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Abstract

Aspect-based sentiment analysis (ABSA) in-
volves three subtasks, i.e., aspect term extrac-
tion, opinion term extraction, and aspect-level
sentiment classification. Most existing studies
focused on one of these subtasks only. Several
recent researches made successful attempts to
solve the complete ABSA problem with a uni-
fied framework. However, the interactive re-
lations among three subtasks are still under-
exploited. We argue that such relations en-
code collaborative signals between different
subtasks. For example, when the opinion term
is “delicious”, the aspect term must be “food”
rather than “place”. In order to fully ex-
ploit these relations, we propose a Relation-
Aware Collaborative Learning (RACL) frame-
work which allows the subtasks to work co-
ordinately via the multi-task learning and re-
lation propagation mechanisms in a stacked
multi-layer network. Extensive experiments
on three real-world datasets demonstrate that
RACL significantly outperforms the state-of-
the-art methods for the complete ABSA task.

1 Introduction
Aspect-based sentiment analysis (ABSA) is a fine-
grained task which aims to summarize the opin-
ions of users towards specific aspects in a sentence.
ABSA normally involves three subtasks, namely
aspect term extraction (AE), opinion term extrac-
tion (OE), and aspect-level sentiment classifica-
tion (SC). For example, given a review “The place
is small and cramped but the food is delicious.”,
AE aims to extract a set of aspect terms {“place”,
“food”}. OE aims to extract a set of opinion terms
{“small”, “cramped”, “delicious”}. Meanwhile, it
is expected for SC to assign a sentiment polarity
“negative” and “positive” to the aspect “place” and
“food”, respectively.
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Figure 1: Interactive relations among subtasks in
ABSA (left), and a list of abbreviations (right).

Most existing works treat ABSA as a two-step
task containing AE and SC. They develop one sepa-
rate method for each subtask (Tang et al., 2016; Xu
et al., 2018; Li et al., 2018a; Hu et al., 2019), or take
OE as an auxiliary task of AE (Wang et al., 2017; Li
et al., 2018b). In order to perform ABSA for prac-
tical use, the separate methods need to be pipelined
together. Recently, several studies attempt to solve
ABSA in a unified framework (Wang et al., 2018a;
Li et al., 2019; He et al., 2019; Luo et al., 2019).

Despite their effectiveness, we argue that these
methods are not sufficient to yield satisfactory per-
formance for the complete ABSA task. The key
reason is that the interactive relations among differ-
ent subtasks have been largely neglected in existing
studies. These relations convey collaborative sig-
nals which can enhance the subtasks in a mutual
way. For example, the opinion term “delicious”
can serve as the evidence of the aspect term “food”,
and vice versa. In the following, we first analyze
the interactive relations among different subtasks,
and then present our RACL framework which is
developed to exploit these relations. The detailed
relations are summarized in Figure 1 (left), where
each arrow⇔ denotes one specific relation Ri.

• R1 indicates the dyadic relation between AE
and OE. In practice, the aspect terms must be
the targets of opinion, indicating that most as-
pect terms like “place” can only be modified by
corresponding opinion terms like “small” and
“cramped” rather than a term like “delicious”.
Hence AE and OE might hold informative clues
to each other.
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Table 1: Comparison of different methods by their ca-
pability in utilizing interactive relations.

Interactive Relations R1 R2 R3 R4

Separate/
Auxiliary

Wang et al. (2017) 3 7 7 7
Xu et al. (2018) 7 7 7 7
Li et al. (2018b) 3 7 7 7
Hu et al. (2019) 7 7 7 7

Unified

Wang et al. (2018a) 7 7 7 7
Li et al. (2019) 7 7 7 7

Luo et al. (2019) 7 7 7 3
He et al. (2019) 7 7 3 3

Ours 3 3 3 3

• R2 indicates the triadic relation between SC
and R1. One critical problem in SC is to de-
termine the dependency between the aspect and
its context. For example, the context “small and
cramped” plays an important role in predicting
the polarity of “place”. Such a dependency is
highly in accordance with R1 which emphasizes
the interaction between the aspect and opinion
terms. Hence SC and R1 can help refine the
selection process for each other.
• R3 indicates the dyadic relation between SC and

