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Abstract

End-to-end speech translation poses a heavy
burden on the encoder because it has to tran-
scribe, understand, and learn cross-lingual se-
mantics simultaneously. To obtain a power-
ful encoder, traditional methods pre-train it on
ASR data to capture speech features. How-
ever, we argue that pre-training the encoder
only through simple speech recognition is not
enough, and high-level linguistic knowledge
should be considered. Inspired by this, we pro-
pose a curriculum pre-training method that in-
cludes an elementary course for transcription
learning and two advanced courses for under-
standing the utterance and mapping words in
two languages. The difficulty of these courses
is gradually increasing. Experiments show that
our curriculum pre-training method leads to
significant improvements on En-De and En-Fr
speech translation benchmarks.

1 Introduction

Speech-to-Text translation (ST) is essential to
breaking the language barrier for communication.
It aims to translate a segment of source language
speech to the target language text. To perform
this task, prior works either employ a cascaded
method, where an automatic speech recognition
(ASR) model and a machine translation (MT) mod-
el are chained together, or an end-to-end approach,
where a single model converts the source language
audio sequence to the target language text sequence
directly (Berard et al., 2016).

Due to the alleviation of error propagation and
lower latency, the end-to-end ST model has been
a hot topic in recent years. However, large paired
data of source audios and target sentences are re-
quired to train such a model, which is not easy to
satisfy for most language pairs. To address this
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(a) previous encoder pre-training

(b) curriculum encoder pre-training

Figure 1: Comparison between previous encoder
pre-training method with our curriculum pre-training
method.

issue, previous works resort to pre-training tech-
nique (Berard et al., 2018; Bansal et al., 2019),
where they leverage the available ASR and MT
data to pre-train an ASR model and an MT mod-
el respectively, and then initialize the ST model
with the ASR encoder and the MT decoder. This
strategy can bring faster convergence and better
results.

The end-to-end ST encoder has three essential
roles: transcribe the speech, extract the syntactic
and semantic knowledge of the source sentence and
then map it to a semantic space, based on which
the decoder can generate the correct target sen-
tence. These pose a heavy burden to the encoder,
which can be alleviated by pre-training. Howev-
er, we argue that the current pre-training method
restricts the power of pre-trained representations.
The encoder pre-trained on the ASR task mainly
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focuses on transcription, which learns the align-
ment between the acoustic feature with phonemes
or words. It cannot capture linguistic knowledge
or understand the semantics, which is essential for
translation.

In order to teach the model to understand the
sentence and incorporate the required knowledge,
extra courses should be taken before learning trans-
lation. Motivated by this, we propose a curriculum
pre-training method for end-to-end ST. As shown
in Figure 1, we first teach the model transcrip-
tion through ASR task. After that, we design two
tasks, named frame-based masked language model
(FMLM) task and frame-based bilingual lexicon
translation (FBLT) task, to enable the encoder to
understand the meaning of a sentence and map
words in different languages. Finally, we fine-tune
the model on ST data to obtain the translation
ability.

For the FMLM task, we mask several segments
of the input speech feature, each of which corre-
sponds to a complete word. Then we let the en-
coder predict the masked word. This task aims to
force the encoder to recognize the content of the
utterance and understand the inner meaning of the
sentence. In FBLT, for each speech segment that
aligns with a complete word, whether or not it is
masked, we ask the encoder to predict the corre-
sponding target word. In this task, we give the
model more explicit and strong cross-lingual train-
ing signals. Thus, the encoder has the ability to
perform simple word translation, and the burden
on the ST decoder is largely reduced. Besides, we
adopt a hierarchical manner where different layers
are guided to perform different tasks (first 8 lay-
ers for ASR and FMLM pre-training, and another
4 layers for FBLT pre-training). This is mainly
because the three pre-training tasks have different
requirements for language understanding and dif-
ferent output spaces. The hierarchical pre-training
method can make the division of labor more clear
and separate the incorporation of source semantic
knowledge and cross-lingual alignments.

