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Abstract

Knowledge graph embedding methods often
suffer from a limitation of memorizing valid
triples to predict new ones for triple classi-
fication and search personalization problems.
To this end, we introduce a novel embed-
ding model, named R-MeN, that explores a
relational memory network to encode poten-
tial dependencies in relationship triples. R-
MeN considers each triple as a sequence of
3 input vectors that recurrently interact with
a memory using a transformer self-attention
mechanism. Thus R-MeN encodes new in-
formation from interactions between the mem-
ory and each input vector to return a corre-
sponding vector. Consequently, R-MeN feeds
these 3 returned vectors to a convolutional neu-
ral network-based decoder to produce a scalar
score for the triple. Experimental results show
that our proposed R-MeN obtains state-of-the-
art results on SEARCH17 for the search per-
sonalization task, and on WN11 and FB13 for
the triple classification task.

1 Introduction

Knowledge graphs (KGs) – representing the gen-
uine relationships among entities in the form of
triples (subject, relation, object) denoted as (s, r, o)
– are often insufficient for knowledge presentation
due to the lack of many valid triples (West et al.,
2014). Therefore, research work has been focusing
on inferring whether a new triple missed in KGs
is likely valid or not (Bordes et al., 2011, 2013;
Socher et al., 2013). As summarized in (Nickel
et al., 2016; Nguyen, 2017), KG embedding mod-
els aim to compute a score for each triple, such that
valid triples have higher scores than invalid ones.

Early embedding models such as TransE (Bordes
et al., 2013), TransH (Wang et al., 2014), TransR
(Lin et al., 2015), TransD (Ji et al., 2015), DIST-
MULT (Yang et al., 2015) and ComplEx (Trouil-
lon et al., 2016) often employ simple linear oper-

ators such as addition, subtraction and multiplica-
tion. Recent embedding models such as ConvE
(Dettmers et al., 2018) and CapsE (Nguyen et al.,
2019b) successfully apply deep neural networks to
score the triples.

Existing embedding models are showing promis-
ing performances mainly for knowledge graph com-
pletion, where the goal is to infer a missing entity
given a relation and another entity. But in real appli-
cations, less mentioned, such as triple classification
(Socher et al., 2013) that aims to predict whether
a given triple is valid, and search personalization
(Vu et al., 2017) that aims to re-rank the relevant
documents returned by a user-oriented search sys-
tem given a query, these models do not effectively
capture potential dependencies among entities and
relations from existing triples to predict new triples.

To this end, we leverage the relational mem-
ory network (Santoro et al., 2018) to propose R-
MeN to infer a valid fact of new triples. In par-
ticular, R-MeN transforms each triple along with
adding positional embeddings into a sequence of
3 input vectors. R-MeN then uses a transformer
self-attention mechanism (Vaswani et al., 2017)
to guide the memory to interact with each input
vector to produce an encoded vector. As a result,
R-MeN feeds these 3 encoded vectors to a convo-
lutional neural network (CNN)-based decoder to
return a score for the triple. In summary, our main
contributions are as follows:

• We present R-MeN – a novel KG embedding
model to memorize and encode the potential
dependencies among relations and entities for
two real applications of triple classification
and search personalization.

• Experimental results show that R-MeN ob-
tains better performance than up-to-date em-
bedding models, in which R-MeN produces
new state-of-the-art results on SEARCH17
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for the search personalization task, and a new
highest accuracy on WN11 and the second-
highest accuracy on FB13 for the triple classi-
fication task.

2 The proposed R-MeN
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Figure 1: Processes in our proposed R-MeN for an il-
lustration purpose. “M” denotes a memory. “MLP” de-
notes a multi-layer perceptron. “g” denotes a memory
gating. “CNN” denotes a convolutional neural network-
based decoder.

Let G be a KG database of valid triples in the
form of (subject, relation, object) denoted as (s, r,
o). KG embedding models aim to compute a score
for each triple, such that valid triples obtain higher
scores than invalid triples.

We denote vs, vr and vo ∈ Rd as the embed-
dings of s, r and o, respectively. Besides, we hy-
pothesize that relative positions among s, r and o
are useful to reason instinct relationships; hence
we add to each position a positional embedding.
Given a triple (s, r, o), we obtain a sequence of 3
vectors {x1, x2, x3} as:

x1 = W (vs + p1) + b
x2 = W (vr + p2) + b
x3 = W (vo + p3) + b

where W ∈ Rk×d is a weight matrix, and p1,p2
and p3 ∈ Rd are positional embeddings, and k is
the memory size.