OE. The specific opinion terms generally convey
specific polarities. For example, “fantastic” is of-
ten positive. The opinion terms extracted in OE
should be paid more attention when predicting
the sentiment polarity in SC.
• R4 indicates the dyadic relation between SC

and AE. In the complete ABSA task, the aspect
terms are unknown and SC will assign a polarity
to every word. The aspect terms, e.g., “place”
and “food”, will have their corresponding polar-
ities, while other words are considered as the
background ones without sentiment. That is to
say, the results from AE should be helpful in
supervising the training of SC.
When reviewing the literature on the ABSA task,

we find that existing separate methods either do not
utilize any relations, or only utilize R1 by treating
OE as an auxiliary task of AE. Meanwhile, the uni-
fied methods at most explicitly utilize R3 and R4.
In view of this, we propose a novel Relation-Aware
Collaborative Learning (RACL) framework to fully
exploit the interactive relations in the complete
ABSA task. We compare our model with existing
methods by their capability in utilizing interactive
relations in Table 1.

RACL is a multi-layer multi-task learning frame-
work with a relation propagation mechanism to
mutually enhance the performance of subtasks.
For multi-task learning, RACL adopts the shared-
private scheme (Collobert and Weston, 2008; Liu
et al., 2017). Subtasks AE, OE, and SC first jointly

train the low-level shared features, and then they
train their high-level private features independently.
In this way, the shared and private features can em-
bed the task-invariant and task-oriented knowledge
respectively. For relation propagation, RACL im-
proves the model capacity by exchanging informa-
tive clues among three subtasks. Moreover, RACL
can be stacked to multiple layers to perform col-
laborative learning at different semantic levels. We
conduct extensive experiments on three datasets.
Results demonstrate that RACL significantly out-
performs the state-of-the-art methods for both the
single subtasks and the complete ABSA task.

2 Related Work
Aspect-based sentiment analysis (ABSA) is first
proposed by Hu and Liu (2004) and has been
widely studied in recent years (Zhang et al., 2018).
We organize existing studies by how the subtasks
are performed and combined to perform ABSA.
Separate Methods Most existing studies treat
ABSA as a two-step task containing aspect term
extraction (AE) and aspect-based sentiment clas-
sification (SC), and develop separate methods for
AE (Popescu and Etzioni, 2005; Wu et al., 2009; Li
et al., 2010; Qiu et al., 2011; Liu et al., 2012; Chen
et al., 2014; Chernyshevich, 2014; Toh and Wang,
2014; Vicente et al., 2015; Liu et al., 2015, 2016;
Yin et al., 2016; Wang et al., 2016; Li and Lam,
2017; Clercq et al., 2017; He et al., 2017; Xu et al.,
2018; Yu et al., 2019), and SC (Jiang et al., 2011;
Mohammad et al., 2013; Kiritchenko et al., 2014;
Dong et al., 2014; Vo and Zhang, 2015; Ma et al.,
2017; Wang et al., 2018b; Zhu and Qian, 2018;
Chen and Qian, 2019; Zhu et al., 2019), respec-
tively. Some of them resort to the auxiliary task
opinion term extraction (OE) and exploit their rela-
tion for boosting the performance of AE. For the
complete ABSA task, results from two steps must
be merged together in a pipeline manner. In this
way, the relation between AE/OE and SC is totally
neglected, and the errors from the upstream AE/OE
will be propagated to the downstream SC. The over-
all performance of ABSA task is not promising for
pipeline methods.
Unified Methods Recently, several studies attempt
to solve ABSA task in a unified framework. The
unified methods fall into two types: collapsed tag-
ging (Mitchell et al., 2013; Zhang et al., 2015;
Wang et al., 2018a; Li et al., 2019) and joint train-
ing (He et al., 2019; Luo et al., 2019). The former
combines the labels of AE and SC to construct
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collapsed labels like {B-senti, I-senti, O}. The sub-
tasks need to share all trainable features without
distinction, which is likely to confuse the learning
process. Moreover, the relations among subtasks
cannot be explicitly modeled for this type of meth-
ods. Meanwhile, the latter constructs a multi-task
learning framework where each subtask has inde-
pendent labels and can have shared and private fea-
tures. This allows the interactive relations among
different subtasks to be modeled explicitly for the
joint training methods. However, none of existing
studies along this line has fully exploited the power
of such relations.

We differentiate our work from aforementioned
methods in that we propose a unified framework
which exploits all dyadic and triadic relations
among subtasks to enhance the learning capability.