We conduct experiments on the LibriSpeech En-
Fr and IWSLT18 En-De speech translation tasks,
demonstrating the effectiveness of our pre-training
method. The contributions of our paper are as
follows: (1) We propose a novel curriculum pre-
training method with three courses: transcription,
understanding and mapping, forcing the encoder
to have the ability to generate necessary features

for the decoder. (2) We propose two new tasks to
learn linguistic features, FMLM and FBLT, which
explicitly teach the encoder to do source language
understanding and target language meaning map-
ping. (3) Experiments show that both the proposed
courses are helpful for speech translation, and our
proposed curriculum pre-training leads to signifi-
cant improvements.

2 Related Work

2.1 Speech Translation

Early work on speech translation used a cascade
of an ASR model and an MT model (Ney, 1999;
Matusov et al., 2005; Mathias and Byrne, 2006),
which makes the MT model access to ASR errors.
Recent successes of end-to-end models in the MT
field (Bahdanau et al., 2015; Luong et al., 2015;
Vaswani et al., 2017) and the ASR fields (Chan
et al., 2016; Chiu et al., 2018) inspired the research
on end-to-end speech-to-text translation system,
which avoids error propagation and high latency
issues.

In this research line, Berard et al. (2016) give
the first proof of the potential for an end-to-end
ST model. After that, pre-training, multitask learn-
ing, attention-passing and knowledge distillation
have been applied to improve the ST performance
(Anastasopoulos et al., 2016; Duong et al., 2016;
Berard et al., 2018; Weiss et al., 2017; Bansal et al.,
2018, 2019; Sperber et al., 2019; Liu et al., 2019;
Jia et al., 2019). However, none of them attempt
to guide the encoder to learn linguistic knowledge
explicitly. Recently, Wang et al. (2019b) propose
to stack an ASR encoder and an MT encoder as a
new ST encoder, which incorporates acoustic and
linguistic knowledge respectively. However, the
gap between these two encoders is hard to bridge
by simply concatenating the encoders. Kano et al.
(2017) propose structured-based curriculum learn-
ing for English-Japanese speech translation, where
they use a new decoder to replace the ASR de-
coder and to learn the output from the MT decoder
(fast track) or encoder (slow track). They formalize
learning strategies from easier networks to more
difficult network structures. In contrast, we focus
on curriculum learning in pre-training and increase
the difficulty of pre-training tasks.

2.2 Curriculum Learning

Curriculum learning is a learning paradigm that
starts from simple patterns and gradually increases
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Figure 2: Proposed curriculum pre-training process. LFMLM only predicts the mask word, while LFBLT predicts
all words in the target language.

to more complex patterns. This idea is inspired by
the human learning process and is first applied in
the context of machine learning by Bengio et al.
(2009). The study shows that this training approach
results in better generalization and speeds up the
convergence. Its effectiveness has been verified in
multiple tasks, including shape recognition (Ben-
gio et al., 2009), object classification (Gong et al.,
2016), question answering (Graves et al., 2017),
etc. However, most studies focus on how to control
the difficulty of the training samples and organize
the order of the learning data in the context of
single-task learning.

Our method differs from previous works in t-
wo ways: (1) We leverage the idea of curriculum
learning for pre-training. (2) We do not train the
model on the ST task directly with more and more
difficult training examples or use more and more
complicated structures. Instead, we design a se-
ries of tasks with increased difficulty to teach the
encoder to incorporate diverse knowledge.

3 Method

3.1 Overview

The overview of our training process is shown
in Figure 2. It can be divided into three steps:
First, we train the model towards the ASR objec-
tive LASR to learn transcription. We note this as
the elementary course. Next, we design two ad-
vanced courses (tasks) to teach the model under-
standing a sentence and mapping words in two
languages, named Frame-based Masked Language
Model (FMLM) task and Frame-based Bilingual

Lexicon Translation (FBLT) task. In the FMLM
task, we mask some speech segments and ask the
encoder to predict the masked words. In the FBLT
task, we ask the encoder to predict the target word
for each speech segment which corresponds to a
complete source word. In this stage, the encoder is
updated by LADV . We adopt a hierarchical train-
ing manner where N encoder blocks are used to
perform ASR and FMLM tasks as they both require
outputs in source word space, and Ne blocks are
used in the FBLT task. After the two-phases pre-
training, the encoder is finally combined with a new
decoder or a pre-trained MT decoder to perform
the ST task towards LST .

