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Abstract

We propose a novel linearization of a con-
stituent tree, together with a new locally nor-
malized model. For each split point in a sen-
tence, our model computes the normalizer on
all spans ending with that split point, and then
predicts a tree span from them. Compared
with global models, our model is fast and par-
allelizable. Different from previous local mod-
els, our linearization method is tied on the
spans directly and considers more local fea-
tures when performing span prediction, which
is more interpretable and effective. Experi-
ments on PTB (95.8 F1) and CTB (92.1 F1)
show that our model significantly outperforms
existing local models and efficiently achieves
competitive results with global models.

1 Introduction

Constituent parsers map natural language sen-
tences to hierarchically organized spans (Cross and
Huang, 2016). According to the complexity of
decoders, two types of parsers have been studied,
globally normalized models which normalize prob-
ability of a constituent tree on the whole candidate
tree space (e.g. chart parser (Stern et al., 2017a))
and locally normalized models which normalize
tree probability on smaller subtrees or spans. It
is believed that global models have better parsing
performance (Gaddy et al., 2018). But with the fast
development of neural-network-based feature rep-
resentations (Hochreiter and Schmidhuber, 1997;
Vaswani et al., 2017), local models are able to get
competitive parsing accuracy while enjoying fast
training and testing speed, and thus become an ac-
tive research topic in constituent parsing.

Locally normalized parsers usually rely on tree
decompositions or linearizations. From the per-
spective of decomposition, the probability of trees
can be factorized, for example, on individual spans.
Teng and Zhang (2018) investigates such a model

which predicts probability on each candidate span.
It achieves quite promising parsing results, while
the simple local probability factorization still leaves
room for improvements. From the perspective of
linearization, there are many ways to transform
a structured tree into a shallow sequence. As a
recent example, Shen et al. (2018) linearizes a
tree with a sequence of numbers, each of which
indicates words’ syntactic distance in the tree (i.e.,
height of the lowest common ancestor of two ad-
jacent words). Similar ideas are also applied in
Vinyals et al. (2015), Choe and Charniak (2016)
and transition-based systems (Cross and Huang,
2016; Liu and Zhang, 2017a). With tree lineariza-
tions, the training time can be further accelerated
to O(n), but the parsers often sacrifice a clear con-
nection with original spans in trees, which makes
both features and supervision signals from spans
hard to use.

In this work, we propose a novel linearization of
constituent trees tied on their span representations.
Given a sentence W and its parsing tree T , for
each split point after wi in the sentence, we assign
it a parsing target di, where (di, i) is the longest
span ending with i in T . We can show that, for a
binary parsing tree, the set {(di, i)} includes all left
child spans in T . Thus the linearization is actually
sufficient to recover a parsing tree of the sentence.

Compared with prior work, the linearization is
directly based on tree spans, which might make
estimating model parameters easier. We also build
a different local normalization compared with the
simple per-span-normalization in Teng and Zhang
(2018). Specifically, the probability P (di|i) is nor-
malized on all candidate split points on the left of i.
The more powerful local model can help to further
improve parsing performance while retaining the
fast learning and inference speed (with a greedy
heuristic for handling illegal sequences, we can
achieve O(n log n) average inference complexity).
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(c) Span table and linearization.

Figure 1: The process of generating the linearization of the sentence “She loves writing code .”. Given an original
parsing tree (a), we firstly convert it to a right binary tree by recursively combining the rightmost two children
(b). Then, we represent the tree as a span table, and divide it into five parts according to the right boundaries of
the spans (c). Green and red circles represent left and right child spans respectively. Gray circles represent spans
which do not appear in the tree. In each part, there is only one longest span (green circles), thus the corresponding
value of that part is just the left boundary of the green circle.

We perform experiments on PTB and CTB. The
proposed parser significantly outperforms exist-
ing locally normalized models, and achieves com-
petitive results with state-of-the-art global mod-
els (95.8 F1 on PTB and 92.1 F1 on CTB). We
also evaluate how the new linearization helps parse
spans with different lengths and types.

To summarize, our main contributions include:

• Proposing a new linearization which has clear
interpretation (Section 2).

• Building a new locally normalized model with
constraints on span scores (Section 3).

• Compared with previous local models, the
proposed parser achieves better performance
(competitive with global models) and has
faster parsing speed (Section 4).