3 Methodology
3.1 Task Definition
Given a sentence Se = {w1, ..., wi, ..., wn}, we
formulate subtasks AE, OE, and SC as three se-
quence labeling problems.
• AE aims to predict a tag sequence Y A =
{yA1 , ..., yAi , ..., yAn } for aspect extraction, where
yAi ∈ {B, I,O} denotes the beginning of, inside
of, and outside of an aspect term.
• OE aims to predict a tag sequence Y O =
{yO1 , ..., yOi , ..., yOn } for opinion extraction,
where yOi ∈ {B, I,O} denotes the beginning
of, inside of, and outside of an opinion term.
• SC aims to predict a tag sequence Y S =
{yS1 , ..., ySi , ..., ySn} for sentiment classification,
where ySi ∈ {pos, neu, neg} denotes the posi-
tive, neutral, and negative sentiment polarities
towards each word.

3.2 Model Architecture
Our proposed RACL is a unified multi-task learn-
ing framework which enables propagating the in-
teractive relations (denoted as the same R1..R4 as
those in Figure 1) for improving the ABSA perfor-
mance, and it can be stacked to multiple layers to
interact subtasks at different semantic levels. We
present the overall architecture of RACL in Fig-
ure 2(a) and details of a single layer in Figure 2(b).

In particular, a single RACL layer contains three
modules: AE, OE, and SC, where each module
is designed for the corresponding subtask. These
modules receive a shared representation of the in-
put sentence, then encode their task-oriented fea-
tures. After that, they propagate relations R1..R4

for collaborative learning by exchanging informa-
tive clues to further enhance the task-oriented fea-
tures. Finally, three modules will make predictions
for the corresponding tag sequences Y A, Y O, and
Y S based on the enhanced features.

In the following, we first illustrate the relation-
aware collaborative learning in one layer, then show
the stacking and the training of the entire RACL.

3.3 Relation-Aware Collaborative Learning
Input Word Vectors Given a sentence Se, we
can map the word sequence in Se with either pre-
trained word embeddings (e.g., GloVe) or pre-
trained language encoders (e.g., BERT) to generate
a sequence of word vectors E={e1, ..., ei, ...,en} ∈
Rdw×n, where dw is the dimension of word vectors.
We will examine the effects of these two types of
word vectors in the experiments.
Multi-task Learning with Shared-Private
Scheme To perform multi-task learning, different
subtasks should focus on the different characteris-
tics of a shared training sample. Inspired by the
shared-private scheme (Collobert and Weston,
2008; Liu et al., 2017), we extract both the shared
and private features to embed task-invariant and
task-oriented knowledge for the AE, OE, and SC
modules.

To encode the shared task-invariant features, we
simply feed each ei in E into a fully-connected
layer and generate a transformed vector hi∈ Rdh .
We then obtain a sequence of shared vectors
H={h1, ..., hi, ...,hn} ∈ Rdh×n for each sentence
which will be jointly trained by all subtasks.

Upon the shared task-invariant features H, the
AE, OE, and SC modules will encode the task-
oriented private features for the corresponding sub-
tasks. We choose a simple CNN as the encoder
function F due to its high computation efficiency.

For subtasks AE and OE, the key features for
determining the existence of aspect and opinion
terms are the representations of the original and
adjacent words. Therefore, we construct two en-
coders to extract local AE-oriented features XA and
OE-oriented features XO:

FA : H→ XA,XA ∈ Rdc×n,

FO : H→ XO,XO ∈ Rdc×n
(1)

For subtask SC, the process of feature genera-
tion is different from that in AE/OE. In order to
determine the sentiment polarity towards an aspect
term, we need to extract related semantic informa-
tion from its context. The critical problem in SC
is to determine the dependency between an aspect
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Figure 2: The proposed RACL framework.

term and its context. Moreover, in the complete
ABSA task, the aspect terms are unknown in SC
and it needs to assign a polarity to every word in
Se. Based on these observations, we first encode
the contextual features Xctx from H:

F ctx : H→ Xctx,Xctx ∈ Rdh×n (2)

Then we treat the shared vector hi as the query as-
pect and compute the semantic relation between the
query and contextual features using the attention
mechanism:

ds
(i 6=j)
i,j = ((hi)

T × Xctx
j ) · [log2(2 + |i− j|)]−1,

Mctx
i,j =

exp(dsi,j)∑n
k=1 exp(dsi,k)

,
(3)

where ds(i 6=j)
i,j denotes the dependency strength be-

tween the i-th query word and the j-th context
word, and Mctx

i,j is the normalized attention weight

of ds(i 6=j)
i,j . We add a coefficient [log2(2+|i−j|)]−1

based on the absolute distance between two words.
The rationale is that the adjacent context words
should contribute more to the sentiment polarity.
Finally, for the aspect query wi, we can obtain the
global SC-oriented features XS

i by a weighted sum
of all contextual features (except the one for wi):

XS
i =

n∑
j=1

(Mctx
i,j · Xctx

j ) (4)

Propagating Relations for Collaborative Learn-
ing After encoding task-oriented features, we prop-
agate the interactive relations (R1..R4) among sub-
tasks to mutually enhance the AE, OE, and SC
modules.