Problem Formulation The speech translation
corpus usually contains speech-transcription-
translation triples, denoted as S = {(x,ys,yt)}.
Specially, x = (x1, · · · , xTx) is a sequence of
acoustic features which are extracted from the
speech signals. ys = (ys1, · · · , ysTs

) and yt =
(yt1, · · · , ytTt

) represent the corresponding tran-
scription in source language and the translation
in target language respectively. To pre-train the
encoder, an extra ASR dataset A = {(x,ys)}
can be leveraged . Finally, the data for encoder
pre-training is denoted as {(x,ys)|(x,ys) ∈ A ∨
(x,ys,yt) ∈ S}

After the encoder is pre-trained, we fine-tune the
model using only S , to enable it generate yt from x
directly. The model is updated using cross-entropy
loss LST = − logP (yt|x).

Model Architecture In this work, we adopt the
architecture of Transformer as in (Karita et al.,
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2019). The encoder is a stack of two 3×3 2D CNN
layers with stride 2 and Ne Transformer encoder
blocks. The CNN layers result in downsampling
by a factor of 4. The decoder is a stack of Nd

Transformer decoder blocks.

3.2 Elementary Course: Transcription

In the elementary course, we train an end-to-end
ASR model, which has similar architecture as the
ST model. The ASR encoder consists of N blocks,
and these blocks are used to initialize the bottom
N blocks of the ST encoder. For the ASR task,
we follow Karita et al. (2019), to employ a multi-
task learning strategy, that is, both the E2E decoder
and a CTC module predict the source sentence.
Offline experiments indicate that the CTC objective
is crucial for attentional encoder-decoder based
ASR models. The final objective combines the
CTC loss Lctc and the cross-entropy loss LCE :

LASR = αLCTC + (1− α)LCE

= −α logPctc(y
s|x)− (1− α) logPs2s(y

s|x)
(1)

In this work, we set α to 0.3. The CTC loss
works on the encoder output and it pushes the
encoder to learn frame-wise alignment between
speech with words.

3.3 Advanced Courses: Understanding and
Word Mapping

With the ability of transcription, we further propose
two new tasks for the advanced courses.

3.3.1 Frame-based Masked Language Model
The design of the Frame-based Masked Language
Model task is inspired by the Masked Language
Model (MLM) objective of BERT (Devlin et al.,
2019) and semantic mask for ASR task (Wang
et al., 2019a). This task enables the encoder to un-
derstand the inner meaning of a segment of speech.

As shown in Figure 2, we first perform force-
alignment between the speech and the transcrip-
t sentence to determine where in time particular
words occur in the speech segment. For each word
ysi , we obtain its corresponding start position si and
the end position ei in the sequence x according to
force alignment results. At each training iteration,
we randomly sample some percentage of the words
in the ys and denote the selected word set as ỹs.
Next, for each selected token ysj in ỹs, we mask
the corresponding speech piece [xsj : xej ]. The
masked utterance is denoted as x̃ and used as input

to the encoder:

h = Enc(x̃) (2)

After that, for a masked piece [xsj : xej ], we
average the corresponding output hidden states
[hb

sj
4
c : hd

ej
4
e]

1, and compute the distribution prob-
ability over source words as shown in follows:

h̃j = mean([hb sj
4
c : hd

ej
4
e]) (3)

p(ysj |x̃) = softmax(h̃j ·W ) (4)

In practice, the sentence is represented in BPE
tokens and W ∈ Rdmodel×|Vs|, where |Vs| is the
size of source vocabulary. In this way, a speech
piece can be aligned with one or more tokens. We
compute KL-Divergence loss as:

LFMLM = −
∑
ysj∈ỹs

∑
q(ysj )log

p(ysj |x̃)
q(ysj )

(5)

q(ysi ) ∈ R|Vs| is a distribution over all BPE tokens
in source vocabulary Vs and defined as:

q(ysj )(pos) =

{
1/nj , Vs[pos] ∈ ysj
0, otherwise.

