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Abstract

This paper presents the problem of conversa-
tional plotting agents that carry out plotting ac-
tions from natural language instructions. To
facilitate the development of such agents, we
introduce CHARTDIALOGS, a new multi-turn
dialog dataset, covering a popular plotting li-
brary, matplotlib. The dataset contains
over 15, 000 dialog turns from 3, 200 dialogs
covering the majority of matplotlib plot
types. Extensive experiments show the best-
performing method achieving 61% plotting ac-
curacy, demonstrating that the dataset presents
a non-trivial challenge for future research on
this task.

1 Introduction

Advances in machine language understanding
(Hirschberg and Manning, 2015) have sparked in-
terest in using artificial intelligence to address diffi-
cult problems involving language. In this work, we
are interested in the problem of plotting via natural
language instructions. Plotting is a method for visu-
alizing data and mathematical functions. Plotting
libraries such as matplotlib support functional-
ity on a range of levels, from general, “change the
X-axis from linear to log scale”, to specific, “color
this screen pixel red”. Yet, using such libraries can
be difficult for novice users and time consuming
even for experts. This obstacle, coupled with the
increasing popularity of the scientific method of
gleaning information from data (Hey et al., 2009;
Dhar, 2013), motivates our objective of designing
natural language interfaces (NLIs) for plotting.

NLIs for plotting can be organized into three
categories based on what the user is expected to
describe: the data, the function, or the plot.
Describing the Data or the Function. In the first
category of plotting NLIs, users are expected to de-
scribe the data they would like to visualize, by pos-
ing queries such as: “Show me medals for hockey

and skating by country.” Queries may involve sim-
ple data analysis: “Is there a seasonal trend for
bike usage?” The system retrieves the relevant
data, performs simple data analysis, and produces a
visualization. This category of NLIs has been stud-
ied in Human Computer Interaction and related
areas (Gao et al., 2015; Setlur et al., 2016; Srini-
vasan and Stasko, 2017; Yu and Silva, 2019; Sun
et al., 2010).

In the second category of plotting NLIs, users
specify the function they would like to visualize. In
this category, commercial products such as wolfra-
malpha.com yield results for queries such as “plot
the tangent to x2 at x = 0.5”. The system pro-
cesses such queries by leveraging knowledge of
functions and mathematical principles.
Describing the Plot. In the two categories we have
discussed, users only describe what data or func-
tion they would like to visualize without describing
how to visualize it. The system is in charge of all
plotting details, which are not accessible to users.
We can think of a third, less explored, category of
plotting NLIs, in which the user instructs the sys-
tem on how they would like to manipulate a plot.
As an example, consider the following questions
from a community question answering forum for
matplotlib 1:

(Q1):“How does one change the font size for
all elements (ticks, labels, title) on a matplotlib
plot?”
(Q2): “I have a scatter plot graph . . . I would
like the Y-Axis to start at the max value and go
up to 0.”
(Q3):“Given a signal plot with time index rang-
ing from 0 to 2.6(s), I want to draw vertical red
lines indicating corresponding time index for
the list.”

1https://stackoverflow.com/questions/tagged/matplotlib
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(a) Line Chart (b) 3D surface

Figure 1: Illustration of two of CHARTDIALOGS plot types. (a) Line Chart has slots such as Line Style. (b) A
3D Surface has slots such as Surface Color.

For Q1, the user’s intent is to change the font
size of the elements of a plot; for Q2, to invert the
Y-axis on the plot; and for Q3, to add vertical lines
to a plot. All three questions seek to perform an
action directly on the plot. The large number of
such questions online indicates that direct plot ma-
nipulation is a common technical need. Crucially,
expressing these intents in natural language is often
faster than perusing the documentation of plotting
library. Therefore, there is an opportunity to auto-
matically process such intents by mapping natural
language to API calls. This problem is the focus of
our work.
Contributions. The contributions of this work are
as follows: 1) We identify and define the problem
of conversational plotting agents. 2) To facilitate
work on this problem, we present a large dataset,
CHARTDIALOGS, that consists of written multi-
turn plotting dialogs. An in-depth analysis of the
data shows that it is linguistically diverse and com-
pares favorably to existing datasets. 3) We con-
ducted extensive experiments in the framework of
goal-oriented dialog using various methods. We
also collected data on human performance, finding
that there is a substantial gap between model and
human performance, and therefore room for future
work.2

2 Problem Definition

Our goal is to develop a conversational plotting
agent that takes natural language instructions and
updates the plot accordingly. The agent is con-
versational because plots can be complex, making