(1) R1 is the dyadic relation between AE and
OE, which indicates that AE and OE might hold
informative clues to each other. In order to model
R1, we want the AE-oriented features XA and the
OE-oriented features XO to exchange useful infor-
mation based on their semantic relations. Take the
subtask AE as an example, the semantic relation

between the word in AE and that in OE is defined
as follows:

sr
(i6=j)
i,j = (XA

i )
T × XO

j ,

MO2A
i,j =

exp(sri,j)∑n
k=1 exp(sri,k)

(5)

For the word wi in AE, we can obtain the useful
clues XO2A

i from OE by applying a weighted sum
of semantic relations to all words in OE (except the
word wi itself), i.e.,

XO2A
i =

∑n

j=1
(MO2A

i,j · XO
j ) (6)

We then concatenate the original AE-oriented fea-
tures XA and the useful clues XO2A from OE as
the final features for AE, and feed them into a fully-
connected layer to predict the tags of aspect terms:

Y A = softmax(WA(XA ⊕ XO2A)), (7)

where WA∈ R3×2dc is a transformation matrix,
YA∈ R3×n is the predicted tag sequence of AE.

For subtask OE, we use the transposed matrix
of sr(i 6=j)

i,j in Eq. 5 to compute the corresponding
MA2O. In this way, the semantic relation between
AE and OE will be consistent without regard to
the direction. Then we can obtain the useful clues
XA2O from AE and generate the predicted tag se-
quence Y O∈ R3×n in a similar way, i.e.,

Y O = softmax(WO(XO ⊕ XA2O)) (8)

Additionally, each wi cannot be an aspect term and
an opinion term at the same time, so we add a
regularization hinge loss to constrain Y A and Y O:

LR =
∑n

i=1
max(0, PyA

i ∈{B,I}+PyO
i ∈{B,I}−1.0), (9)

where P denotes the probability under the given
conditions.

(2) R2 is the triadic relation between SC and R1.
Remember that the dependency between the aspect
term and its context is critical for subtask SC, and
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we have already calculated this dependency using
the normalized attention weight Mctx. Hence we
can model R2 by propagating R1 to Mctx. We use
MO2A as the representative of R1, and add it on
Mctx to denote the influence from R1 to SC. More
formally, we define R2 as the following operation:

Mctx
i,j ← Mctx

i,j + MO2A
i,j (10)

Actually, MO2A characterizes the dependency be-
tween aspect terms and contexts in the view of term
extraction while Mctx characterizes it in the view
of sentiment classification. The dual-view relation
R2 can help refine the selection processes for both
extraction and classification subtasks.

(3) R3 is the dyadic relation between SC and OE,
which indicates that the extracted opinion terms
should be paid more attention when predicting the
sentiment polarity. In order to model R3, similarly
to the method for R2, we update Mctx in SC using
the generated tag sequence Y O from OE:

Mctx
i,j ← Mctx

i,j + PyO
j ∈{B,I} · [log2(2 + |i− j|)]−1 (11)

By doing this, the opinion terms can get larger
weights in the attention mechanism. Consequently,
they will contribute more to the prediction of the
sentiment polarity.

After getting the interacted values for Mctx, we
can recompute the SC-oriented features XS in Eq.4
accordingly. Then we concatenate H and XS as
the final features for SC and feed them into a fully-
connected layer to predict sentiment polarities for
the candidate aspect terms:

Y S = softmax(WS(H⊕ XS)), (12)

where WS ∈ R3×2dh is a transformation matrix,
Y S∈ R3×n is the predicted tag sequence of SC.

(4) R4 is the dyadic relation between SC and AE,
which indicates that the results from AE are helpful
in supervising the training of SC. Clearly, only
aspect terms have sentiment polarities. Although
SC needs to assign a polarity to every word, we
know the ground truth aspect terms in AE during
the training process. Therefore, we directly use
the ground truth tag sequence Ŷ A of AE to refine
the labeling process in SC. Specifically, only the
predicted tags towards true aspect terms would be
counted in the training procedure:

yS
i ← I(ŷA

i ) · yS
i , (13)

where I(ŷAi ) equals to 1 if wi is an aspect term and
to 0 if not. Notice that this approach is only used
in the training procedure.