(6)

where pos represents the dimension index and nj is
the total number of BPE tokens contained in word
ysj .

In this work, we use a mask ratio of 15% fol-
lowing BERT and the masked speech piece is filled
with the mean value of the whole utterance fol-
lowing Park et al. (2019). Because FMLM focuses
on the understanding of source language, we com-
putes its loss at the N -th layer of encoder (same
with ASR loss), in the hope that the bottom N
layers are only concerned with source language.

3.3.2 Frame-based Bilingual Lexicon
Translation

Aside from predicting masked source words, we
go further to leverage cross-lingual information.
Specifically, for each segment of speech features
[xsi : xei ] which aligned with a source word ysi ,
we assume we can obtain its target counterpart ỹti .
Similar to FMLM, we average the output hidden
states from position b si4 c to d ei4 e, and then compute
the distribution probability over target vocabulary.
The alignment between speech segments and target

1The position indexs are divided by 4 due to downsam-
pling.
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words is a many-to-many correspondence, so there
are cases where ỹti contains nothing or contains
multiple foreign words. For the former case, we
set the loss to zero, and for the latter case, we also
compute KL-Divergence loss as:

LFBLT = −
∑
ỹti

∑
q(ỹti)log

p(ỹti |x̃)
q(ỹti)

(7)

The definition of q(ỹti) is the length normalized
distribution over all tokens appear in ỹti . Note that
the loss is computed on every speech segments,
whether or not it is masked.

The only question remaining is how to obtain
ỹti for each speech segment. Since there are two
types of data for pre-training, (x,ys,yt) ∈ S and
(x,ys) ∈ A, we use two methods to get the align-
ment:

For training examples (x,ys,yt) ∈ S, we use
reference-supervised method. In particular, we
simply run Moses2 scripts to establish word align-
ments. It begins from running of GIZA++3 to get
source-to-target and target-to-source alignments,
and then runs a heuristic grow-diag-final algorithm
to get the final results, which means ∀ysi ∈ ys, we
choose one word from its translation sentence as
the corresponding word ∃ỹti ∈ yt s.t. ỹti ∼ ys.

For training examples (x,ys) ∈ A, we
apply dictionary-supervised method. Through
the above alignment process, we can calcu-
late a bilingual lexical translation table T with
{(ys,yt)|(x,ys,yt) ∈ S}, which estimates the
translation probability between a source word
ws
i and a target word wt

j , denoted as T =
(ws

i , w
t
j , p(w

s
i , w

t
j)). After that, we compute

a ỹti for each ysi in ys according to ỹti =
argmaxws

j
p(ysi , w

s
j ).

We compute the LFBLT at the top layer of the
encoder, indicating that the top Ne −N layers are
duty on bilingual word mapping. The final training
objective in the advanced course combines FMLM
and FBLT losses

LADV = LFMLM + LFBLT (8)

4 Experiments

4.1 Data and Preprocess
We conduct experiments on two publicly available
speech translation datasets: the LibriSpeech En-Fr

2http://www.statmt.org/moses
3https://github.com/moses-smt/giza-pp

Corpus (Kocabiyikoglu et al., 2018) and the IWSLT
En-De Corpus (Niehues et al., 2018).

LibriSpeech En-Fr: This corpus is a subset of
the LibriSpeech ASR corpus (Panayotov et al.,
2015) and aligned with French e-books, which
contains 236 hours of speech in total. Following
previous works, we use the 100 hours clean train-
ing set and double the ST size by concatenating the
aligned references with the provided Google Trans-
late references, resulting in 90k training instances.
We validate on the dev set and report results on the
test set (2048 utterances).