We assume we have a memory M consisting
of N rows wherein each row is a memory slot.
We use M (t) to denote the memory at timestep t,
and M (t)

i,: ∈ Rk to denote the i-th memory slot

at timestep t. We follow Santoro et al. (2018) to
take xt to update M (t)

i,: using the multi-head self-
attention mechanism (Vaswani et al., 2017) as:

M̂
(t+1)
i,: = [M̂

(t+1),1
i,: ⊕ M̂ (t+1),2

i,: ⊕

...⊕ M̂ (t+1),H
i,: ]

with M̂
(t+1),h
i,: = αi,N+1,h

(
Wh,V xt

)
+

N∑
j=1

αi,j,h

(
Wh,VM

(t)
j,:

)
where H is the number of attention heads, and
⊕ denotes a vector concatenation operation. Re-
garding the h-th head, Wh,V ∈ Rn×k is a value-
projection matrix, in which n is the head size and
k = nH . Note that {αi,j,h}Nj=1 and αi,N+1,h are
attention weights, which are computed using the
softmax function over scaled dot products as:

αi,j,h =
exp (βi,j,h)∑N+1

m=1 exp (βi,m,h)

αi,N+1,h =
exp (βi,N+1,h)∑N+1
m=1 exp (βi,m,h)

with βi,j,h =

(
Wh,QM

(t)
i,:

)T (
Wh,KM

(t)
j,:

)
√
n

βi,N+1,h =

(
Wh,QM

(t)
i,:

)T (
Wh,Kxt

)
√
n

where Wh,Q ∈ Rn×k and Wh,K ∈ Rn×k are
query-projection and key-projection matrices, re-
spectively. As following Santoro et al. (2018), we
feed a residual connection between xt and M̂ (t+1)

i,:

to a multi-layer perceptron followed by a memory
gating to produce an encoded vector yt ∈ Rk for
timestep t and the next memory slot M (t+1)

i,: for
timestep (t+ 1).

As a result, we obtain a sequence of 3 encoded
vectors {y1, y2, y3} for the triple (s, r, o). We then
use a CNN-based decoder to compute a score for
the triple as:

f (s, r, o) = max (ReLU ([y1, y2, y3] ∗Ω))T w

where we view [y1, y2, y3] as a matrix in Rk×3;
Ω denotes a set of filters in Rm×3, in which m is
the window size of filters; w ∈ R|Ω| is a weight
vector; ∗ denotes a convolution operator; and max
denotes a max-pooling operator. Note that we use
the max-pooling operator – instead of the vector
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concatenation of all feature maps used in ConvKB
(Nguyen et al., 2018) – to capture the most impor-
tant feature from each feature map, and to reduce
the number of weight parameters.

We illustrate our proposed R-MeN as shown in
Figure 1. In addition, we employ the Adam opti-
mizer (Kingma and Ba, 2014) to train R-MeN by
minimizing the following loss function (Trouillon
et al., 2016; Nguyen et al., 2018):

L =
∑

(s,r,o)∈{G∪G′}

log
(
1 + exp

(
−t(s,r,o) · f (s, r, o)

))
in which, t(s,r,o) =

{
1 for (s, r, o) ∈ G
−1 for (s, r, o) ∈ G′

where G and G′ are collections of valid and invalid
triples, respectively. G′ is generated by corrupting
valid triples in G.

3 Experimental setup

3.1 Task description and evaluation
3.1.1 Triple classification
The triple classification task is to predict whether
a given triple (s, r, o) is valid or not (Socher et al.,
2013). Following Socher et al. (2013), we use two
benchmark datasets WN11 and FB13, in which
each validation or test set consists of the same num-
ber of valid and invalid triples. It is to note in the
test set that Socher et al. (2013) did not include
triples that either or both of their subject and object
entities also appear in a different relation type or
order in the training set, to avoid reversible relation
problems. Table 1 gives statistics of the experimen-
tal datasets.

Dataset #E #R #Triples in train/valid/test
FB13 75,043 13 316,232 11,816 47,466
WN11 38,696 11 112,581 5,218 21,088

Table 1: Statistics of the experimental datasets. #E is
the number of entities. #R is the number of relations.

Each relation r has a threshold θr computed by
maximizing the micro-averaged classification ac-
curacy on the validation set. If the score of a given
triple (s, r, o) is above θr, then this triple is classi-
fied as a valid triple, otherwise, it is classified as an
invalid one.