3.4 Stacking RACL to Multiple Layers
When using one single RACL layer, AE, OE, and
SC modules only extract corresponding features
in a relatively low linguistic level, which may be
insufficient to serve as the evidence to label each
word. Hence we stack RACL to multiple layers
to obtain high-level semantic features for subtasks,
which helps to conduct deep collaborative learning.

Specifically, we first encode features Xctx(1),
XA(1)⊕XO2A(1), and XO(1)⊕XA2O(1) in layer(1).
Then in layer(2), we input these features for SC,
AE, and OE to generate Xctx(2), XA(2), and XO(2).
In this way, we can stack RACL to L layers. We
then conduct average pooling on results from all
layers to obtain the final prediction:

Y T = avg([Y T (1), Y T (2), ..., Y T (L)]), (14)

where T ∈ {A,O, S} denotes the specific subtask,
and L is the number of layers. This shortcut-like
architecture can enforce the features in the low lay-
ers to be meaningful and informative, which in turn
helps the high layers to make better predictions.

3.5 Training Procedure
After generating the tag sequences Y A, Y O, and
Y S for the sentence Se, we compute the cross-
entropy loss of each subtask:

LT = −
∑n

i=1

∑J

j=1
ŷT
ij · log(y

T
ij), (15)

where T∈ {A,O, S} denotes the subtask, n is the
length of Se, J is the category of labels, yTi and ŷTi
are the predicted tags and ground truth labels.

The final loss L of RACL is the combination of
the loss for subtasks and the loss for regularization,
i.e., L =

∑
LT + λ · LR, where λ is a coefficient.

We then train all parameters with back propagation.

4 Experiments
4.1 Datasets and Settings

Datasets We evaluate RACL on three real-world
ABSA datasets from SemEval 2014 (Pontiki et al.,
2014) and 2015 (Pontiki et al., 2015), which in-
clude reviews from two domains: restaurant and
laptop. Original datasets only have ground truth la-
bels for aspect terms and corresponding sentiment
polarities, while labels for opinion terms are an-
notated by two previous works (Wang et al., 2016,
2017). All datasets have a fixed training/test split.
We further randomly sample 20% training data as
the development set to tune hyper-parameters, and
only use the remaining 80% for training. The statis-
tics for datasets are summarized in Table 2.
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Table 2: The statistics of datasets.
Datasets Type Sentence Aspect Opinion

Restaurant14 train 3044 3699 3484
test 800 1134 1008

Laptop14 train 3048 2373 2504
test 800 654 674

Restaurant15 train 1315 1199 1210
test 685 542 510

Settings We examine RACL with two types of
word vectors: the pre-trained word embedding
and pre-trained language encoder. In the word
embedding implementation, we follow the pre-
vious studies (Xu et al., 2018; He et al., 2019;
Luo et al., 2019) and use two types of embed-
dings, i.e., general-purpose and domain-specific
embeddings. The former is from GloVe vectors
with 840B tokens (Pennington et al., 2014), and
the latter is trained on a large domain-specific
corpus using fastText and published by Xu et al.
(2018). Two types of embeddings are concatenated
as the word vectors. In the language encoder im-
plementation, we follow Hu et al. (2019) by using
the BERTLarge (Devlin et al., 2019) as the back-
bone and fine-tuning it during the training process.
We denote these two implementations as RACL-
GloVe and RACL-BERT 1.

For RACL-GloVe, we set the dimension dw=400,
dh=400, dc=256 and the coefficient λ=1e-5. Other
hyper-parameters are tuned on the development set.
The kernel size K of CNN and the layer number
L is set to {3,3,5} and {4,3,4} for three datasets,
respectively. We train the model for fixed epochs
using Adam optimizer (Kingma and Ba, 2015) with
learning rate 1e-4 and batch size 8. For RACL-
BERT, we set dw to 1024 and learning rate to 1e-5
for fine-tuning BERT, and other hyper-parameters
are directly inherited from RACL-GloVe.

We use four metrics for evaluation, i.e., AE-F1,
OE-F1, SC-F1, and ABSA-F1. The first three de-
note the F1-score of each subtask, while the last
one measures the overall performance for complete
ABSA 2. To compute ABSA-F1, the result for an
aspect term would be considered as correct only
when both AE and SC results are correct. The
model achieving the minimum loss on the develop-
ment set is used for evaluation on the test set.

1Our code and data are available at https://github.com/
NLPWM-WHU/RACL.