2 Tree Linearization

We first prepare some notations. Let W =
(w1, w2, . . . , wn) be a sentence, T be its binary
constituent tree and Aij → BikCkj be a derivation
in T . Denote (i, j)(0 ≤ i < j ≤ n) to be a span
fromwi+1 towj (for simplicity, we ignore the label
of a span).

Definition 1. Given a sentenceW and its tree T ,
we call D = (d1, d2, . . . , dn) a linearization of
T , where di ∈ {0, 1, . . . , i − 1} and (di, i) is the
longest span ending with i in T .

Clearly, there is only one such linearization for
a tree. We have an equal definition of D, which

shows the span (di, i) is a left child span.

Proposition 1. Given a tree T , the set of spans
{(di, i) | i = 1, 2, . . . , n} is equal to the set of left
child spans 1

S = {(i, j) | ∃Aik → BijCjk} ∪ {(0, n)}.

Proof. First, for each j, there is only one left child
span (i, j) ending with j, otherwise if (i′, j) is a
left child span with i′ 6= i (e.g. i′ < i), (i, j)
must also be a right child span. Therefore |S| = n.
Similarly, if i 6= dj , (i, j) should be a right child
span of (dj , j).

Thus we can generate the linearization using
Algorithm 1. For span (i, j) and its gold split k,
we can get dk = i. Then we recursively calculate
the linearization of span (i, k) and (k, j). Note
that the returned linearization D does not contain
dn, so we append zero (dn = 0 for the root node)
to the end as the final linearization. Figure 1 is a
generation process of sentence “She loves writing
code .”. From the span table, it is obvious that there
is only one left child span (green circles) ending
with the same right boundary.

In the following discussions, we will use D and
S interchangeably. Next, we show two properties
of a legal D.

Proposition 2. A linearization D can recover a
tree T iff.

1. 0 ≤ di < i,∀1 ≤ i ≤ n.
1The root node is also regarded as a left child span.



3269

Algorithm 1 Tree linearization.
1: function LINEARIZATION(i, j, T )
2: if i+ 1 = j then
3: D ← []
4: else
5: k ← the split point of span (i, j) in T
6: Dl ← LINEARIZATION(i, k, T )
7: Dr ← LINEARIZATION(k, j, T )
8: D ← Dl ⊕ [i]⊕Dr

9: end if
10: return D
11: end function

2. dj is not in the range (di, i), ∀j > i.

Proof. The necessity is obvious. We show the suf-
ficiency by induction on the sentence length. When
n = 1, the conclusion stands. Assuming for all
linearizations with length less than n, property 1
and 2 lead to a well-formed tree, and now consider
a linearization with length n.

Define k = max{k′ | dk′ = 0, k′ < n}. Since
d1 = 0 (by property 1), k is not none. We split the
sentence into (0, k), (k, n), and claim that after re-
moving (0, n), the spans inD are either in (0, k) or
(k, n), thus by induction we obtain the conclusion.
To validate the claim, for k′ < k, by property 1, we
have dk′ < k′ < k, thus (dk′ , k′) is in (0, k). For
k′ > k, by property 2, either dk′ ≥ k or dk′ = 0.
Since k is the largest index with dk = 0, we have
dk′ 6= 0, which means (dk′ , k′) is in (k, n). There-
fore, we show the existence of a tree from D. The
tree is also unique, because if two trees T and T ′
have the same linearization, by Proposition 1, we
have T = T ′.

Proposition 2 also suggests a top-down algo-
rithm (Algorithm 2) for performing tree inference
given a legal linearization. For span (i, j) (with la-
bel `(i, j)), we find the rightmost split k satisfying
dk = i, and then recursively decode the two sub-
trees rooted at span (i, k) and (k, j), respectively.
When D does not satisfy property 2 (our model
can ensure property 1), one solution is to seek a
minimum change of D to make it legal. However,
it is reduced to a minimum vertex cover problem
(regarding each span (di, i) as a point, if two spans
violate property 2, we connect an edge between
them. ). We can also slightly modify Algorithm 2
to perform an approximate inference (Section 3.4).