2We have released our dataset and code for experiments:
https://github.com/sythello/ChartDialog

it difficult to describe everything at once. Users
may want to fine-tune the appearance of their plot
through multiple turns.
Goal-Oriented Dialog Problem. We treat the con-
versational plotting agent problem as an instance
of slot-based goal-oriented dialog. The applicable
slots are plot type specific. Figure 1 illustrates ex-
ample slots for some of the plot types. Different
plot types have different slots. However, some slots
are shared across plot types. For example, the slot
“X-axis scale” is relevant to the x-axis, thus it is
applicable in any plot type with an x-axis, includ-
ing line chart, bar plot, contour plot, etc. This slot
can take a value such as “X-axis scale = log”, as a
result of a request such as “change the x-axis scale
from linear to log”.3

Illustrations of all CHARTDIALOGS plot types
and their slots are provided in Appendix A.

3 Related Work

Goal-oriented dialog datasets largely focus on ser-
vice domains such as airlines (Hemphill et al.,
1990; Seneff and Polifroni, 2000; Bennett and
Rudnicky, 2002; Asri et al., 2017; Budzianowski
et al., 2018; Wei et al., 2018), restaurant (Hender-
son et al., 2014; Bordes et al., 2017), bus (Raux
et al., 2005; Williams et al., 2013), technical sup-
port (Lowe et al., 2015), and car agents (Eric et al.,
2017). Recently, a multi-domain goal-oriented
dataset covering restaurant, attraction, hospital, po-
lice, hotel, taxi and train domains was introduced in
(Budzianowski et al., 2018). Our dataset is focused

3We wrote a simple script to take as input the plot type
(as a special slot) and other slot-value pairs, to generate the
actual plot image using matplotlib. This script is included in
the released dataset.
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on a new domain, which is data plots.
Natural language interfaces to structured lan-

guages such as SQL have been explored in
Databases (DB) (Li and Jagadish, 2014), Program-
ming Languages (PL) (Yaghmazadeh et al., 2017),
and NLP (Zelle and Mooney, 1996). While the
problem of language to SQL is different from lan-
guage to plots, both problems need to deal with the
difficulty of automatically interpreting natural lan-
guage and mapping it to an unambiguous structured
representation.

Closer to our work is the task of conversational
image editing (Manuvinakurike et al., 2018b,a),
whose aim is to enable queries like “Can you please
fix the glare on my dog’s eyes”. Although both
focus on image manipulation, the images and ma-
nipulations are different in the two domains. Ad-
ditionally, we provide structured representations
from which the plot images are generated. Our ex-
periments show that such representations provide
useful information for model training. In contrast,
the structured representation is not available in con-
versational image editing. Furthermore, our dataset
contains over 3, 200 dialogs in comparison to the
129 dialogs for image edits.

Lastly, our task is different from full-fledged pro-
gram synthesis, which takes natural language as in-
put and produces computer programs in a language
such as Python (Church, 1957; Solar-Lezama and
Bodik, 2008). Our task is simpler and more struc-
tured.

4 Data Collection

To facilitate data collection, we make use of struc-
tured representations which we call text plot speci-
fications.

Definition 1 (Text Plot Specification, TPSpec)
Let St be the set of all relevant slots for a
given plot type, t, where t takes on plot type
values such as histogram, scatter, etc. For each
slot si ∈ St, let the set of values it can take
be Vti . A TPSpec of plot type t is given by:
T Pt = {(s1 : v1, s2 : v2, . . .) : si ∈ St; vi ∈ Vti}

Thus a TPSpec is a sequence of tokens and can be
considered as a structured text representation of a
plot. This representation is invertible, i.e. a TPSpec
can be mapped back to its corresponding slot-value
pairs in a deterministic way. The design of TPSpecs
is similar to how structured representations are used
for dialog state tracking (Kan et al., 2018). We

leverage TPSpecs in our data collection pipeline,
which consists of two steps.
Step 1: Plot Generation. The first step consists
of generating a set of matplotlib plots. Since
there is a one-to-one mapping between Text Plot
Specifications (TPSpecs) and plot images, we only
need to generate TPSpecs. Specifically, for each
plot type t and all relevant slots si ∈ St, we design
a value pool Pt

i ⊆ Vti , from which we randomly
sample slot values to generate TPSpec samples.
Step 2: Dialog Collection. The second step in-
volves collecting dialogs about the plots we gen-
erate in Step 1. A widely-used dialog collection
scheme is the Wizard-of-Oz (WOZ) (Kelley, 1984),
in which one worker plays the user and another
worker plays the computer. Successful dialog
datasets have been collected using Wizard-of-Oz
approach, including the Air Travel Information Sys-
tem (ATIS) corpus (Hemphill et al., 1990), and
others (Budzianowski et al., 2018; Rojas-Barahona
et al., 2017; Asri et al., 2017).