2Following He et al. (2019), if an aspect term contains mul-
tiple words, we use the predicted sentiment of the first word as
the SC result. Moreover, aspect terms with conflict sentiment
labels are ignored when computing SC-F1 and ABSA-F1. The
same goes for all baseline methods.

Baselines To demonstrate the effectiveness of
RACL for the complete ABSA task, we compare
it with the following pipeline and unified baselines.
The hyper-parameters for baselines are set to the
optimal values as reported in their papers.
• {CMLA, DECNN}+ {TNet, TCap}: CMLA

(Wang et al., 2017) and DECNN (Xu et al.,
2018) are the state-of-the-art methods for AE,
while TNet (Li et al., 2018a) and T(rans)Cap
(Chen and Qian, 2019) are the top-performing
methods for SC. We then construct four pipeline
baselines through combination.
• MNN (Wang et al., 2018a): is a unified method

utilizing the collapsed tagging scheme for AE
and SC.
• E2E-ABSA (Li et al., 2019): is a unified method

using the collapsed tagging scheme for AE and
SC, and it introduces the auxiliary OE task with-
out explicit interaction.
• DOER (Luo et al., 2019): is a multi-task unified

method which jointly trains AE and SC, and it
explicitly models the relation R4.
• IMN-D (He et al., 2019): is a unified method

involving joint training for AE and SC with sep-
arate labels. The OE task is fused into AE to
construct five-class labels. It explicitly models
relations R3 and R4

3.
• SPAN-BERT (Hu et al., 2019): is a pipeline

method using BERTLarge as the backbone. A
multi-target extractor is used for AE, then a po-
larity classifier is used for SC.
• IMN-BERT: is an extension of the best unified

baseline IMN-D with BERTLarge. By doing this,
we wish to conduct convincing comparisons for
the BERT-style methods. The input dimension
and learning rate of IMN-BERT are the same as
our RACL-BERT, and other hyper-parameters
are inherited from IMN-D .

4.2 Comparison Results
The comparison results for all methods are shown
in Table 3. The methods are divided into three
groups: M1∼M4 are GloVe-based pipeline meth-
ods, M5∼M9 are GloVe-based unified methods,
and M10∼M12 are BERT-based methods.

Firstly, among all GloVe-based methods
(M1∼M9), we can observe that RACL-GloVe con-
sistently outperforms all baselines in terms of

3For a fair comparison, we remove the auxiliary document-
level datasets in TransCap and IMN-D, and only use the same
aspect-level datasets as ours.

https://github.com/NLPWM-WHU/RACL
https://github.com/NLPWM-WHU/RACL
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Table 3: Comparison of different methods. We separate the GloVe-based (M1∼M9) and BERT-based (M10∼M12)
methods for a fair comparison. The best scores are in bold, and second best ones are underlined. Results of M5,
M6 and M8 are taken from He et al. (2019), while other results are the average scores of 5 runs with random
initialization. “-” denotes that the method does not contain the subtask OE.

Model Restaurant14 (Res14) Laptop14 (Lap14) Restaurant15 (Res15)
AE-F1 OE-F1 SC-F1 ABSA-F1 AE-F1 OE-F1 SC-F1 ABSA-F1 AE-F1 OE-F1 SC-F1 ABSA-F1

M1 CMLA+TNet 81.91 83.84 69.69 64.49 77.49 76.06 68.30 55.94 67.73 70.56 62.27 55.00
M2 CMLA+TCap 81.91 83.84 71.32 65.68 77.49 76.06 69.49 56.30 67.73 70.56 63.32 55.47
M3 DECNN+TNet 82.79 - 70.45 65.80 79.38 - 68.69 57.39 68.52 - 62.41 55.69
M4 DECNN+TCap 82.79 - 71.77 66.84 79.38 - 69.61 57.71 68.52 - 63.60 56.22
M5 MNN 83.05 84.55 68.45 63.87 76.94 77.77 65.98 53.80 70.24 69.38 57.90 56.57
M6 E2E-TBSA 83.92 84.97 68.38 66.60 77.34 76.62 68.24 55.88 69.40 71.43 58.81 57.38
M7 DOER 84.63 - 64.50 68.55 80.21 - 60.18 56.71 67.47 - 36.76 50.31
M8 IMN-D 84.01 85.64 71.90 68.32 78.46 78.14 69.92 57.66 69.80 72.11 60.65 57.91
M9 RACL-GloVe 85.37 85.32 74.46 70.67 81.99 79.76 71.09 60.63 72.82 78.06 68.69 60.31
M10 SPAN-BERT 86.71 - 71.75 73.68 82.34 - 62.50 61.25 74.63 - 50.28 62.29
M11 IMN-BERT 84.06 85.10 75.67 70.72 77.55 81.00 75.56 61.73 69.90 73.29 70.10 60.22
M12 RACL-BERT 86.38 87.18 81.61 75.42 81.79 79.72 73.91 63.40 73.99 76.00 74.91 66.05