Algorithm 2 Tree reconstruction.
1: function TREE(i, j,D)
2: if i+ 1 = j then
3: node← Leaf(wj , `(i, j))
4: else
5: k ← max {k′ | dk′ = i, i < k′ < j}
6: childl ← TREE(i, k,D)
7: childr ← TREE(k, j,D)
8: node← Node(childl, childr, `(i, j))
9: end if

10: return node
11: end function

Finally we need to deal with the linearization of
non-binary trees. For spans having more than two
child spans, there is no definition for their middle
child spans whether they are left children or right
children, thus Proposition 1 might not stand. We
recursively combine two adjacent spans from right
to left using an empty label ∅. Then the tree can be
converted to a binary tree (Stern et al., 2017a). For
a unary branch, we treat it as a unique span with a
new label which concatenates all the labels in the
branch.

3 The Parser

In this section, we introduce our encoder, decoder
and inference algorithms in detail. Then we com-
pare our normalization method with two other
methods, globally normalized and existing locally
normalized methods.

3.1 Encoder

We represent each word wi using three pieces of in-
formation, a randomly initialized word embedding
ei, a character-based embedding ci obtained by a
character-level LSTM and a randomly initialized
part-of-speech tag embedding pi. We concatenate
these three embeddings to generate a representation
of word wi,

xi = [ei; ci;pi].

To get the representation of the split points, the
word representation matrix X = [x1,x2, . . . ,xn]
is fed into a bidirectional LSTM or Transformer
(Vaswani et al., 2017) firstly. Then we calculate
the representation of the split point between wi and
wi+1 using the outputs from the encoders,

hi = [
→
hi;
←
hi+1]. (1)
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Note that for Transformer encoder,
→
hi is calculated

in the same way as Kitaev and Klein (2018a).

3.2 Decoder

Since a split point can play two different roles when
it is the left or right boundary of a span, we use two
different vectors to represent the two roles inspired
by Dozat and Manning (2017). Concretely, we
use two multi-layer perceptrons to generate two
different representations,

li = MLPl(hi), ri = MLPr(hi). (2)

Then we can define the score of span (i, j) using
a biaffine attention function (Dozat and Manning,
2017; Li et al., 2019),

αij = l>i Wrj + b>1 li + b>2 rj ,

where W, b1 and b2 are all model parameters. αij

measures the possibility of (i, j) being a left child
span in the tree.

Different from Stern et al. (2017a) which does
global normalization on the probability of the
whole tree and Teng and Zhang (2018) which does
local normalization on each candidate span, we
do normalization on all spans with the same right
boundary j. Thus the probability of span (i, j) to
be a left child span is defined as,

P (i|j) = Softmaxi(αij), ∀i < j. (3)

Finally, we can predict the linearization using the
probability P (i|j),

dj = argmax
i

P (i|j),∀i < j. (4)

For label prediction, we first infer the tree struc-
ture from the linearization (Section 3.4). 2 Then we
use a multi-layer perceptron to calculate the label
probability of span (i, j),

P (`|i, j) = Softmax(MLPlabel([li; rj ]))`.

Final predicted label of span (i, j) is `(i, j) =
argmax` P (`|i, j).

2Note that we would perform label prediction without the
tree inference step which will train the entire parser in linear
time as sequence labelling models (Gómez-Rodrı́guez and
Vilares, 2018), but we empirically find that the tree structure
helps improving the label classifier.

3.3 Training Objective

Given a gold parsing tree T and its linearization
(d1, d2, . . . , dn), we can calculate the loss using the
negative log-likelihood:

L = − 1

n
(

n∑
i=1

logP (di|i)+
∑

(i,j,`)∈T

logP (`|i, j)).

The loss function consists of two parts. One is
the structure loss, which is only defined on the left
child spans. The other one is the label loss, which
is defined on all the spans in T .

3.4 Tree Inference

To reconstruct the tree structure from the predicted
linearization (d1, d2, . . . , dn), we must deal with
illegal sequences. One solution is to convert an
illegal linearization to a legal one, and then use
Algorithm 2 to recover the tree. However, the opti-
mal converting algorithm is NP hard as discussed in
Section 2. We propose two approximate reconstruc-
tion methods, both of which are based on replacing
line 5 of Algorithm 2. One is to find the largest k
satisfying dk ≤ i,

k ← max {k′ | dk′ ≤ i, i < k′ < j}.

The other is to find the index k of the smallest dk
(if there are multiple choices, we choose the largest
one),

k ← argmin
k′

dk′ .

Both methods are applicable to legal situations, and
they have similar performance in our empirical eval-
uations. The inference time complexity is O(n2)
in the worst-case for unbalanced trees, while in av-
erage it is O(n log n) (which is the same as Stern
et al. (2017a)).