IWSLT En-De: The corpus contains 271 hours
of data, with English wave, English transcription,
and German translation in each example. We fol-
low Inaguma et al. (2019) to remove utterances of
low alignment quality, resulting in 137k utterances.
We sample 2k segments from the ST-TED corpus
as dev set and tst2013 is used as the test set (993
utterances).

Data Preprocessing: We run ESPnet4 (Watan-
abe et al., 2018) recipes to perform data pre-
processing. For both tasks, our acoustic features are
80-dimensional log-Mel filterbanks stacked with
3-dimensional pitch features extracted with a step
size of 10ms and window size of 25ms. The fea-
tures are normalized by the mean and the standard
deviation for each training set. Utterances of more
than 3000 frames are discarded. We perform speed
perturbation with factors 0.9 and 1.1. The align-
ment results between speech and transcriptions are
obtained by Montreal Forced Aligner (McAuliffe
et al., 2017).

For references pre-processing, we tokenize and
lowercase all the text with the Moses scripts. For
pre-training tasks, the vocabulary is generated us-
ing sentencepiece (Kudo and Richardson, 2018)
with a fixed size of 5k tokens for all languages,
and the punctuation is removed. For ST task, we
normalize the punctuation using Moses and use
the character-level vocabulary due to its better per-
formance (Berard et al., 2018). Since there is no
human-annotated segmentation provided in the I-
WSLT tst2013, we use two methods to segment the
audios: 1) Following ESPnet, we segment each au-
dio with the LIUM SpkDiarization tool (Meignier
and Merlin, 2010). For evaluation, the hypothe-
ses and references are aligned using the MWER
method with RWTH toolkit (Bender et al., 2004).

4https://github.com/espnet/espnet

http://www.statmt.org/moses
https://github.com/moses-smt/giza-pp
https://github.com/espnet/espnet
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2) We perform sentence-level force-alignment be-
tween audio and transcription using aeneas5 tool
and segment the audio according to alignment re-
sults.

4.2 Baselines
Experiments are conducted in two settings: base
setting and expanded setting. In base setting,
only the corpus described in Section 4.1 is used
for each task. In the expanded setting, additional
ASR and/or MT data can be used. All results are
reported on case-insensitive BLEU with the multi-
bleu.perl script unless noted.

4.2.1 End-to-End ST Baselines
We mainly compare our method with the conven-
tional encoder pre-training method which uses only
the ASR task to pre-train the encoder. Besides, we
also compare with the results of the other works in
the literature by copying their numbers.

LibriSpeech: In the context of base setting, Be-
rard et al. (2018) and ESPnet have reported result-
s on a LSTM-based ST model with pre-training
and/or multi-task learning strategy. Liu et al.
(2019) use a Transformer ST model and knowl-
edge distillation method. Wang et al. (2019b) stack
an ASR encoder and an MT encoder for final ST
task, named as TCEN. Regarding the expanded
setting, Bahar et al. (2019) apply the SpecAugment
on ST task. They use the total 236h of speech for
ASR pre-training. Inaguma et al. (2019) combine
three ST datasets of 472h training data 6 to train
a multilingual ST model. In our work, we use the
LibriSpeech ASR corpus as additional pre-training
data, including 960h of speech. As the dev and
test set of LibriSpeech ST task are extracted from
the 960h corpus, we exclude all training utterances
with the same speaker that appear in dev or test
sets .