We designed Wizard-of-Oz4 Mechanical Turk
(MTurk) tasks to have a Describer worker, who
plays the role of the user; and an Operator worker,
who plays the role of the plotting agent5. The De-
scriber has access to a target plot which is the goal
plot for the Operator to achieve, but it is not directly
visible to the Operator; the Operator has access to
an operation panel which consists of a changeable
field for each slot. The Operator can use this panel
to execute a plot function on a server. Both workers
have access to the working plot which is the plot
that the Operator has generated based on the De-
scriber’s requests. It is initialized to a placeholder
empty plot.

The Describer begins the conversation by writing
a message in natural language, describing to the
Operator a request that would take them closer
to their goal of matching the working plot with
the target plot. The Describer could say “invert
the Y-axis”. The Operator can respond in natural
language to ask clarification questions, or fill out
slots in the operation panel and show the resulting
plot to the Describer. For example, the operator
might select the slot corresponding to “invert Y-
axis=True” and the working plot is updated for
both workers to see. The describer would continue

4Our setting is slightly different from the usual Wizard-of-
Oz in that users were informed that they were conversing with
fellow humans.

5Multi-worker MTurk tasks are implemented using ParlAI
(Miller et al., 2017)
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DSTC2 SFX WOZ2.0 FRAMES KVRET M2M* ImageEdits CHARTDIALOGS
[2014] [2014] [2017] [2017] [2017] [2018] [2018] [2019]

(restaurant) (restaurant) (restaurant) (travel) (car) (movie,rest) (images) (plots)

# Dialogues 1,612 1,006 600 1,369 2,425 1,500 129 3,284
Total # turns 23,354 12,396 4,472 19,986 12,732 14,796 8,890 15,754
Total # tokens 199,431 108,975 50,264 251,867 102,077 121,977 59,653 141,876
Avg. turns per dialo. 14.49 12.32 7.45 14.60 5.25 9.86 unk 4.80
Avg. tokens per turn 8.54 8.79 11.24 12.60 8.02 8.24 unk 9.01
Total unique tokens 986 1,473 2,142 12,043 2,842 1,008 2,299 2,652
# Slots 8 14 4 61 13 14 unk 53
# Values 212 1847 99 3871 1363 138 unk 328

Table 1: Comparison of CHARTDIALOGS to other single domain goal-oriented dialog data sets. *M2M is largely
on the restaurant domain but also includes movies
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Figure 2: (a): Distribution of perplexity of the utterances. (b) and (c): average per word surprise of a growing
sentence as new words are added to the sentence. High perplexity is a result of plot-specific terms line ‘outline’,
and ‘cap’ arising in unexpected contexts.

by, for example, saying “make the font size larger”.
The two workers continue to have a dialog, taking
turns until the working plot exactly matches the
target plot. Screenshots of our data collection UI
are shown in Figure 7 and 8 in the Appendix.

If a pair of workers failed to successfully col-
laborate to match the target plot, the dialog is still
kept in our dataset as negative examples. However,
in our exploratory method study in section 6, we
skipped them for simplicity.
Mechanical Turk Cost and Statistics. The
dataset cost $8,244.18 to collect. The average task
completion time was 6 minutes. In total, 419 work-
ers engaged in this task; 338 of them completed at
least 1 successful dialog. Workers were provided
a tutorial and had to complete a test before joining
the task.

5 CHARTDIALOGS Statistics

The collected dataset, CHARTDIALOGS, consists
of 3, 284 dialogs, 15, 754 dialog turns and 141, 876
tokens in total.
Comparison to other Datasets. Table 1 compares
our dataset to other goal-oriented datasets that are
about a single domain, such as travel, restaurant,
car, etc., on several key metrics. In particular,

we compare to: DSTC2 (Henderson et al., 2014),
SFX (Gašić et al., 2014), WOZ (Wen et al., 2017),
FRAMES (Asri et al., 2017), KVRET (Eric and
Manning, 2017), M2M (Shah et al., 2018) and Im-
ageEdits (Manuvinakurike et al., 2018b,a). Table 1
shows that our corpus compares favorably to other
datasets and is strong on two metrics: number of
dialogs, and number of slots. This is a positive
indication, given the narrowness of our domain in
comparison to other domains.