3.1.2 Search personalization
In search personalization, given a submitted query
for a user, we aim to re-rank the documents re-
turned by a search system, so that the more the

returned documents are relevant for that query, the
higher their ranks are. We follow (Vu et al., 2017;
Nguyen et al., 2019a,b) to view a relationship of
the submitted query, the user and the returned docu-
ment as a (s, r, o)-like triple (query, user, document).
Therefore, we can adapt our R-MeN for the search
personalization task.

We evaluate our R-MeN on the benchmark
dataset SEARCH17 (Vu et al., 2017) as follows: (i)
We train our model and use the trained model to
compute a score for each (query, user, document)
triple. (ii) We sort the scores in the descending or-
der to obtain a new ranked list. (iii) We employ two
standard evaluation metrics: mean reciprocal rank
(MRR) and Hits@1. For each metric, the higher
value indicates better ranking performance.

3.2 Training protocol

3.2.1 Triple classification

We use the common Bernoulli strategy (Wang
et al., 2014; Lin et al., 2015) when sampling in-
valid triples. For WN11, we follow Guu et al.
(2015) to initialize entity and relation embeddings
in our R-MeN by averaging word vectors in the
relations and entities, i.e., vamerican arborvitae =
1
2 (vamerican + varborvitae), in which these word
vectors are taken from the Glove 50-dimensional
pre-trained embeddings (Pennington et al., 2014)
(i.e., d = 50). For FB13, we use entity and relation
embeddings produced by TransE to initialize entity
and relation embeddings in our R-MeN, for which
we obtain the best result for TransE on the FB13
validation set when using l2-norm, learning rate at
0.01, margin γ = 2 and d = 50.

Furthermore, on WN11, we provide our new
fine-tuned result for TransE using our experimen-
tal setting, wherein we use the same initialization
taken from the Glove 50-dimensional pre-trained
embeddings to initialize entity and relation embed-
dings in TransE. We get the best score for TransE
on the WN11 validation set when using l1-norm,
learning rate at 0.01, margin γ = 6 and d = 50.

In preliminary experiments, we see the highest
accuracies on the validation sets for both datasets
when using a single memory slot (i.e., N = 1); and
this is consistent with utilizing the single memory
slot in language modeling (Santoro et al., 2018).
Therefore, we set N = 1 to use the single memory
slot for the triple classification task. Also from
preliminary experiments, we select the batch size
bs = 16 for WN11 and bs = 256 for FB13, and
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set the window size m of filters to 1 (i.e., m = 1).
Regarding other hyper-parameters, we vary

the number of attention heads H in {1, 2, 3},
the head size n in {128, 256, 512, 1024}, the
number of MLP layers l in {2, 3, 4}, and the
number of filters F = |Ω| in {128, 256, 512,
1024}. The memory size k is set to be nH =
k. To learn our model parameters, we train our
model using the Adam initial learning rate lr in
{1e−6, 5e−6, 1e−5, 5e−5, 1e−4, 5e−4}. We run up
to 30 epochs and use a grid search to select the
optimal hyper-parameters. We monitor the ac-
curacy after each training epoch to compute the
relation-specific threshold θr to get the optimal
hyper-parameters (w.r.t the highest accuracy) on
the validation set, and to report the final accuracy
on the test set.

3.2.2 Search personalization
We use the same initialization of user profile, query
and document embeddings used by Nguyen et al.
(2019b) on SEARCH17 to initialize the corre-
sponding embeddings in our R-MeN respectively.
From the preliminary experiments, we set N = 1,
bs = 16 and m = 1. Other hyper-parameters are
varied as same as used in the triple classification
task. We monitor the MRR score after each train-
ing epoch to obtain the highest MRR score on the
validation set to report the final scores on the test
set.

4 Main results

4.1 Triple classification

Table 2 reports the accuracy results of our R-MeN
model and previously published results on WN11
and FB13. R-MeN sets a new state-of-the-art accu-
racy of 90.5% that significantly outperforms other
models on WN11. R-MeN also achieves a second
highest accuracy of 88.9% on FB13. Overall, R-
MeN yields the best performance averaged over
these two datasets.

Regarding TransE, we obtain the second-best
accuracy of 89.2% on WN11 and a competitive
accuracy of 88.1% on FB13. Figure 2 shows the ac-
curacy results for TransE and our R-MeN w.r.t each
relation. In particular, on WN11, the accuracy for
the one-to-one relation “similar to” significantly
increases from 50.0% for TransE to 78.6% for R-
MeN. On FB13, R-MeN improves the accuracies
over TransE for the many-to-many relations “insti-
tution” and “profession”.