IWSLT: Since previous works use different seg-
mentation methods and BLEU-score scripts, it is
unfair to copy their numbers. In our work, we
choose the ESPnet results as base setting baseline,
the multilingual model and TCEN-LSTM model
as expanded baselines. Inaguma et al. (2019) use
the same multilingual model as described in Lib-
riSpeech baselines. And Wang et al. (2019b) use an
additional 272h TEDLIUM2(Rousseau et al., 2014)

5https://www.readbeyond.it/aeneas
6LibriSpeech En-Fr, IWSLT En-De and Fisher-CallHome

Es-En

ASR corpus and 41M parallel data from WMT18
and WIT37. All of them use ESPnet code, LI-
UM segmentaion method and multi-bleu.perl scrip-
t. We follow Wang et al. (2019b) to use another
272h ASR data for encoder pre-training and a sub-
set of WMT188 for decoder pre-training. We use
the same processing method for MT data, result-
ing in 4M parallel sentences in total. We also re-
implement the CL-fast track of Kano et al. (2017)
using our model architecture and data as another
baseline.

4.2.2 Cacased Baselines
For LibriSpeech ST task, we use results of Berard
et al. (2018), Inaguma et al. (2019) and Liu et al.
(2019) as base cascaded baselines. The first two
use LSTM models for ASR and MT. While the last
work trains Transformer ASR and MT models. We
build an expanded cascaded system with the pre-
trained Transformer ASR model and a LSTM MT
model with the default setting in ESPnet recipe.
For IWSLT ST task, we use Inaguma et al. (2019)
as base cascaded baseline, which is based on LSTM
architecture. And we implement a Transformer-
based baseline using our pre-trained ASR and MT
models in the expanded setting.

4.3 Implementation Details

All our models are implemented based on ESPnet.
We set the model dimension dmodel to 256, the
head number H to 4, the feed forward layer size
dff to 2048. For LibriSpeech expanded setting,
dmodel = 512 and H = 8. For all the ST models,
we set the number of encoder blocks Ne = 12 and
the number of decoder blocks Nd = 6. Unless
noted, we use N = 8 encoder blocks to perform
the ASR and the FMLM pre-training tasks. For MT
model used in IWSLT expanded setting, we use the
Transformer architecture in Vaswani et al. (2017)
with Ne = 6, Nd = 6, H = 4, dmodel = 256.

We train the model with 4 Tesla P40 GPUs and
batch size is set to 64 per GPU. The pre-training
takes 50 and 20 epochs for each phase and the
final ST task takes another 50 epochs (a total of
120 epochs). We use the Adam optimizer with
warmup steps 25000 in each phase. The learning
rate decays proportionally to the inverse square
root of the step number after 25000 steps. We

7https://wit3.fbk.eu/mt.php?release=
2017-01-trnted

8Europarl v7, Common Crawl, News Comentary v13 and
Rapid corpus of EU press releases.

https://www.readbeyond.it/aeneas
https://wit3.fbk.eu/mt.php?release=2017-01-trnted
https://wit3.fbk.eu/mt.php?release=2017-01-trnted
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Method Enc pre-train Dec pre-train BLEU
MT(Berard et al., 2018)* - - 19.3
MT(Inaguma et al., 2019) - - 18.3
base setting
LSTM ST (Berard et al., 2018)* 12.9

+pre-train+multitask (Berard et al., 2018)* X X 13.4
LSTM ST+pre-train (ESPnet) X X 16.68
Transformer+pre-train (Liu et al., 2019) X X 14.30

+knowledge distillation(Liu et al., 2019) 17.02
TCEN-LSTM (Wang et al., 2019b) X X 17.05
Transformer+ASR pre-train X 15.97
Transformer+curriculum pre-train X 17.66
expanded setting
LSTM+pre-train+SpecAugment(Bahar et al., 2019) X(236h) X 17.0
Multilingual ST+pre-train (Inaguma et al., 2019) X(472h) 17.6
Transformer+ASR pre-train X(960h) 16.90
Transformer+curriculum pre-train X(960h) 18.01

Table 1: Comparison on LibriSpeech En-Fr test set. The size of ASR data for base setting is 100h unless labeled.
Since inputs of the MT models are ground-truth text, the results of MT models can be seen as the upper-bound of
ST models. *: Unknown BLEU score script.

save checkpoints every epoch and average the last
5 checkpoints as the final model. To avoid over-
fitting, SpecAugment strategy (Park et al., 2019) is
used in ASR pre-training with frequency masking
(F = 30, mF = 2) and time masking (T = 40, mT=2).
The decoding process uses a beam size of 10 and a
length penalty of 0.2.