Naturalness of Utterances. We took a pre-trained
language model, the Generative Pre-trained Trans-
former (GPT-2) of OpenAI (Radford et al., 2019),
to evaluate the naturalness of utterances in our
dataset. Although this language model is trained
on Web text, which is different from our domain,
it can be a good measure of language naturalness,
at least for generic texts. Figure 2a shows GPT-2
perplexity distribution for half of the utterances,
7, 876, in CHARTDIALOGS. This half consists of
the utterances with the lowest perplexity. The sec-
ond half with higher perplexity forms a long-tail
distribution and is omitted for plot readability.

As shown in Figure 2a, the dataset contains utter-
ances of varying degrees of naturalness, from pure
natural language (“please invert the Y-axis”), to a
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Figure 3: (a) Dialog turns per CHARTDIALOGS plot type. Distributions of (b) Words per utterance, and (c)
Constituency tree depth for utterances.

structured code-style language (“Y-axis=inverted”).
This is inline with our goal to have a conversational
plotting agent that deals with requests with differ-
ent levels of naturalness. The average perplexity
even on the first half is high at 399.77. The second
half, not shown, has median perplexity of 3, 776.0,
and mean perplexity of 77188.58.

Figures 2b and 2c show the perplexity behavior
for two utterances. The figures show the average
per-word surprise of a growing sentence as new
words are added to the sentence. For example,
in Figure 2b, the perplexity for “add a” is low,
increases for “add a black”, increases even more
for “add a black outline”, and decreases for “add
a black outline to”. It is clear that high perplexity
of the dataset is a result of plot-specific terms like
‘outline’ in Figure 2b and ‘cap’ in Figure 2c, arising
in unexpected contexts in Web text.
Turns Per Plot Type. Figure 3a shows the fraction
of dialog turns per plot type. Some plot types have
more dialogs and more turns than others, which is
a design choice we made in collecting the dataset.
Although not the subject of the current paper, we
would like the plotting agent to generalize to plot
types with few data points, and potentially, to plot
types that were never seen before, as a challenge
for few-shot or zero-shot learning methods.
Utterance Length. Figures 3b shows that our
dataset has utterances of varying lengths in terms
of tokens. The average number of tokens per utter-
ance is 9.01, which is comparable to the average
among all the datasets reported in Table 1, which
is 9.57.
Utterance Syntactic Depth. Figures 3c shows the
distribution of constituency parse tree depths from
the Stanford Parser. The average tree depth is 4.5.
Figure 4 shows two parse trees of different depths.
The parse tree in Figure 4a for the utterance “Add a
black outline to the chart” has a tree depth of 4, and
reflects the nature of the average utterance. On the
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Figure 4: Two CHARTDIALOGS utterances with differ-
ent constituency tree depths. The average tree depth in
the dataset is 4.5.

other hand, the parse tree in Figure 4b for “Increase
the cap size of the error bar but don’t touch the
thickness” shows a more complex utterance with
a tree depth of 8. We also show the most common
top-level constituent combinations in Figure 5 in
the Appendix.

6 Methods

To study the feasibility of developing conversa-
tional plotting agent using CHARTDIALOGS, we
assess the performance of various methods.

The main methods we evaluate build on the
sequence-to-sequence (seq2seq) framework
(Sutskever et al., 2014; Vinyals and Le, 2015).
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Seq2seq models employ two components: an
encoder and a decoder. The encoder produces
hidden states of the input. Attention is used to
produce a weighted sum of the encoder hidden
states, known as the context vector c∗t . The decoder
defines the joint probability of an output sequence
y =

(
y1, · · · , yny

)
as:

p(y) =
T∏
t=1

p(yt | {y1, · · · , yt−1} , c∗t )

.
Input. We treat each plot update as a separate dat-
apoint. For each datapoint, the input comes from
three available sources: i) current state as repre-
sented by the text plot specification (TPSpec), ii)
current state as represented by the plot image, and
iii) the dialog history. In principle, the entire dialog
history can be considered. In our experiments, we
consider all utterances from the last plot update to
the current one from both interlocutors. In other
words, starting from the last plot update, the De-
scriber’s instruction and all the clarification ques-
tions and responses are concatenated and provided
as the dialog history.
Output. We formulate the model output as the up-
date needed from the current TPSpec to the next TP-
Spec. We denote such an update as ∆TPSpec. For
example, if the current TPSpec is {(‘line width’:

