ĥt component along the mean ht of
the previous states.

4.2 Diversity Driven Training
The above model imposes a hard orthogonality con-
straint between the hidden states and the previous
states’ mean. We also propose a more flexible
approach where the model is jointly trained to max-
imize the log-likelihood of the training data and
minimize the conicity of hidden states,

L(θ) = −pmodel(y|P,Q, θ) + λ conicity(HP )

where y is the ground truth class, P and Q are the
input sentences, HP = {hp1, . . . ,h

p
m} ∈ Rm×d

contains all the hidden states of the LSTM, θ is a
collection of the model parameters and pmodel(.)
represents the model’s output probability. λ is a
hyperparameter that controls the weight given to
diversity in hidden states during training.

5 Analysis of the model

We now analyse the proposed models by perform-
ing experiments using the tasks and datasets de-
scribed earlier. Through these experiments we es-
tablish that (i) the proposed models perform compa-
rably to vanilla LSTMs (Sec. 5.2) (ii) the attention
distributions in the proposed models provide a faith-
ful explanation for the model’s predictions (Secs.
5.3 to 5.5) and (iii) the attention distributions are
more explainable and align better with a human’s
interpretation of the model’s prediction (Secs. 5.6,
5.7). Throughout this section we will compare the
following three models:
1. Vanilla LSTM: The model described in section
2.1 which uses the vanilla LSTM.
2. Diversity LSTM: The model described in sec-
tion 2.1 with the vanilla LSTM but trained with the
diversity objective described in section 4.2.
3. Orthogonal LSTM: The model described in

Figure 3: Box plots of fraction of hidden representa-
tions removed for a decision flip. Dataset and models
are mentioned at the top and bottom of figures. Blue
and Yellow indicate the attention and random ranking.

section 2.1 except that the vanilla LSTM is replaced
by the orthogonal LSTM described in section 4.1.

5.1 Implementation Details
For all datasets except bAbi, we either use pre-
trained Glove (Pennington et al., 2014) or fastText
(Mikolov et al., 2018) word embeddings with 300
dimensions. For the bAbi dataset, we learn 50
dimensional word embeddings from scratch during
training. We use a 1-layered LSTM as the encoder
with hidden size of 128 for bAbi and 256 for the
other datasets. For the diversity weight λ, we use a
value of 0.1 for SNLI, 0.2 for CNN, and 0.5 for the
remaining datasets. We use Adam optimizer with
a learning rate of 0.001 and select the best model
based on accuracy on the validation split. All the
subsequent analysis are performed on the test split.

5.2 Empirical evaluation
Our main goal is to show that our proposed models
provide more faithful and plausible explanations
for their predictions. However, before we go there
we need to show that the predictive performance of
our models is comparable to that of a vanilla LSTM
model and significantly better than non-contextual
models. In other words, we show that we do not
compromise on performance to gain transparency
and explainability. We report the performance of
our model on the tasks and datasets described in
section 2. In Table 2, we report the accuracy and
conicity values of vanilla, Diversity and Orthogo-
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Dataset LSTM Diversity LSTM Orthogonal LSTM Random MLP
Accuracy Conicity Accuracy Conicity Accuracy Conicity Conicity Accuracy

Binary Classification
SST 81.79 0.68 79.95 0.20 80.05 0.28 0.25 80.05
IMDB 89.49 0.69 88.54 0.08 88.71 0.18 0.08 88.29
Yelp 95.60 0.53 95.40 0.06 96.00 0.18 0.14 92.85
Amazon 93.73 0.50 92.90 0.05 93.04 0.16 0.13 87.88
Anemia 88.54 0.46 90.09 0.09 90.17 0.12 0.02 88.27
Diabetes 92.31 0.61 91.99 0.08 87.05 0.12 0.02 85.39
20News 93.55 0.77 91.03 0.15 92.15 0.23 0.13 87.68
Tweets 87.02 0.77 87.04 0.24 83.20 0.27 0.24 80.60