the overall metric ABSA-F1, and achieves 2.12%,
2.92%, and 2.40% absolute gains over the strongest
baselines on three datasets. The results prove that
jointly training all subtasks and comprehensively
modeling the interactive relations are critical for
improving the performance of the complete ABSA
task. Moreover, RACL-GloVe also achieves the
best or second best results on all subtasks. This
further demonstrates that the learning process of
each subtask can be enhanced by the collaborative
learning. Another observation from M1∼M9 is
that the unified methods (M5∼M9) perform better
than the pipeline ones (M1∼M4).

Secondly, among the GloVe-based unified meth-
ods, RACL-GloVe, IMN-D, and DOER perform
better than MNN and E2E-TBSA in general. This
can be due to the fact that the former three methods
explicitly model interactive relations among sub-
tasks while the latter two do not. We notice that
DOER gets a poor SC-F1 score. The reason might
be that it utilizes an auxiliary sentiment lexicon to
enhance the words with “positive” and “negative”
sentiment. It is hard for DOER to handle words
with “neutral” sentiment and this results in a low
SC-F1 score.

Thirdly, the BERT-based methods (M10∼M12)
achieve a better performance than GloVe-based
methods by utilizing the large-scale external knowl-
edge encoded in the pre-trained BERTLarge back-
bone. Specifically, SPAN-BERT is a strong base-
line in subtask AE by reducing the search space
with a multi-target extractor. However, its perfor-
mance on SC drops a lot because it cannot cap-
ture the dependency between the extracted aspect
terms in AE and the opinion terms in SC without
interactions among subtasks. IMN-BERT achieves

relatively high scores on OE and SC, but its perfor-
mance on AE is the worst among three without the
guidance from the relations R1 and R2. In con-
trast, RACL-BERT gets significantly better overall
scores than SPAN-BERT and IMN-BERT on all
three datasets. This again shows the superiority of
our RACL framework for the complete ABSA task
by using all interactive relations.

5 Analysis
5.1 Ablation Study
To investigate the effects of different relations on
RACL -GloVe/-BERT, we conduct the following
ablation study. We sequentially remove each inter-
active relation and obtain four simplified variants.

As expected, all simplified variants in Table 4
have a performance decrease of ABSA-F1. The
results clearly demonstrate the effectiveness of the
proposed relations. Moreover, we find that the rela-
tions play more important roles on small datasets
than on large ones. The reason might be that it is
hard to train a complicated model on small datasets,
and the relations can absorb external knowledge
from other subtasks.
Table 4: Ablation study. ↓ denotes a performance drop
of RACL-GloVe/RACL-BERT.

- R1 - R2 - R3 - R4

Res14 0.98/2.13↓ 1.91/2.16↓ 1.76/1.52↓ 1.86/2.94↓
Lap14 1.05/1.44↓ 0.96/0.59↓ 2.08/0.44↓ 2.17/2.23↓
Res15 1.88/5.19↓ 1.15/3.72↓ 1.82/4.33↓ 2.74/6.46↓

5.2 Effects of Hyper-Parameters
There are two key hyper-parameters in our model:
the kernel sizeK of the CNN encoder and the layer
number L. To investigate their impacts, we first
vary K in the range of [1, 9] stepped by 2 while
fixing L to the values in section 4.1, and then vary
L in the range of [1, 7] stepped by 1 while fixingK.
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Table 5: Case study. The columns “AE+SC” and “OE” denote the results generated by corresponding subtasks,
where “None” denotes that no aspect/opinion terms are extracted. Words in blue and italic are annotated opinion
terms, and those in red are annotated aspect terms with the subscripts denoting their sentiment polarities.

Examples PIPELINE IMN-D RACL-GloVe
AE+SC OE AE+SC OE AE+SC OE

S1. The [OS]pos is easy, and offers all kinds of surprises. [OS]pos
easy,
offers(7) [OS]pos

easy,
offers(7) [OS]pos easy

S2. So much faster and sleeker [looking]pos. None(7) faster,
sleeker None(7) faster,

sleeker [looking]pos
faster,
sleeker

S3. [Dessert]pos was also to die for! [Dessert]neu(7) die for [Dessert]neu(7) die for [Dessert]pos die for
S4. [Sushi]pos so fresh that it crunches in your mouth. [Sushi]neg(7) fresh [Sushi]pos fresh [Sushi]pos fresh

We only present the ABSA-F1 results for RACL-
GloVe in Figure 3 since the hyper-parameters of
RACL-BERT are inherited from RACL-GloVe.