‘thin’), (‘line color’: ‘black’)} and the next TPSpec
is {(‘line width’: ‘thin’), (‘line color’: ‘red’)}, the
corresponding ∆TPSpec is {(‘line color’: ‘red’)}.
As discussed below, the output module can be a
sequence decoder, in which the ∆TPSpec is pre-
dicted as a sequence; or a set of classifiers, each of
which predicts the new value of a different slot.
[M1] S2S-PLOT+TXT. The first method is a
seq2seq method whose input consists of the current
state as represented by both TPSpec and plot image,
and the dialog history. The TPSpec and dialog his-
tory are concatenated and fed to a seq2seq model.
For all methods involving a seq2seq model, we use
a 2-layer Bi-LSTM for the text encoder and another
2-layer Bi-LSTM for the decoder. To encode the
plot image, we used a CNN followed by a row-wise
LSTM. The final representation of an image is a
sequence of vectors and are concatenated with the
text representations on the temporal dimension be-
fore they are fed to the decoder. More details are
provided in Appendix B.
[M2] S2S-TXT. The second method is another
seq2seq model, but we omit the plot image from the

input. We consider this version in order to assess
the role of the vision modality in the task.
[M3] S2S-NoState. This is a seq2seq model
whose input consists only of the dialog history. The
state in the form of current TPSpec or plot image
is completely omitted. The goal is to assess if the
state is actually taken into account by the model.
[M4] S2S-NoUtterance. This is a seq2seq model
whose input consists only of the current state as
represented by TPSpec. The dialog history is com-
pletely omitted. The goal is to assess if the dialog
history is actually taken into account by the model.
[M5] MaxEnt. We trained a logistic regression
classifier to take as input the TPSpec and dialog
history. They are represented jointly as bag-of-
words. Classification predictions are made for each
slot separately. For each slot, the candidate label
space is all possible labels that appeared in our
dataset, along with a special label [unchanged]
indicating not to change the value of this slot, i.e.
using the value from current state. Notice that
bag-of-words features have a critical problem of
ignoring word ordering. For example, it cannot
distinguish between “red line with blue markers”
and “blue line with red markers”.
[M6] RNN + MLP. This model is similar to Max-
Ent except that features are extracted by an LSTM
encoder, which considers word ordering. It differs
from the seq2seq models in that the prediction is
made with MLP classifier heads for each slot sepa-
rately, instead of an LSTM decoder for the whole
output. This exempts the model from the burden
of generating a structured sequence; on the other
hand the model is no longer equipped to learn the
dependencies between different slots. We use a
2-layer Bi-LSTM encoder for the input represen-
tation. Each MLP consists of 2 fully-connected
layers.
[M7] Transformer + MLP. We consider another
alternative where instead of an RNN, we use a trans-
former encoder, in particular, BERT (Devlin et al.,
2019). The final layer output of the special BERT
token “[CLS]” is used as the input representation
and fed to MLP classifier heads. The structure of
MLP classifier heads is the same as in RNN+MLP.

7 Experiments

We conducted experiments for the following pur-
poses: (P1) to evaluate the performance of the
above-mentioned methods; (P2) to establish the
quality of our dataset; and (P3) to establish a gold
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Methods SPLIT SINGLE PAIR
S2S-PLOT+TXT 0.585 0.613 0.594
S2S-TXT 0.601 0.613 0.591
S2S-NoState 0.525 0.549 0.535
S2S-NoUtterance 0.060 0.047 0.046
MaxEnt 0.196 0.265 0.422
RNN+MLP 0.328 0.324 0.325
Transformer+MLP 0.311 n/a6 n/a6

Table 2: Exact match plotting performance.

Methods SPLIT SINGLE PAIR
S2S-PLOT+TXT 0.871 0.890 0.888
S2S-TXT 0.874 0.893 0.885
S2S-NoState 0.847 0.866 0.863
S2S-NoUtterance 0.316 0.306 0.155
MaxEnt 0.677 0.734 0.806
RNN+MLP 0.714 0.712 0.724
Transformer+MLP 0.723 n/a6 n/a6

Table 3: Slot change F1 plotting performance.

human performance as the upper bound of expected
model performance.

7.1 Experimental Setup

Train, Dev, and Test Splits. We used 2,628 di-
alogs for training, 328 for validation and 329 for
testing. In terms of datapoints, there are 11,903 for
training, 1,562 for validation and 1,481 for testing.
Token Granularity for Prediction. We consider
three different token granularity settings for map-
ping between TPSpecs and actual token sequences
on both the input and output side: PAIR, SIN-
GLE and SPLIT. In the PAIR strategy, the to-
ken for the slot name and slot value are con-
catenated to create one single token of the form:
“slot name:slot value”. In SINGLE, each slot name
and slot value is predicted independently. In SPLIT,
slot and value names are split into actual words.
For example, predicting that the slot “x axis scale”
takes on the value “log” under the PAIR strat-
egy involves one prediction, “x axis scale:log”.
Under SINGLE, this involves two predictions,
“x axis scale” and then “log”. Under SPLIT, the
expected prediction becomes “x”, “axis”, “scale”,
“:” and “log”.