4.4 Experimental Results

4.4.1 Comparison with End-to-End Baselines
LibriSpeech En-Fr: The results on LibriSpeech
En-Fr test set are listed in Table 1. In base set-
ting, our method improves the “Transformer+ASR
pre-train” baseline by 1.7 BLEU and beats all the
previous works, even though we do not pre-train the
decoder. It indicates that through a well-designed
learning process, the encoder has a strong potential
to incorporate large amount of knowledge. Our
method beats a knowledge distillation baseline,
where an MT model is utilized to teach the ST
model. The reason, we believe, is that our method
gives the model more training signals and makes it
easier to learn. We also outperform a TCEN base-
line which includes two encoders. Compared to
them, our method is more flexible and incorporates
all information into a single encoder, which avoids
the representation gap between the two encoders.

As the ASR data size increases, the model per-
forms better. In the expanded setting, we find the
FBLT task performs poorly compared with the base
setting. This is because the target word prediction
task is dictionary-supervised in expanded setting
rather than reference-supervised as in base setting.
However, our method still outperforms the simple

pre-training method by a large margin. Besides, it
is surprising to find that the end-to-end ST model
is approaching the performance of an MT model,
which is the upper bound of the ST model since it
accepts golden source sentence without any ASR
errors. This further verifies the effectiveness of our
method.
IWSLT En-De: The results on IWSLT tst2013
are listed in Table 2, showing a similar trend as in
LibriSpeech dataset. We find that the segmentation
methods have a big influence on the final result-
s. In the base setting, our method can improve
the ASR pre-training baseline by 0.9 to 2.2 BLEU
scores, depending on the segmentation methods.
In the expanded setting, we find when combined
with decoder pre-train, the performance is further
improved and beats other expanded baselines.

4.4.2 Comparison with Cascaded Baselines

Table 3 shows comparison with cascaded ST sys-
tems. For the base setting of two tasks, our end-to-
end model can achieve comparable or better results
with cascaded methods. This shows the end-to-
end model has powerful learning capabilities and
combines the functions of two models. In the Lib-
riSpeech expanded setting, when more ASR data
is available, we also obtain a competitive perfor-
mance. This indicates our method can make a good
use of ASR corpus and learn valuable linguistic
knowledge other than simple acoustic information.
However, when additional MT data is used, there is
still a gap between the end-to-end method and the
cascaded method. How to utilize bilingual parallel
sentences to improve the E2E ST model is worth
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Method Enc pre-train Dec pre-train segment method
(speech data) (text data) LIUM aeneas

base setting
ESPnet 12.50 -

+enc pre-train X 13.12 -
+enc dec pre-train X X 13.54 -

Transformer+ASR pre-train X 15.35 17.10
Transformer+curriculum pre-train X 16.27 19.29
expanded setting
Multilingual ST+pre-train(Inaguma et al., 2019) X(472h) 14.6 -
TCEN-LSTM (Wang et al., 2019b) X(479h) X(40M) 17.65 -
CL-fast(Kano et al., 2017)(re-implemented) X(479h) 14.33 16.23
Transformer+curriculum pre-train+dec pre-train X(479h) X(4M) 18.15 20.35

Table 2: ST results on IWSLT En-De tst2013 set.

Method BLEU
LibriSpeech base setting
LSTM ASR+ MT(Berard et al., 2018) 14.6
LSTM ASR+ MT(Inaguma et al., 2019) 15.8
Transformer ASR + MT(Liu et al., 2019) 17.85
Ours E2E Transformer ST 17.66
LibriSpeech expanded setting
Transformer ASR+LSTM MT* 18.05
Ours E2E Transformer ST 18.01
IWSLT base setting
LSTM ASR+ MT(Inaguma et al., 2019) 14.0
Ours E2E Transformer ST 16.27
IWSLT expanded setting
Transformer ASR+Transformer ST 22.16
Ours E2E Transformer ST 18.15

Table 3: Comparison with cascaded ST. *:we find the
LSTM model outperforms Transformer model in our
setting since the training data is scarce.

further studying.