Finally, instead of reconstructing trees from lin-
earization sequences (d1, d2, . . . , dn), we could
have an accurate CKY-style decoding algorithm
from probabilities P (i|j) (Equation 3). Specifi-
cally, it maximizes the product of left child span
probabilities,

G(i, j) = max {P (i|k)× G(k, j) | i < k < j},

where G(i, j) represents the highest probability of
subtree with root node (i, j). We can calculate
G(0, n) using dynamic programming algorithm and
back-trace the tree accordingly. The complexity is
O(n3).
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Figure 2: Factor graphs of three types of normalization. Green circles represent all potential spans in the span table.
Red blocks represent scores of the spans. Blue blocks represent normalization operations and dotted lines connect
all the spans involved in the normalization. Global normalization (a) needs to calculate the sum of all span scores
in parsing tree T . Existing local normalization (e.g. Teng and Zhang (2018)) (b) only calculates the probability of
each candidate span. Our method (c) does local normalization on all the spans with the same right boundary.

3.5 More Discussions on Normalization

We can compare our locally normalized model
(Equation 3) with other probability factorizations
of constituent trees (Figure 2).

Global normalization (Figure 2(a)) performs
marginalization over all candidate trees, which re-
quires dynamic programming decoding. As a local
model, our parser is a span-level factorization of the
tree probability, and each factor only marginalizes
over a linear number of items (i.e., the probabil-
ity of span (i, j) is normalized with all scores of
(i′, j), i′ < j). It is easier to be parallelized and
enjoys a much faster parsing speed. We will show
that its performance is also competitive with global
models.

Teng and Zhang (2018) studies two local nor-
malized models over spans, namely the span model
and the rule model. The span model simply con-
siders individual spans independently (Figure 2(b))
which may be the finest factorization. Our model
lies between it and the global model.

The rule model considers a similar normaliza-
tion with our model. If it is combined with the
top-down decoding (Stern et al., 2017a), the two
parsers look similar. 3 We discuss their differ-
ences. The rule model takes all ground truth spans
from the gold trees, and for each span (i, j), it
compiles a probability P ((i, j)← (i, k)(k, j)) for
its ground truth split k. Our parser, on the other
side, factorizes on each word. Therefore, for the

3We thank an anonymous reviewer for pointing out the
connection. The following discussions are based on his/her
detailed reviews.

same span (i, j), their normalization is constrained
within (i, j), while ours is over all i′ < j. The
main advantage of our parser is simpler span repre-
sentations (not depend on parent spans): it makes
the parser easy to batch for sentences with differ-
ent lengths and tree structures since each di can be
calculated offline before training.

4 Experiments

4.1 Data and Settings

Datasets and Preprocessing All models are
trained on two standard benchmark treebanks, En-
glish Penn Treebank (PTB) (Marcus et al., 1993)
and Chinese Penn Treebank (CTB) 5.1. The
POS tags are predicted using Stanford Tagger
(Toutanova et al., 2003). To clean the treebanks,
we strip the leaf nodes with POS tag -NONE- from
the two treebanks and delete the root nodes with
constituent type ROOT. For evaluating the results,
we use the standard evaluation tool 4.

For words in the testing corpus but not in the
training corpus, we replace them with a unique
label <UNK>. We also replace the words in the
training corpus with the unknown label <UNK>
with probability punk(w) =

z
z+c(w) , where c(w) is

the number of time word w appears in the training
corpus and we set z = 0.8375 as Cross and Huang
(2016).

Hyperparameters We use 100D GloVe (Pen-
nington et al., 2014) embedding for PTB and 80D
structured-skipgram (Ling et al., 2015) embedding

4http://nlp.cs.nyu.edu/evalb/

http://nlp.cs.nyu.edu/evalb/
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Type NP VP S PP SBAR ADVP ADJP QP WHNP
Count 18630 8743 5663 5492 1797 1213 893 490 429
PSN Model 93.15 91.81 91.21 89.73 87.81 86.89 73.01 89.80 97.20
Our Model 93.42 92.62 91.95 89.91 88.93 87.39 75.14 91.63 97.44
Difference +0.27 +0.81 +0.74 +0.18 +1.12 +0.50 +2.13 +1.83 +0.24

Table 1: Comparison on different phrases types. Here we only list top nine types.