6Due to the BPE encoding used in BERT, SINGLE and
PAIR inputs are tokenized to be almost identical as SPLIT,
therefore we do not report their performance.

7.2 Evaluation Metrics

We evaluate performance using two metrics: Exact
Match (EM) and Slot change F1. Exact Match
measures how accurate the models are at updating
the plots exactly as expected. It is defined as the
percentage of datapoints whose current TPSpec,
when updated with the model-predicted ∆TPSpec,
can exactly match the gold target TPSpec. Slot
change F1 measures accuracy on individual slots.
Let Sp be the set of slot-value pairs in the predicted
∆TPSpec and Sg be the set of slot-value pairs in
the gold ∆TPSpec, precision P =

|Sp∩Sg |
|Sp| , recall

R =
|Sp∩Sg |
|Sg | and F1 = 2PR

P+R .

7.3 Performance (P1)

We report Exact Match performance in Table 2, and
Slot change F1 in Table 3. From the tables, it is
clear that seq2seq-based models generally perform
better than classification models. A possible reason
is that, by modeling ∆TPSpec as a whole in the de-
coder, the models implicitly learned dependencies
between different slots and thus improved the over-
all performance. Also, neural classification meth-
ods including RNN+MLP and Transformer+MLP
displayed poor performance, not even beating Max-
Ent with bag-of-words. Further, as an ablation
study, the S2S-NoState and S2S-NoUtterance per-
formed significantly worse than S2S-TXT, confirm-
ing that both the current state and the user utterance
are necessary to seq2seq methods in performing
this task.

Both S2S-TXT and S2S-PLOT+TXT perform
the best at the SINGLE token granularity. On
this granularity, there is no significant difference
between their performance on exact match. For
slot F1, S2S-TXT even performs significantly bet-
ter than S2S-PLOT+TXT, with p = 0.033 in an
unequal variance T-test, which implies that for
seq2seq methods adding the image modality does
not add much on top of the text modality in this
task.

Table 4 shows performance of the best perform-
ing methods, S2S-PLOT+TXT and S2S-TXT, per
plot type. We ran 5 experiments and reported the
means and standard deviations in order to gain a
better comparison between their performances. We
can see that, as expected for our above results, for
most plot types, performance of the two methods
is similar.
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Plot type S2S-TXT S2S-PLOT+TXT
Exact Match Slot F1 Exact Match Slot F1

Line 0.602±0.026 0.889±0.005 0.605±0.011 0.888±0.006
Bar 0.572±0.022 0.873±0.004 0.565±0.020 0.866±0.004
Pie 0.685±0.009 0.896±0.005 0.691±0.005 0.894±0.008
Contour 0.618±0.006 0.916±0.004 0.624±0.015 0.913±0.004
Streamline 0.610±0.016 0.901±0.009 0.598±0.023 0.895±0.007
Histogram 0.476±0.048 0.886±0.007 0.505±0.026 0.890±0.019
Scatter 0.492±0.026 0.849±0.014 0.492±0.017 0.851±0.014
Matrix 0.717±0.022 0.944±0.006 0.683±0.033 0.939±0.004
3D Surface 0.733±0.047 0.910±0.023 0.768±0.041 0.928±0.023
Total 0.613±0.005 0.893±0.002 0.613±0.005 0.890±0.002

Table 4: Exact match and Slot F1 score by plot type, under the SINGLE granularity.

7.4 Agreement Among Workers (P2)

In order to further inspect the quality and difficulty
of our dataset, we sampled a subset of 444 partial
dialogs. Each partial dialog consists of the first
several turns of a dialog, and ends with a Describer
utterance. The corresponding Operator response
(plot update) is omitted. Thus, the human has to
predict what the Operator (the plotting agent) will
plot, given this partial dialog. We created a new
MTurk task, where we presented each partial dia-
log to 3 workers and collected their responses. We
calculated the agreements between the newly col-
lected responses and the original Operator response,
results shown in Table 5.

The cases in which the majority of the workers
(3/3 or 2/3) exactly match the original Operator,
corresponding to the first two rows, happen 72.6%
of the time. The cases when at least 3 out of all
4 humans (including the original Operator) agree,
corresponding to row 1, 2 and 5, happen 80.6%
of the time. This setting is also worth considering
because the original Operator is another MTurk
worker, who can also make mistakes. Both of these
numbers show that a large fraction of the utterances
in our dataset are intelligible implying an overall
good quality dataset.

Fleiss’ Kappa among all 4 humans is 0.849; Co-
hen’s Kappa between the original Operator and the
majority among 3 new workers is 0.889. These
numbers indicate a strong agreement as well.

