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Abstract

The main barrier to progress in the task of
Formality Style Transfer is the inadequacy of
training data. In this paper, we study how
to augment parallel data and propose novel
and simple data augmentation methods for this
task to obtain useful sentence pairs with easily
accessible models and systems. Experiments
demonstrate that our augmented parallel data
largely helps improve formality style transfer
when it is used to pre-train the model, lead-
ing to the state-of-the-art results in the GYAFC
benchmark dataset1.

1 Introduction

Formality style transfer (FST) is defined as the task
of automatically transforming a piece of text in
one particular formality style into another (Rao
and Tetreault, 2018). For example, given an in-
formal sentence, FST aims to preserve the style-
independent content and output a formal sentence.

Previous work tends to leverage neural networks
(Xu et al., 2019; Niu et al., 2018; Wang et al., 2019)
such as seq2seq models to address this challenge
due to their powerful capability and large improve-
ment over the traditional rule-based approaches
(Rao and Tetreault, 2018). However, the perfor-
mance of the neural network approaches is still
limited by the inadequacy of training data: the pub-
lic parallel corpus for FST training – GYAFC (Rao
and Tetreault, 2018) – contains only approximately
100K sentence pairs, which can hardly satiate the
neural models with millions of parameters.

To tackle the data sparsity problem for FST, we
propose to augment parallel data with three specific
data augmentation methods to help improve the
model’s generalization ability and reduce the over-
fitting risk. Besides applying the widely used back

∗Work done during the internship at Microsoft Research.
1Our augmented data is available at https://github.

com/lancopku/Augmented_Data_for_FST

FST
(test
instance)

Input
(informal)

I dunno, even if she like you, and 
then she 'll prob.

Reference
(formal)

I don't know. She probably will if 
she likes you.

F-Dis
Source I dunno... good luck.             

French Je ne sais pas... bonne chance.

Target I don't know ... Good luck.   

M-Task
Source I think she like cat too.

Target I think she likes cat too.

MT

MT

Figure 1: An example that Formality Style Transfer
(FST) benefits from data augmented via formality
discrimination (F-Dis) and multi-task transfer (M-
Task). The mapping knowledge indicated by the color
(blue→pink) in FST test instance occur in the pairs aug-
mented by F-Dis and M-Task. F-Dis identifies useful
sentence pairs from paraphrased sentence pairs gener-
ated by cross-lingual MT, while M-Task utilizes train-
ing data from GEC to help formality improvement.

translation (BT) method (Sennrich et al., 2016a) in
Machine Translation (MT) to FST, our data aug-
mentation methods include formality discrimina-
tion (F-Dis) and multi-task transfer (M-Task). They
are both novel and effective in generating parallel
data that introduces additional formality transfer
knowledge that cannot be derived from the original
training data. Specifically, F-Dis identifies use-
ful pairs from the paraphrased pairs generated by
cross-lingual MT; while M-task leverages the train-
ing data of Grammatical Error Correction (GEC)
task to improve formality, as shown in Figure 1.

Experimental results show that our proposed
data augmentation methods can harvest large
amounts of augmented parallel data for FST. The
augmented parallel data proves helpful and signifi-
cantly helps improve formality style transfer when
it is used to pre-train the model, allowing the model
to achieve the state-of-the-art results in the GYAFC
benchmark dataset.

https://github.com/lancopku/Augmented_Data_for_FST
https://github.com/lancopku/Augmented_Data_for_FST
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2 Approach

2.1 Data Augmentation for Formality Style
Transfer

We study three data augmentation methods for for-
mality style transfer: back translation, formality
discrimination, and multi-task transfer. We focus
on informal→formal style transfer since it is more
practical in real application scenarios.

2.1.1 Back translation
The original idea of back translation (BT) (Sen-
nrich et al., 2016a) is to train a target-to-source
seq2seq (Sutskever et al., 2014; Cho et al., 2014)
model and use the model to generate source lan-
guage sentences from target monolingual sentences,
establishing synthetic parallel sentences. We gen-
eralize it as our basic data augmentation method
and use the original parallel data to train a seq2seq
model in the formal-to-informal direction. Then,
we can feed formal sentences to this model that is
supposed to be capable of generating their informal
counterparts. The formal input and the informal
output sentences can be paired to establish aug-
mented parallel data.

2.1.2 Formality discrimination
According to the observation that an informal sen-
tence tends to become a formal sentence after
a round-trip translation by MT models that are
mainly trained with formal text like news, we pro-
pose a novel method called formality discrimina-
tion to generate formal rewrites of informal source
sentences by means of cross-lingual MT models.
A typical example is shown in Figure 2.