1 6 11 16 21 26 31 36 41 46
Span length
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Figure 3: F1 scores against span length. Here the
length l represents lengths between [l, l + 4].

for CTB. For character encoding, we randomly ini-
tialize the character embeddings with dimension
64.

We use Adam optimizer with initial learning rate
1.0 and epsilon 10−9. For LSTM encoder, we use
a hidden size of 1024, with 0.33 dropout in all the
feed-forward and recurrent connections. For Trans-
former encoder, we use the same hyperparameters
as Kitaev and Klein (2018a). For split point repre-
sentation, we apply two 1024-dimensional hidden
size feed-forward networks. All the dropout we
use in the decoder layer is 0.33. We also use BERT
(Devlin et al., 2019) (uncased, 24 layers, 16 atten-
tion heads per layer and 1024-dimensional hidden
vectors) and use the output of the last layer as the
pre-trained word embeddings. 5

Training Details We use PyTorch as our neu-
ral network toolkit and run the code on a NVIDIA
GeForce GTX Titan Xp GPU and Intel Xeon E5-
2603 v4 CPU. All models are trained for up to 150
epochs with batch size 150 (Zhou and Zhao, 2019).

4.2 Main Results
Table 2 shows the final results on PTB test set. Our
models (92.6 F1 with LSTM, 93.7 F1 with Trans-

5The source code for our model is publicly
available: https://github.com/AntNLP/
span-linearization-parser

former) significantly outperform the single locally
normalized models. Compared with globally nor-
malized models, our models also outperform those
parsers with LSTM encoder and achieve a competi-
tive result with Transformer encoder parsers. With
the help of BERT (Devlin et al., 2018), our models
with two encoders both achieve the same perfor-
mance (95.8 F1) as the best parser (Zhou and Zhao,
2019). Table 3 shows the final results on CTB test
set. Our models (92.1 F1) also significantly outper-
form local models and achieve competitive result
amongst global models.

Compared with Teng and Zhang (2018) which
does local normalization on single span, our model
increases 0.2 F1 on PTB, which shows that doing
normalization on more spans is really better. Our
model also significantly outperforms Shen et al.
(2018) which predicts the syntactic distance of a
tree. This indicates the superiority of our lineariza-
tion method directly tied on the spans.

4.3 Evaluation

To better understand the extent to which our model
transcends the locally normalized model which
does normalization on a single span described in
Teng and Zhang (2018), we do several experiments
to compare the performance about different lengths
of spans and different constituent types.

In order to make a fair comparison, we imple-
ment their model by ourselves using the same
LSTM encoder as ours. Besides, we ignore the
LSTM for label prediction and complex span repre-
sentations in their models and use simpler settings.
Our own implementation achieves the same result
as they report (92.4 F1). For convenience, we call
their model per-span-normalization (PSN for short)
model in the following.

Influence of Span Length First, we analyse the
influence of different lengths of spans and the re-
sults are shown in Figure 3. We find that for
sentences of lengths between [11, 45], our model
significantly outperforms PSN model. For short

https://github.com/AntNLP/span-linearization-parser
https://github.com/AntNLP/span-linearization-parser
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Model LR LP F1
Global Model
Stern et al. (2017a) 90.6 93.0 91.8
Gaddy et al. (2018) 91.8 92.4 92.1
Kitaev and Klein (2018a)♠ 93.2 93.9 93.6
Zhou and Zhao (2019)♠ 93.6 93.9 93.8
Local Model
Vilares et al. (2019) - - 90.6
Liu et al. (2018) - - 91.2
Ma et al. (2017) - - 91.5
Shen et al. (2018) 91.7 92.0 91.8
Liu and Zhang (2017a) - - 91.8
Hong and Huang (2018) 91.5 92.5 92.0
Teng and Zhang (2018) 92.2 92.5 92.4
Dyer et al. (2016)♥ - - 92.4
Stern et al. (2017b)♥ 92.6 92.6 92.6
Our Model 92.3 92.9 92.6
Our Model♠ 93.3 94.1 93.7
Pre-training/Ensemble/Re-ranking
Liu et al. (2018) - - 92.3
Choe and Charniak (2016) - - 93.8
Liu and Zhang (2017a) - - 94.2
Fried et al. (2017) - - 94.7
Kitaev and Klein (2018a)♠ 94.9 95.4 95.1
Kitaev and Klein (2018b)♠ 95.5 95.7 95.6
Zhou and Zhao (2019)♠ 95.7 96.0 95.8
Our Model (+BERT) 95.6 96.0 95.8
Our Model (+BERT)♠ 95.5 96.1 95.8