Natural Language Inference
SNLI 78.23 0.56 76.96 0.12 76.46 0.27 0.27 75.35

Paraphrase Detection
QQP 78.74 0.59 78.40 0.04 78.61 0.33 0.30 77.78

Question Answering
bAbI 1 99.10 0.56 100.00 0.07 99.90 0.22 0.19 42.00
bAbI 2 40.10 0.48 40.20 0.05 56.10 0.21 0.12 33.20
bAbI 3 47.70 0.43 50.90 0.10 51.20 0.12 0.07 31.60
CNN 63.07 0.45 58.19 0.06 54.30 0.07 0.04 37.40

Table 2: Accuracy and conicity of Vanilla, Diversity and Orthogonal LSTM across different datasets. Accuracy of
a Multilayered Perceptron (MLP) model and conicity of vectors uniformly distributed with respect to direction is
also reported for reference.

Figure 4: Comparison of Median output difference
on randomly permuting the attention weights in the
vanilla, Diversity and Orthogonal LSTM models. The
Dataset names are mentioned at the top of each figure.
Colors indicate the different models as shown legend.

nal LSTMs on different tasks. We observe that the
performance of Diversity LSTM is comparable to
that of vanilla LSTM with accuracy values within
-7.7% to +6.7% (relative) of the vanilla model’s
accuracy. However, there is a substantial decrease
in the conicity values with a drop between 70.6%
to 93.2% when compared to the vanilla model’s
conicity. Similarly, for the Orthogonal LSTM, the
predictive performance is mostly comparable ex-

cept for an increase in accuracy by 39.9% on bAbI
2 and a drop of -13.91% on CNN. Similar to the Di-
versity LSTM, the conicity values are much lower
than in the vanilla model. We also report the per-
formance of a non-contextual model: Multilayer
Perceptron (MLP) + attention in the same table.
We observe that both Diversity LSTM and Orthog-
onal LSTM perform significantly better than the
MLP model, especially in difficult tasks such as
Question Answering with an average relative in-
crease in accuracy of 73.73%. Having established
that the performance of Diversity and Orthogonal
LSTMs is comparable to the vanilla LSTM and
significantly better than a Multilayer Perceptron
model, we now show that these two models give
more faithful explanations for its predictions.

5.3 Importance of Hidden Representation

We examine whether attention weights provide a
useful importance ranking of hidden representa-
tions. We use the intermediate representation era-
sure by Serrano and Smith (2019) to evaluate an
importance ranking over hidden representations.
Specifically, we erase the hidden representations
in the descending order of the importance (highest
to lowest) until the model’s decision changes. In
Figure 3, we report the box plots of the fraction
of hidden representations erased for a decision flip
when following the ranking provided by attention
weights. For reference, we also show the same
plots when a random ranking is followed. In sev-
eral datasets, we observe that a large fraction of the
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representations have to be erased to obtain a deci-
sion flip in the vanilla LSTM model, similar to the
observation by Serrano and Smith (2019). This sug-
gests that the hidden representations in the lower
end of the attention ranking do play a significant
role in the vanilla LSTM model’s decision-making
process. Hence the usefulness of attention ranking
in such models is questionable. In contrast, there is
a much quicker decision flip in our Diversity and
Orthogonal LSTM models. Thus, in our proposed
models, the top elements of the attention ranking
are able to concisely describe the model’s decisions.
This suggests that our attention weights provide a
faithful explanation of the model’s performance (as
higher attention implies higher importance).

In tasks such as paraphrase detection, the model
is naturally required to carefully go through the
entire sentence to make a decision and thereby re-
sulting in delayed decision flips. In the QA task,
the attention ranking in the vanilla LSTM model
itself achieves a quick decision flip. On further in-
spection, we found that this is because these models
tend to attend onto answer words which are usually
a span in the input passage. So, when the repre-
sentations corresponding to the answer words are
erased, the model can no longer accurately predict
the answer resulting in a decision flip.