7.5 Models vs. Gold Human Performance
(P3)

The gold human performance was obtained by hav-
ing one of the authors perform the same task as
described in the previous subsection, on a subset

Original New Proportion√ √√√
55.1%√ √√

× 17.5%√ √
×× 2.4%√

××× 0.0%
×

√√√
8.0%

×
√√
× 10.3%

×
√
×× 4.4%

× ××× 2.3%
Total 100.0%

Table 5: Agreement evaluation result.
√

stands for “ex-
act match with majority” and × for “no exact match
with majority”. The majority is obtained slot-wise, i.e.
the majority for each slot is obtained separately.

of 180 samples. The result is a 76.8% exact match.
That is, our best model is 15.5 percentage points
behind gold human performance, showing there is
room for models to improve on this dataset.

7.6 Comparison to Performance on Image
Editing

The best accuracy reported on the aforementioned
conversational image editing dataset was 74% on
intent classification, ignoring actual attribute val-
ues (Manuvinakurike et al., 2018a). This result is
not directly comparable to the best accuracy 61.3%
on our dataset due to the difference in accuracy def-
inition. To our knowledge, no comparable results
has been reported on the image editing dataset, and
the dataset is not publicly available.

8 Error Analysis

We inspected the output of our best-performing
models in order to identify the most common
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causes of errors. Here we used S2S-TXT with
SINGLE granularity as a representative; the error
categories are similar for S2S-PLOT+TXT or other
granularity.

8.1 Ambiguity

Sometimes the Describer utterance is ambiguous
and makes different actions all reasonable. We
spotted two kinds of ambiguities: the unspecified
new slot and the value, exemplified in Table 6a and
6b respectively. 1) Unspecified new slot. The De-
scriber added a new component to the plot (the grid
lines), which activated new slots (“grid line type”)
whose values are unspecified. Therefore, any value
for these slots should be correct. 2) Ambiguous
value. The Describer asked to change the size of a
component (the font), but did not specify the value.
As in the example, the font size was “large”; to
make it “smaller”, both “medium” and “small” are
correct.

8.2 Human Errors

We report some of the errors that are due to mis-
takes made by MTurk workers. Operators can over-
look part of the Describer’s instruction. These erro-
neous actions are recorded and in turn be counted
as errors of models in our automatic evaluation
process.

8.3 Model Errors

In addition to human errors, many cases were also
due to the model itself. We show examples of
model errors in Table 7. 1) Multi-turn dialog his-
tory. In most samples, the dialog history consists
of only one utterance, the Describer’s instruction.
As a result, when confronted with multiple utter-
ances concatenated, the model may get confused.
2) Complex slot value. Some slot values are rela-
tively hard to describe in natural language, such as
“colormap” in example 7b. They can cause the mod-
els to make mistakes. 3) Infrequent expressions.
When the user expresses their request in an unusual
way (in example 7c, “log style” for log scale), the
model may not understand since it is rarely seen in
the training data.

9 Conclusions

In this paper, we defined the problem of conversa-
tional plotting agents, which is of great practical

7Interlocutor signs are shown only for clarity; they are not
input for models.

Previous State (no grid lines)

Dialog History invert y axis , red dashed gridlines ,
markers should be down triangle

Gold Output grid line type horizontal
Model Output grid line type both

(a) Ambiguity: unspecified new slot

Previous State font size large

Dialog History make font size smaller again , sorry

Gold Output font size medium
Model Output font size small

(b) Ambiguity: ambiguous value

Table 6: Examples of different kinds of ambiguities.

Previous State line style dotted

Dialog History
[Desc]7 dot line dot line
[Op] this is dot , do you mean dot-dash ?
[Desc] that would be it ... sorry

Gold Output line style dashed dots
Model Output line style dotted

(a) Error: multi-turn dialog history

Previous State (empty plot)

Dialog History matrix display , yellow to red , x axis
inverted on top , y axis inverted on right

Gold Output color map transparent yellow to solid red
Model Output color map red to yellow

(b) Error: complex slot value

Previous State (empty plot)

Dialog History hello , we have a bar plot ... orange bars
with a black outline , log style please

Gold Output y axis scale log
Model Output y axis scale linear

(c) Error: infrequent expression

Table 7: Examples of different kinds of model errors.

importance considering the large volume of ques-
tions online about plotting library usage. We also
presented a dataset, CHARTDIALOGS, to facilitate
the development of such agents. Our experiments
have demonstrated the feasibility of seq2seq-based
methods to produce working models for dataset;
however, there is still a large gap between our best
performing methods and human performance.