Table 2: Final results on the PTB test set. ♠ means
the models use Transformer as their encoder. ♥ means
generative models.

spans, PSN model only needs to consider few spans,
which is more local and it is enough for the per-
span-normalization to handle this situation. For
long spans, our model needs to do normalization
on more spans and the state space becomes large
linearly. So the accuracy decreases fast, and there
is no advantage compared with PSN model which
uses CKY algorithm for inference. For spans of
other lengths, our locally normalized method can
take all spans with the same right boundary into
consideration and add sum-to-one constraints on
their scores. As a result, our model outperforms
PSN model even without the help of accurate infer-
ence.

Influence of Constituent Type Then we com-
pare the accuracy of different constituent types.
Table 1 shows the results of nine types which oc-
cur most frequently. Our model all performs better

Model LR LP F1
Global Model
Kitaev and Klein (2018a)♠ 86.8 88.1 87.4
Zhou and Zhao (2019)♠ 89.4 90.1 89.7
Local Model
Dyer et al. (2016) - - 84.6
Liu et al. (2018) - - 85.4
Liu and Zhang (2017b) 85.2 85.9 85.5
Vilares et al. (2019) - - 85.6
Liu and Zhang (2017a) - - 86.1
Shen et al. (2018) 86.4 86.6 86.5
Fried and Klein (2018) - - 87.0
Teng and Zhang (2018) 87.1 87.5 87.3
Our Model 87.9 89.3 88.6
Our Model♠ 87.4 89.9 88.7
Pre-training/Ensemble/Re-ranking
Kitaev and Klein (2018b)♠ 91.6 92.0 91.8
Our Model (+BERT) 91.7 92.4 92.0
Our Model (+BERT)♠ 91.9 92.3 92.1

Table 3: Final results on the CTB test set. ♠ means
the models use Transformer as their encoder. Note that
Zhou and Zhao (2019) uses gold POS tags in their code,
so we rerun their code using predicted POS tags for fair
comparison.

Model LR LP F1
Full model 92.31 92.87 92.59
- MLPl and MLPr 92.15 92.72 92.43
- normalization 91.25 92.93 92.08
+ label linearization 90.79 91.56 91.17

Table 4: Ablation test on the PTB test set. Here we use
the same settings as in Section 4.3.

than PSN model, especially in types SBAR, ADJP
and QP. When optimizing the representation of one
split point, our model can consider all of the words
before it, which can be helpful to predict some
types. For example, when we predict an adjec-
tive phrase (ADJP), its representation has fused the
words’ information before it (e.g. linking verb like
“is”), which can narrow the scope of prediction.

4.4 Ablation Study

We perform several ablation experiments by modi-
fying the structure of the decoder layer. The results
are shown in Table 4.

First, we delete the two different split point rep-
resentations described in Equation (2) and directly
use the output of LSTM as the final representation.
Final performance slightly decreases, which indi-
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Inference Algorithm LR LP F1
G(i, j) 92.31 92.87 92.59
k = max {k′ | dk′ ≤ i} 92.39 92.75 92.57
k = argmink′ dk′ 91.93 93.21 92.57

Table 5: Results of different inference algorithms de-
scribed in Section 3.4.

Model sents/sec
Global Model
Stern et al. (2017a) 20
Kitaev and Klein (2018a)♠ (w. Cython) 150
Zhou and Zhao (2019)♠ (w. Cython) 159
Local Model
Teng and Zhang (2018) 22
Stern et al. (2017a) 76
Liu and Zhang (2017b) 79
Shen et al. (2018) 111
Shen et al. (2018) (w/o tree inference) 351
Vilares et al. (2019) 942
Our Model 220
Our Model♠ 155

Table 6: Parsing speeds on the PTB test set. ♠ means
the models use Transformer as their encoders. “w.
Cython” stands for using Cython to optimize the
python code. “w/o tree inference” stands for evaluat-
ing without tree inference. The model in Kitaev and
Klein (2018a) is ran by ourselves, and other speeds are
extracted from their original papers.

cates that distinguishing the representations of left
and right boundaries of a span is really helpful.