Following the work by (Jain and Wallace, 2019),
we randomly permute the attention weights and
observe the difference in the model’s output. In
Figure 4, we plot the median of Total Variation
Distance (TVD) between the output distribution
before and after the permutation for different val-
ues of maximum attention in the vanilla, Diversity
and Orthogonal LSTM models. We observe that
randomly permuting the attention weights in the
Diversity and Orthogonal LSTM model results in
significantly different outputs. However, there is
little change in the vanilla LSTM model’s output
for several datasets suggesting that the attention
weights are not so meaningful. The sensitivity of
our attention weights to random permutations again
suggests that they provide a more faithful expla-
nation for the model’s predictions whereas similar
outputs raises several questions about the reliability
of attention weights in the vanilla LSTM model.

5.4 Comparison with Rationales

For tasks with a single input sentence, we analyze
how much attention is given to words in the sen-
tence that are important for the prediction. Specifi-

Dataset Vanilla LSTM Diversity LSTM
Rationale
Attention

Rationale
Length

Rationale
Attention

Rationale
Length

SST 0.348 0.240 0.624 0.175
IMDB 0.472 0.217 0.761 0.169
Yelp 0.438 0.173 0.574 0.160
Amazon 0.346 0.162 0.396 0.240
Anemia 0.611 0.192 0.739 0.237
Diabetes 0.742 0.458 0.825 0.354
20News 0.627 0.215 0.884 0.173
Tweets 0.284 0.225 0.764 0.306

Table 3: Mean Attention given to the generated ratio-
nales with their mean lengths (in fraction)

cally, we select a minimum subset of words in the
input sentence with which the model can accurately
make predictions. We then compute the total atten-
tion that is paid to these words. These set of words,
also known as rationales, are obtained from an ex-
tractive rationale generator (Lei et al., 2016) that is
trained using the REINFORCE algorithm (Sutton
et al., 1999) to maximize the following reward:

R = pmodel(y|Z)− α||Z||

where y is the ground truth class, Z is the extracted
rationale, ||Z|| represents the length of the ratio-
nale, pmodel(.) represents the classification model’s
output probability, α is a hyperparameter that pe-
nalizes long rationales. With a fixed α, we trained
generators to extract rationales from the vanilla and
Diversity LSTM models. We observed that the
accuracy of predictions made from the extracted
rationales was within 5% of the accuracy made
from the entire sentences. In Table 3, we report
the mean length (in fraction) of the rationales and
the mean attention given to them in the vanilla and
Diversity LSTM models. In general, we observe
that the Diversity LSTM model provides much
higher attention to rationales which are even often
shorter than the vanilla LSTM model’s rationales.
On average, the Diversity LSTM model provides
53.52 % (relative) more attention to rationales than
the vanilla LSTM across the 8 Text classification
datasets. Thus, the attention weights in the Diver-
sity LSTM are able to better indicate words that
are important for making predictions.

5.5 Comparison with attribution methods

We now examine how well our attention weights
agree with attribution methods such as gradients
and integrated gradients (Sundararajan et al., 2017).
For every input word, we compute these attribu-
tions and normalize them to obtain a distribution
over the input words. We then compute the Pearson
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Pearson Correlation ↑ JS Divergence ↓

Dataset
Gradients

(Mean ± Std.)
Integrated Gradients

(Mean ± Std.)
Gradients

(Mean ± Std.)
Integrated Gradients

(Mean ± Std.)
Vanilla Diversity Vanilla Diversity Vanilla Diversity Vanilla Diversity