To this end, we collect a number of potentially
informal English sentences (e.g., from online fo-
rums). Formally, we denote the collected sentences
as S = {si}|S|i=1 where si represents the i-th sen-
tence. We first translate2 them into a pivot language
(e.g., French) and then translate them back into En-
glish, as Figure 2 shows. In this way, we obtain a
rewritten sentence s′i for each sentence si ∈ S.

To verify whether s′i improves the formality com-
pared to si, we introduce a formality discriminator
which in our case is a Convolutional Neural Net-
work (CNN) to quantify the formality level of a
sentence. We trained the formality discriminator
with the sentences and their formality labels in
the FST corpus (e.g., GYAFC). The pairs (si, s′i)
where s′i largely improves the formality of si will

2https://translate.google.com/

Input i'm gonna trust my gut feelings.     (0.12)

Output I will trust my instinct.             (0.96)

French je vais faire confiance à mon instinct.
MT

MT

Figure 2: Formality discrimination for FST. The num-
bers following the sentences are formality scores pre-
dicted by a formality discriminator. The pair (con-
nected by the red dashed arrow) that obtains significant
formality improvement will be kept as augmented data.

be selected as the augmented data. The resulting
data set Taug is such a set of pairs:

Taug = {(si, s′i)|P+(s
′
i)− P+(si) ≥ σ} (1)

where P+(x) is the probability of sentence x being
formal, predicted by the discriminator, and σ is the
threshold3 for augmented data selection. In this
way, we can obtain much helpful parallel data with
valuable rewriting knowledge that is not covered
by the original parallel data.

2.1.3 Multi-task transfer
In addition to back translation and formality dis-
crimination that use artificially generated sentence
pairs for data augmentation, we introduce multi-
task transfer that uses annotated sentence pairs
from other seq2seq tasks. We observe that infor-
mal texts are usually ungrammatical while formal
texts are almost grammatically correct. Therefore,
a desirable FST model should possess the ability
to detect and rewrite ungrammatical texts, which
has been verified by the previous empirical study
(Ge et al., 2019) showing that using a state-of-the-
art grammatical error correction (GEC) model to
post-process the outputs of an FST model can im-
prove the result. Inspired by this observation, we
propose to transfer the knowledge from GEC to
FST by leveraging the GEC training data as the
augmented parallel data to help improve formal-
ity. An example is illustrated in Figure 1 in which
the annotated data for GEC provides knowledge to
help the model rewrite the ungrammatical informal
sentence.

2.2 Pre-training with Augmented Data

In general, massive augmented parallel data can
help a seq2seq model to learn contextualized repre-
sentations, sentence generation and source-target
alignments better. When the augmented parallel

3σ = 0.6 in our experiments.



3223

data is available, previous studies (Sennrich et al.,
2016a; Edunov et al., 2018; Karakanta et al., 2018;
Wang et al., 2018) for seq2seq tasks are inclined
to train a seq2seq model with original training
data and augmented data simultaneously. How-
ever, augmented data is usually noisier and less
valuable than original training data. In simultane-
ous training, the massive augmented data tends to
overwhelm the original data and introduce unneces-
sary and even erroneous editing knowledge, which
is undesirable for our task.

To better exploit the augmented data, we pro-
pose to first pre-train the model with augmented
parallel data and then fine-tune the model with the
original training data. In our pre-training & fine-
tuning (PT&FT) approach, the augmented data is
not treated equally to the original data; instead it
only serves as prior knowledge that can be updated
and even overwritten during the fine-tuning phase.
In this way, the model can better learn from the orig-
inal data without being overwhelmed or distracted
by the augmented data. Moreover, separating the
augmented and original data into different training
phases makes the model become more tolerant to
noise in augmented data, which reduces the quality
requirement for the augmented data and enables
the model to use noisier augmented data and even
training data from other tasks.

3 Experiments

In this section, we present the experimental set-
tings and related experimental results. We focus
on informal→formal style transfer since it is more
practical in real application scenarios.

3.1 Experimental Settings

We use GYAFC benchmark dataset (Rao and
Tetreault, 2018) for training and evaluation.
GYAFC’s training split contains a total of 110K an-
notated informal-formal parallel sentences, which
are annotated via crowd-sourcing of two domains:
Entertainment & Music (E&M) and Family & Re-
lationships (F&R). In its test split, there are 1,146
and 1,332 informal sentences in E&M and F&R do-
main respectively and each informal sentence has
4 referential formal rewrites. We use all the three
data augmentation methods we introduced and ob-
tain a total of 4.9M augmented pairs. Among them,
1.6M are generated by back-translating (BT) formal
sentences identified (as formal) by the formality
discriminator in E&M and F&R domain on Yahoo

Model E&M F&R
BLEU BLEU

Original data 69.44 74.19
Augmented data 51.83 55.66
ST 59.93 63.16
ST (up-sampling) 68.43 73.04
ST (down-sampling) 68.54 73.69
PT&FT 72.63 77.01

Table 1: The comparison of simultaneous training (ST)
and Pre-train & Fine-tuning (PT&FT). Down-sampling
and up-sampling are for balancing the size of the aug-
mented data and the original data. Specifically, down-
sampling samples augmented data, while up-sampling
increases the frequency of the original data.