(a) Effects of K. (b) Effects of L.
Figure 3: Effects of hyper-parameters.

In Figure 3(a), K=1 yields extremely poor per-
formance because the raw features are generated
only by the current word. Increasing K to 3 or
5 can widen the receptive field and remarkably
boosts the performance. However, when further
increasing K to 7 or 9, many irrelevant words are
added as noises and thus deteriorate the perfor-
mance. In Figure 3(b), increasing L can, to some
extent, expand the learning capability and achieve
high performance. However, too many layers intro-
duce excessive parameters and make the learning
process over complicated.

5.3 Case Study
This section details the analysis on results of sev-
eral examples by different methods for a case study.
We choose CMLA+TCap (denoted as PIPELINE),
IMN-D, and RACL-GloVe as three competitors.
We do not include the BERT-based methods as we
wish to investigate the power of the models without
the external resources.

S1 and S2 verify the effectiveness of relation
R1. In S1, due to the existence of the conjunction
“and”, two baselines incorrectly extract “offers” as
an opinion term as “easy”. In contrast, RACL-
GloVe can successfully filter out “offers” in OE by
using R1. The reason is that “offers” has never
co-occured as an opinion term with the aspect term
“OS” in the training set, and R1 which connects
the AE and OE subtasks will treat them as irrel-
evant terms. This information will be passed to
OE subtask during the testing phase. Similarly, in

S2, both baselines fail to recognize “looking” as
an aspect term, because it might be the present
participle of “look” without opinion information.
Instead, RACL-GloVe correctly labels it as R1 pro-
vides useful clues from opinion terms “faster” and
“sleeker”.

S3 shows the superiority of relation R2 which is
critical to connect the three subtasks but has never
been employed in previous studies. Both baselines
successfully extract “Dessert” and “die for” for AE
and OE, but assign the incorrect “neutral” senti-
ment polarity even if IMN-D has emphasized the
opinion terms. The reason is that these two terms
have not co-occurred in the training samples, and
it is hard for SC to recognize their dependency. In
contrast, since “Dessert” and “die for” are typical
words in AE and OE, RACL-GloVe is able to en-
code their dependency in R1. By propagating R1

to SC using R2, RACL-GloVe can assign a correct
polarity for “Dessert”. To take a close look, we
visualize the averaged predicted results (left) and
the attention weights (right) of all layers in Fig-
ure 4. Clearly, the original attention Mctx−before

of “Dessert” does not concentrate on “die for”. Af-
ter getting enhanced by MO2A and OE, Mctx−after

successfully highlights the opinion words and SC
makes a correct prediction.

Figure 4: Visualization of the example S3.

S4 shows the benefits from relation R3. IMN-D
and RACL-GloVe assign a correct polarity towards
“Sushi” in SC since they both get the guidance from
“fresh” in OE, while PIPELINE gets lost in contexts
and makes a false prediction without the help of the
opinion term. Notice that S1∼S4 simultaneously
demonstrate the necessity for R4, since RACL-
GloVe is not biased by background words and can
make correct sentiment predictions in all examples.
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5.4 Analysis on Computational Cost
To demonstrate that our RACL model does not in-
cur the high computational cost, we compare it with
two strong baselines DOER and IMN-D in terms
of the parameter number and running time. We run
three models on the Restaurant 2014 dataset with
the same batch size 8 in a single 1080Ti GPU, and
present the results in Table 6. Obviously, our pro-
posed RACL has similar computational complexity
with IMN-D, and they are both much simpler than
DOER.

Table 6: Computational cost of different methods.
Model Parameter Number Runtime per Epoch
DOER 9,855,057 116s
IMN-D 4,129,713 5s

RACL-GloVe 5,087,568 5s

6 Conclusion

In this paper, we highlight the importance of in-
teractive relations in the complete ABSA task.
In order to exploit these relations, we propose a
Relation-Aware Collaborative Learning (RACL)
framework with multi-task learning and relation
propagation techniques. Experiments on three real-
world datasets demonstrate that our RACL frame-
work with its two implementations outperforms the
state-of-the-art pipeline and unified baselines for
the complete ABSA task.
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