Text Classification
SST 0.71 ± 0.21 0.83 ± 0.19 0.62 ± 0.24 0.79 ± 0.22 0.10 ± 0.04 0.08 ± 0.05 0.12 ± 0.05 0.09 ± 0.05
IMDB 0.80 ± 0.07 0.89 ± 0.04 0.68 ± 0.09 0.78 ± 0.07 0.09 ± 0.02 0.09 ± 0.01 0.13 ± 0.02 0.13 ± 0.02
Yelp 0.55 ± 0.16 0.79 ± 0.12 0.40 ± 0.19 0.79 ± 0.14 0.15 ± 0.04 0.13 ± 0.04 0.19 ± 0.05 0.19 ± 0.05
Amazon 0.43 ± 0.19 0.77 ± 0.14 0.43 ± 0.19 0.77 ± 0.14 0.17 ± 0.04 0.12 ± 0.04 0.21 ± 0.06 0.12 ± 0.04
Anemia 0.63 ± 0.12 0.72 ± 0.10 0.43 ± 0.15 0.66 ± 0.11 0.20 ± 0.04 0.19 ± 0.03 0.34 ± 0.05 0.23 ± 0.04
Diabetes 0.65 ± 0.15 0.76 ± 0.13 0.55 ± 0.14 0.69 ± 0.18 0.26 ± 0.05 0.20 ± 0.04 0.36 ± 0.04 0.24 ± 0.06
20News 0.72 ± 0.28 0.96 ± 0.08 0.65 ± 0.32 0.67 ± 0.11 0.15 ± 0.07 0.06 ± 0.04 0.21 ± 0.06 0.07 ± 0.05
Tweets 0.65 ± 0.24 0.80 ± 0.21 0.56 ± 0.25 0.74 ± 0.22 0.08 ± 0.03 0.12 ± 0.07 0.08 ± 0.04 0.15 ± 0.06

Natural Language Inference
SNLI 0.58 ± 0.33 0.51 ± 0.35 0.38 ± 0.40 0.26 ± 0.39 0.11 ± 0.07 0.10 ± 0.06 0.16 ± 0.09 0.13 ± 0.06

Paraphrase Detection
QQP 0.19 ± 0.34 0.58 ± 0.31 -0.06 ± 0.34 0.21 ± 0.36 0.15 ± 0.08 0.10 ± 0.05 0.19 ± 0.10 0.15 ± 0.06

Question Answering
Babi 1 0.56 ± 0.34 0.91 ± 0.10 0.33 ± 0.37 0.91 ± 0.10 0.33 ± 0.12 0.21 ± 0.08 0.43 ± 0.13 0.24 ± 0.08
Babi 2 0.16 ± 0.23 0.70 ± 0.13 0.05 ± 0.22 0.75 ± 0.10 0.53 ± 0.09 0.23 ± 0.06 0.58 ± 0.09 0.19 ± 0.05
Babi 3 0.39 ± 0.24 0.67 ± 0.19 -0.01 ± 0.08 0.47 ± 0.25 0.46 ± 0.08 0.37 ± 0.07 0.64 ± 0.05 0.41 ± 0.08
CNN 0.58 ± 0.25 0.75 ± 0.20 0.45 ± 0.28 0.66 ± 0.23 0.22 ± 0.07 0.17 ± 0.08 0.30 ± 0.10 0.21 ± 0.10

Table 4: Mean and standard deviation of Pearson correlation and Jensen–Shannon divergence between Attention
weights and Gradients/Integrated Gradients in Vanilla and Diversity LSTM models

correlation and JS divergence between the attribu-
tion distribution and the attention distribution. We
note that Kendall τ as used by (Jain and Wallace,
2019) often results in misleading correlations be-
cause the ranking at the tail end of the distributions
contributes to a significant noise. In Table 4, we re-
port the mean and standard deviation of these Pear-
son correlations and JS divergence in the vanilla
and Diversity LSTMs across different datasets. We
observe that attention weights in Diversity LSTM
better agree with gradients with an average (rela-
tive) 64.84% increase in Pearson correlation and
an average (relative) 17.18% decrease in JS diver-
gence over the vanilla LSTM across the datasets.
Similar trends follow for Integrated Gradients.

5.6 Analysis by POS tags

Figure 5 shows the distribution of attention given to
different POS tags across different datasets. We ob-
serve that the attention given to punctuation marks
is significantly reduced from 28.6%, 34.0% and
23.0% in the vanilla LSTM to 3.1%, 13.8% and
3.4% in the Diversity LSTM on the Yelp, Amazon
and QQP datasets respectively. In the sentiment
classification task, Diversity LSTM pays greater
attention to the adjectives, which usually play a
crucial role in deciding the polarity of a sentence.
Across the four sentiment analysis datasets, Di-
versity LSTM gives an average of 49.27 % (rela-
tive) more attention to adjectives than the vanilla
LSTM. Similarly, for the other text classification
tasks where nouns play an important role, we ob-
serve higher attention to nouns.