4.5 Analysis and Discussion

Ablation Study To better understand the contri-
bution of each component, we perform an ablation
study on LibriSpeech expanded setting. The results
are shown in Table 4. On the one hand, we show
that both of our proposed pre-training tasks are
beneficial: In “-FMLM task” and “-FBLT task”9,
we perform single-task pre-training for advanced
course. The performance drops when we remove
either one of them. On the other hand, we show
the two-phases pre-training paradigm is necessary:
The “- phase 2” experiment degenerates to the sim-
ple ASR pre-training baseline. In “-phase 1” set-
ting, we find that without the ASR pre-training,
the training accuracy on FMLM task and FBLT
task drops a lot, which further affects the ST per-
formance. This means the ASR task is necessary
for both the advanced courses and ST. In “Multi3”

9we use 12-layer encoder for ASR and FMLM pre-training
for a fair comparison.

Method BLEU
Our method 18.01

-FMLM task 17.62
-FBLT task 17.65
-phase 2 16.90
-phase 1 14.26

Multi3 14.82

Table 4: Ablation study on LibriSpeech expanded set-
ting. ‘-’ indicates removing the task or phase from our
method.

setting, we pre-train the model on ASR, FMLM
and FBLT tasks in one phase. In this setting, we
observe multi-task learning also decrease individ-
ual task performances (ASR, FMLM and FBLT)
compared to curriculum learning. One reasonable
expanation is that it is hard to train on the FMLM
and FBLT tasks which takes masked input from
randomly initialized parameters, which also leads
to performance degradation on the ST task.
Hyper-parameter N During pre-training, which
layer conducts ASR pre-training and FMLM loss is
an important hyper-parameter. We conduct exper-
iments on LibriSpeech base setting to explore the
influence of different choices. We keep Ne = 12
unchanged and always use the top layer to perform
the FBLT task. Then we alter the hyperparameter
N . We find if N = 6, the model finds it dif-
ficult to converge during ST training. That may
be because the distance between the decoder and
the bottom 6 encoder layers is too far so that the
valuable source linguistic knowledge can not be
well utilized. Moreover, the model performs un-
desirable if the choice is 10 or 12, which results
in 16.47 and 16.14 BLEU score respectively, since
the number of blocks for FBLT task is not enough.
The model achieves the best performance when we
choose N = 8. Thus, we use this strategy in our
main experiments.
Unlabeled Speech Data In this work, we also ex-
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plore how to utilize the unlabeled speech data in
pre-training, but only get negative results. We con-
duct exploratory experiments on the LibriSpeech
ST task. Assume that the (x,ys) from 100h ST
corpus as labeled pre-training data and (x) from
960h LibriSpeech ASR corpus as unlabeled data.
Following Jiang et al. (2019), we design an unsu-
pervised pre-training task for elementary course,
in which we randomly mask 15% of fbank fea-
tures and let the bottom 4 encoder layers predict
the masked part. We compute the L1 loss between
the prediction and groundtruth filterbanks. How-
ever, we find that this method is not helpful for the
final ST task, which results in 16.85 BLEU score,
lower than our base setting model (without extra
data pre-training). It is still an open question about
how to use unlabeled speech data.

5 Conclusion and Future Work

This paper investigates the end-to-end method for
ST. We propose a curriculum pre-training method,
consisting of an elementary course with an AS-
R loss, and two advanced courses with a frame-
based masked language model loss and a bilin-
gual lexicon translation loss, in order to teach the
model syntactic and semantic knowledge in the
pre-training stage. Empirical studies have demon-
strated that our model significantly outperforms
baselines. In the future, we will explore how to
leverage unlabeled speech data and large bilingual
text data to further improve the performance. Be-
sides, we expect the idea of curriculum pre-training
can be adopted on other NLP tasks.
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