Then we delete the local normalization on partial
spans and only calculate the probability of each
span to be a left child. The inference algorithm is
the same as our full model. Final result decreases
by 0.5 F1, despite improvement on precision. This
might be because our normalization method can
add constraints on all the spans with the same right
boundary, which makes it effective when only one
span is correct.

Finally, we try to predict the labels sequen-
tially, which means assigning each split i a tu-
ple (di, `

left
i , `

right
i ), where `left

i and `right
i represent

the labels of the longest spans ending and starting
with i in the tree, respectively. This may make our
model become a sequence labeling model similar
to Gómez-Rodrı́guez and Vilares (2018). However,
the performance is very poor, and this is largely
due to the loss of structural information in the label
prediction. Therefore, how to balance efficiency
and label prediction accuracy might be a research

problem in the future.

4.5 Inference Algorithms

We compare three inference algorithms described
in Section 3.4. The results are shown in Table 5.
We find that different inference algorithms have no
obvious effect on the performance, mainly due to
the powerful learning ability of our model. Thus we
use the third method which is the most convenient
to implement.

4.6 Parsing Speed

The parsing speeds of our parser and other parsers
are shown in Table 6. Although our inference com-
plexity is O(n log n), our speed is faster than other
local models, except Shen et al. (2018) which evalu-
ates without tree inference and Vilares et al. (2019)
which utilizes a pure sequence tagging framework.
This is mainly due to the simplicity of our model
and the parallelism of matrix operations for struc-
ture prediction. Compared with globally normal-
ized parsers like Zhou and Zhao (2019) and Ki-
taev and Klein (2018a), our model is also faster
even if they use optimization for python code (e.g.
Cython 6). Other global model like Stern et al.
(2017a) which infers in O(n3) complexity is much
slower than ours, and this shows the superiority of
our linearization in speed.

5 Related Work

Globally normalized parsers often have high perfor-
mance on constituent parsing due to their search on
the global state space (Stern et al., 2017a; Kitaev
and Klein, 2018a; Zhou and Zhao, 2019). How-
ever, they suffer from high time complexity and
are difficult to parallelize. Thus many efforts have
been made to optimize their efficiency (Vieira and
Eisner, 2017).

Recently, the rapid development of encoders
(Hochreiter and Schmidhuber, 1997; Vaswani et al.,
2017) and pre-trained language models (Devlin
et al., 2018) have enabled local models to achieve
similar performance as global models. Teng and
Zhang (2018) propose two local models, one does
normalization on each candidate span and one on
each grammar rule. Their models even outperform
the global model in Stern et al. (2017a) thanks to
the better representation of spans. However, they
still need anO(n3) complexity inference algorithm
to reconstruct the final parsing tree.

6https://cython.org/

https://cython.org/
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Meanwhile, many work do research on faster se-
quential models. Transition-based models predict
a sequence of actions and achieve an O(n) com-
plexity (Watanabe and Sumita, 2015; Cross and
Huang, 2016; Liu and Zhang, 2017a). However,
they suffer from the issue of error propagation and
cannot be parallel. Sequence labeling models re-
gard tree prediction as sequence prediction problem
(Gómez-Rodrı́guez and Vilares, 2018; Shen et al.,
2018). These models have high efficiency, but their
linearizations have no direct relation to the spans,
so the performance is much worse than span-based
models.

We propose a novel linearization method closely
related to the spans and decode the tree in
O(n log n) complexity. Compared with Teng and
Zhang (2018), we do normalization on more spans,
thus achieve a better performance.

In future work, we will apply graph neural net-
work (Velickovic et al., 2018; Ji et al., 2019; Sun
et al., 2019) to enhance the span representation.
Due to the excellent properties of our lineariza-
tion, we can jointly learn constituent parsing and
dependency parsing in one graph-based model. In
addition, there is also a right linearization defined
on the set of right child spans. We can study how
to combine the two linear representations to further
improve the performance of the model.

6 Conclusion

In this work, we propose a novel linearization of
constituent trees tied on the spans tightly. In addi-
tion, we build a new normalization method, which
can add constraints on all the spans with the same
right boundary. Compared with previous local
normalization methods, our method is more ac-
curate for considering more span information, and
reserves the fast running speed due to the paralleliz-
able linearization model. The experiments show
that our model significantly outperforms existing
local models and achieves competitive results with
global models.
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