Future work includes methods that get closer to
human performance on the dataset. A practical line
of future work is embedding our plotting agent in
interactive environments such as Jupyter Lab.
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Appendix

A Plot Types and Slots

We show all plot types and slots related to each
type in Table 8. All the plot types and slots are
illustrated in Figure 6.

B Model Implementation Details

Model implementations are based on OpenNMT
(Klein et al., 2017) and HuggingFace Transformers
(Wolf et al., 2019).

B.1 S2S-TXT

LSTM hidden size is 128, batch size is 16. Model
is trained for 100,000 steps. Learning rate is initial-
ized to 1.0; starting from step 50,000, the learning
rate is halved every 10,000 steps.

B.2 S2S-PLOT+TXT

Text Encoder and Decoder have the same config-
uration as in S2S-TXT. The Plot (image) Encoder
is a CNN with following layers: conv1 (64x3x3) -
pooling1 (2x2) - conv2 (128x3x3) - pooling2 (2x2)
- conv3 (128x3x3) - batch normalization3 - conv4
(256x3x3) - pooling4 (2x1) - conv5 (256x3x3)
- batch normalization5 - pooling5 (1x2) - conv6
(256x3x3) - pooling6 (5x5). The output size from
CNN is original image size reduced 40 times on
both height and width. After CNN, a row-wise
RNN is applied and the output for each row are
concatenated to form the plot image encoding.8

The learning rate scheme is the same as in S2S-
TXT.

B.3 RNN+MLP

LSTM hidden size is 64, batch size is 32. Each
MLP head has 2 layers, mapping from 128 (LSTM
cell and output concatenated) to 32 and from 32 to
number of classes. Model is trained for 100,000
steps. Learning rate is initialized to 1.0; starting
from step 50,000, the learning rate is halved every
10,000 steps.

B.4 Transformer+MLP

The version of pretrained BERT we used is bert-
base-uncased. It is fine-tuned with our classifica-
tion heads. Batch size is 8 and gradient is accumu-
lated over every 4 steps. Each MLP head has only
1 layer, mapping from BERT hidden size (768) to

8This model structure is adapted from OpenNMT.

number of classes. Learning rate is 2e-5. Model is
trained for 30 epochs.

C Amazon Mechanical Turk HIT
Screenshots

We show several screenshots of our HIT in Figure
7 and 8.

Figure 5: Most common top-level constituent combina-
tions and their proportions (punctuations ignored).
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Plot Types Slots
1. Axes Polarize, X-axis Scale, Y-axis Scale, X-axis Position, Y-axis Position, Invert X-axis, Invert Y-axis,

Grid Line Type, Grid Line Style,Grid Line Width, Grid Line Color, Font Size
2. 3D Surface Color map, Invert X-axis, Invert Y-Axis, Invert Z-Axis
3. Bar Chart Bar Orientation, Bar Height, Bar Face Color, Bar Edge Width, Bar Edge Color, Show Error Bar,

Error Bar Color, Error Bar Cap Size, Error Bar, Cap Thickness, Data Series Name
4. Contour/Filled Contour Plot Type, Number of levels, Color Map, Color Bar Orientation, Color Bar

Length, Color Bar Thickness
5. Contour/Lined Contour Plot Type, Lined Style, Line Width
6. Histogram Number of Bins, Bar Relative Width, Bar Face Color, Bar Edge Width, Bar Edge

Color, Data Series Name
7. Matrix Color Map, Invert X-axis, Invert Y-axis
8. Line Chart Line Style, Line Width, Line Color, Marker Type, Marker Size, Marker Face Color,

Marker Edge Color, Marker Interval, Data Series Name, Show Error Bar, Error Bar Color,
Error Bar Cap Size, Error Bar Cap Thickness

9. Pie Chart Exploding Effect, Precision Digits, Percentage tags’ distance from center,
Label tag’s distance from center, Radius, Section Edge Width, Section Edge Color

10. Polar Polarize, Grid Line Type, Grid Line Style, Grid Line Width, Grid Line Color, Font Size
11. Scatter Polarize, Marker Type, Marker Size, Marker Face Color, Marker Edge Width, Marker Edge Color,

Color Map, Color Bar Orientation, Color Bar Length Color Bar Thickness
12. Streamline Density, Line Width, Line Color, Color Map, Arrow Size, Arrow Style

Table 8: Plot types and slots in our dataset
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Figure 6: Plot types and slots.
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(a) Describer: starting the HIT

(b) Operator: starting the HIT

Figure 7: HIT screenshots.
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(a) Describer: in progress

(b) Operator: in progress

Figure 8: HIT screenshots.