Answers L6 corpus4, 1.5M are derived by formality
discrimination (F-Dis) by using French, German
and Chinese as pivot languages, and 1.8M are from
multi-task transfer (M-task) from the public GEC
data (Lang-8 (Mizumoto et al., 2011; Tajiri et al.,
2012) and NUCLE (Dahlmeier et al., 2013)). The
informal sentences used in F-Dis strategy are also
from Yahoo Answers L6 corpus.

We use the Transformer (base) (Vaswani et al.,
2017) as the seq2seq model with a shared vocab-
ulary of 20K BPE (Sennrich et al., 2016b) to-
kens. We adopt the Adam optimizer to pre-train
the model with the augmented parallel data and
then fine-tune it with the original parallel data. In
pre-training, the dropout rate is set to 0.1 and the
learning rate is set to 0.0005 with 8000 warmup
steps and scheduled to an inverse square root decay
after warmup; while during fine-tuning, the learn-
ing rate is set to 0.00025. We pre-train the model
for 80k steps and fine-tune the model for a total of
15k steps. The CNN we use as the formality dis-
criminator has filter sizes of 3, 4, 5 with 100 feature
maps. The dropout rate is set to 0.5. It achieves an
accuracy of 93.09% over the GYAFC test set.

3.2 Experimental Results

3.2.1 Effect of Proposed Approach
Table 1 compares the results of the models trained
with simultaneous training (ST) and pre-training
& fine-tuning (PT&FT). ST with the augmented
and original data leads to a performance decline,
because the noisy augmented data cannot achieve
desirable performance by itself and may distract
the model from exploiting the original data in si-
multaneous training. In contrast, PT&FT only uses

4https://webscope.sandbox.yahoo.com/catalog.php
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Model E&M F&R
BLEU BLEU

Original data 69.44 74.19
Pre-training & Fine-tuning

+ BT 71.18 75.34
+ F-Dis 71.72 76.24
+ M-Task 71.91 76.21
+ BT + M-Task + F-Dis 72.63 77.01

Table 2: The comparison of different data augmenta-
tion methods for FST.

the augmented data in the pre-training phase and
treats it as the prior knowledge supplementary to
the original training data, reducing the negative
effects of the augmented data and improving the
results.

Table 2 compares the results of different data
augmentation methods with PT&FT. Pre-training
with augmented data generated by BT enhances the
generalization ability of the model, thus we observe
an improvement over the baseline. However, it does
not introduce any new informal-to-formal trans-
fer knowledge, leading to the least improvement
among the three methods. In contrast, both F-Dis
and M-Task introduce abundant transfer knowledge
for FST. The augmented data of F-Dis includes var-
ious informal→formal rewrite knowledge derived
from the MT models, allowing the model to better
handle the test instances whose patterns are never
seen in the original training data; while M-Task
introduces GEC knowledge that helps improve for-
mality in terms of grammar.

We then combine all these beneficial augmented
data for pre-training. As expected, the combination
strategy achieves further improvement as shown
in Table 2 since the it enables the model to take
advantage of all the data augmentation methods.

3.2.2 Comparison with State-of-the-Art
Results

We compare our approach to the following previous
approaches in the GYAFC benchmark:

• Rule, PBMT, NMT, PBMT-NMT: Rule-based,
phrase-based MT, NMT, PBMT-NMT hybrid
model (Rao and Tetreault, 2018).

• NMT-MTL: NMT model with multi-task
learning (Niu et al., 2018).

• GPT-CAT, GPT-Ensemble: fine-tuned
encoder-decoder models (Wang et al.,
2019) initialized by GPT (Radford et al.,

System E&M F&R
BLEU BLEU

No-edit 50.28 51.67
Rule 60.37 66.40
PBMT 66.88 72.40
NMT 58.27 68.26
NMT-PBMT 67.51 73.78
NMT-MTL 71.29 74.51
NMT-MTL-Ensemble* 72.01 75.33
GPT-CAT 72.70 77.26
GPT-Ensemble* 69.86 76.32
Our Approach 72.63 77.01
Our Approach* 74.24 77.97

Table 3: The comparison of our approach to the state-
of-the-art results. * denotes the ensemble results.