Method WN11 FB13 Avg.
NTN (Socher et al., 2013) 86.2 87.2 86.7
TransH (Wang et al., 2014) 78.8 83.3 81.1
TransR (Lin et al., 2015) 85.9 82.5 84.2
TransD (Ji et al., 2015) 86.4 89.1 87.8
TransR-FT (Feng et al., 2016) 86.6 82.9 84.8
TranSparse-S (Ji et al., 2016) 86.4 88.2 87.3
TranSparse-US (Ji et al., 2016) 86.8 87.5 87.2
ManifoldE (Xiao et al., 2016a) 87.5 87.2 87.4
TransG (Xiao et al., 2016b) 87.4 87.3 87.4
lppTransD (Yoon et al., 2016) 86.2 88.6 87.4
ConvKB (Nguyen et al., 2019a) 87.6 88.8 88.2
TransE (Bordes et al., 2013) (ours) 89.2 88.1 88.7
Our R-MeN model 90.5 88.9 89.7
TransE-NMM (Nguyen et al., 2016) 86.8 88.6 87.7
TEKE H (Wang and Li, 2016) 84.8 84.2 84.5
Bilinear-COMP (Guu et al., 2015) 87.6 86.1 86.9
TransE-COMP (Guu et al., 2015) 84.9 87.6 86.3

Table 2: Accuracy results (in %) on the WN11 and
FB13 test sets. The last 4 rows report accuracies of
the models that use relation paths or incorporate with a
large external corpus. The best score is in bold while
the second best score is in underline. “Avg.” denotes
the averaged accuracy over two datasets.
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Figure 2: Accuracies for R-MeN and TransE w.r.t each
relation on WN11 and FB13.

4.2 Search personalization

Table 3 presents the experimental results on
SEARCH17, where R-MeN outperforms up-to-
date embedding models and obtains the new high-
est performances for both MRR and Hits@1 met-
rics. We restate the prospective strategy proposed
by Vu et al. (2017) in utilizing the KG embedding
methods to improve the ranking quality of the per-
sonalized search systems.
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Method MRR H@1
SE (Original rank) 0.559 38.5
CI (Teevan et al., 2011) 0.597 41.6
SP (Vu et al., 2015) 0.631 45.2
TransE (Bordes et al., 2013) 0.669 50.9
ConvKB (Nguyen et al., 2019a) 0.750 59.9
CapsE (Nguyen et al., 2019b) 0.766 62.1
Our R-MeN 0.778 63.6

Table 3: Experimental results on the SEARCH17 test
set. Hits@1 (H@1) is reported in %. Our improve-
ments over all baselines are statistically significant with
p < 0.05 using the paired t-test.
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Figure 3: Effects of the head size n and the number H
of attention heads on the validation sets.

4.3 Effects of hyper-parameters

Next, we present in Figure 3 the effects of hyper-
parameters consisting of the head size n, and the
number H of attention heads. Using large head
sizes (e.g., n = 1024) can produce better perfor-
mances on all 3 datasets. Additionally, using multi-
ple heads gives better results on WN11 and FB13,
while using a single head (i.e., H = 1) works best
on SEARCH17 because each query usually has a
single intention.

4.4 Ablation analysis

For the last experiment, we compute and report
our ablation results over 2 factors in Table 4.
In particular, the scores degrade on FB13 and
SEARCH17 when not using the positional embed-
dings. More importantly, the results degrade on

Model WN11 FB13 SEARCH17
Our R-MeN 91.3 88.8 0.792

(a) w/o Pos 91.3 88.7 0.787
(b) w/o M 89.6 88.4 0.771

Table 4: Ablation results on the validation sets. (i)
Without using the positional embeddings. (ii) Without
using the relational memory network, thus we define
f (s, r, o) = max (ReLU ([vs, vr, vo] ∗Ω))

T
w.

all 3 datasets without using the relational memory
network. These show that using the positional em-
beddings can explore the relative positions among
s, r and o; besides, using the relational memory net-
work helps to memorize and encode the potential
dependencies among relations and entities.

5 Conclusion

We propose a new KG embedding model, named R-
MeN, where we integrate transformer self-attention
mechanism-based memory interactions with a
CNN decoder to capture the potential dependencies
in the KG triples effectively. Experimental results
show that our proposed R-MeN obtains the new
state-of-the-art performances for both the triple
classification and search personalization tasks. In
future work, we plan to extend R-MeN for multi-
hop knowledge graph reasoning. Our code is
available at: https://github.com/daiquocnguyen/
R-MeN.
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