Figure 5: Distribution of cumulative attention given to
different part-of-speech tags in the test dataset. Blue
and Orange indicate the vanilla and Diversity LSTMs.

Dataset Overall Completness Correctness
Vanilla/Divers. Vanilla/Divers. Vanilla/Divers.

Yelp 27.7% / 72.3% 35.1% / 64.9% 10.5% / 89.5%
SNLI 37.8% / 62.2% 32.3% / 67.7% 38.9% / 61.1%
QQP 11.6% / 88.4% 11.8% / 88.2% 7.9% / 92.1%
bAbI 1 1.0% / 99.0% 4.2% / 95.8% 1.0% / 99.0%

Table 5: Percentage preference given to Vanilla vs Di-
versity model by human annotators based on 3 criteria
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5.7 Human Evaluations

We conducted human evaluations to compare the
extent to which attention distributions from the
vanilla and Diversity LSTMs provide plausible ex-
planations. We randomly sampled 200 data points
each from the test sets of Yelp, SNLI, QQP, and
bAbI1. Annotators were shown the input sentence,
the attention heatmaps, and predictions made by
the vanilla and Diversity LSTMs and were asked to
choose the attention heatmap that better explained
the model’s prediction on 3 criteria 1) Overall -
which heatmap is better in explaining the predic-
tion overall 2) Completeness - which heatmap high-
lights all the words necessary for the prediction. 3)
Correctness - which heatmap only highlights the
important words and not unnecessary words. An-
notators were given the choice to skip a sample
in case they were unable to make a clear decision.
A total of 15 in-house annotators participated in
the human evaluation study. The annotators were
Computer Science graduates competent in English.
We had 3 annotators for each sample and the fi-
nal decision was taken based on majority voting.
In Table 5, we report the percentage preference
given to the vanilla and Diversity LSTM models
on the Yelp, SNLI, QQP, and bAbI 1 datasets; the
attention distributions from Diversity LSTM sig-
nificantly outperforms the attention from vanilla
LSTM across all the datasets and criteria.

6 Related work

Our work in many ways can be seen as a contin-
uation to the recent studies (Serrano and Smith,
2019; Jain and Wallace, 2019; Wiegreffe and Pinter,
2019) on the subject of interpretability of attention.
Several other works (Shao et al., 2019; Martins
and Astudillo, 2016; Malaviya et al., 2018; Nicu-
lae and Blondel, 2017; Maruf et al., 2019; Peters
et al., 2018) focus on improving the interpretabil-
ity of attention distributions by inducing sparsity.
However, the extent to which sparse attention distri-
butions actually offer faithful and plausible expla-
nations haven’t been studied in detail. Few works
(Bao et al., 2018) map attention distributions to
human annotated rationales. Our work on the other
hand does not require any additional supervision.
Work by (Guo et al., 2019) focus on developing
interpretable LSTMs specifically for multivariate
time series analysis. Several other works (Clark
et al., 2019; Vig and Belinkov, 2019; Tenney et al.,
2019; Michel et al., 2019; Jawahar et al., 2019; Tsai

et al., 2019) analyze attention distributions and
attention heads learned by transformer language
models. The idea of orthogonalizing representa-
tions in an LSTM have been used by (Nema et al.,
2017) but they use a different diversity model in
the context of improving performance of Natural
Language Generation models

7 Conclusion & Future work

In this work, we have analyzed why existing at-
tention distributions can neither provide a faithful
nor a plausible explanation for the model’s pre-
dictions. We showed that hidden representations
learned by LSTM encoders tend to be highly simi-
lar across different timesteps, thereby affecting the
interpretability of attention weights. We proposed
two techniques to effectively overcome this short-
coming and showed that attention distributions in
the resulting models provide more faithful and plau-
sible explanations. As future work, we would like
to extend our analysis and proposed techniques to
more complex models and downstream tasks.
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