2019). Specifically, GPT-CAT concatenates
the original input sentence and the input
sentence preprocessed by rules as input,
while GPT-Ensemble is the ensemble of two
GPT-based encoder-decoder models: one
takes the original input sentence as input, the
other takes the preprocssed sentence as input.

Following Niu et al. (2018), we train 4 inde-
pendent models with different initializations for
ensemble decoding. According to Table 3, our
single model performs comparably to the state-of-
the-art GPT-based encoder-decoder models (more
than 200M parameters) with only 54M parameters.
Our ensemble model further advances the state-of-
the-art result only with a comparable model size to
the GPT-based single model (i.e., GPT-CAT).

We also conduct human evaluation. Following
Rao and Tetreault (2018), we assess the model
output on three criteria: formality, fluency and
meaning preservation. We compare our baseline
model trained with original data, our best perform-
ing model and the previous state-of-the-art models
(NMT-MTL and GPT-CAT). We randomly sample
300 items and each item includes an input and four
outputs that shuffled to anonymize model identities.
Two annotators are asked to rate the outputs on a
discrete scale of 0 to 2. More details can be found
in the appendix. The results are shown in Table 4
which demonstrates that our model is consistently
well rated in human evaluation.

3.2.3 Analysis of Pivot Languages in Feature
Discrimination

We also conduct an exploratory study of the
pivot languages used in formality discrimination.
Among the three pivot languages (i.e. French, Ger-
man and Chinese) in our experiments, it is interest-
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Model Formality Fluency Meaning
Original data 1.31 1.77 1.80
NMT-MTL 1.34 1.78 1.92*
GPT-CAT 1.42 1.84* 1.90
Ours 1.45* 1.85*† 1.92*

Table 4: Results of human evaluation of FST. Scores
marked with */† are significantly different from the
scores of Original data / NMT-MTL (p < 0.05 in sig-
nificance test).

French German Chinese
300k 530k 680k

Table 5: The sizes of augmented datasets generated by
F-Dis based on different pivot languages.

ing to observe a significant difference in the sizes
of the obtained parallel data given the same source
sentences and filter threshold, as shown in Table 5.
Using Chinese as the pivot language results in the
most data, probably due to the fact that Chinese and
English belong to different language systems. The
formality of original informal English sentences
may be lost during translation, which turns out
to facilitate the MT system to translate Chinese
back into formal English. In contrast, French and
German have much in common with English, espe-
cially for French in terms of the lexicon (Baugh and
Cable, 1993). The translated sentences are likely
to maintain informal sense, which hinders the MT
system from generating formal English translations.

We compare the performance with augmented
data generated by three pivot languages separately
in Table 6. Manual inspection reveals that a few
pairs have the issue of meaning inconsistency in all
the three sets, which mainly arises from the trans-
lation difficulties caused by omissions and poor
grammaticality in informal sentences and the seg-
mentation ambiguity in some pivot languages like
Chinese. Among the three languages, the Chinese-
based augmented data introduces more noise due to
the additional segmentation ambiguity problem but
brings fair improvement because of its largest size.
In contrast, the German-based augmented data has
relatively high quality and a moderate size, leading
to the best result in our experiments.

4 Related Work

Data augmentation has been much explored for
seq2seq tasks like Machine Translation (He et al.,
2016; Fadaee et al., 2017; Zhang et al., 2018b; Pon-

Model E&M F&R
BLEU BLEU

Original data 69.44 74.19
F-Dis (Fr) 70.09 74.52
F-Dis (De) 71.15 75.18
F-Dis (Zh) 70.51 74.79

Table 6: Performances of formality discrimination
based on different pivot languages: French (Fr), Ger-
man (De) and Chinese (Zh).

celas et al., 2018; Edunov et al., 2018; Li et al.,
2019) and Grammatical Error Correction (Kiyono
et al., 2019; Grundkiewicz et al., 2019; Zhao et al.,
2019; Zhou et al., 2019; Ge et al., 2018a,b; Xie
et al., 2018; Yuan et al., 2016; Rei et al., 2017).
For text style transfer, however, due to the lack
of parallel data, many studies focus on unsuper-
vised approaches (Luo et al., 2019; Wu et al., 2019;
Zhang et al., 2018a) and there is little related work
concerning data augmentation. As a result, most
recent work (Jhamtani et al., 2017; Xu et al., 2012)
that models text style transfer as MT suffers from
a lack of parallel data for training, which seriously
limits the performance of powerful models. To
solve this pain point, we propose novel data aug-
mentation methods and study the best way to utilize
the augmented data, which not only achieves a suc-
cess in formality style transfer, but also would be
inspiring for other text style transfer tasks.

5 Conclusion

In this paper, we propose novel data augmentation
methods for formality style transfer. Our proposed
data augmentation methods can effectively gener-
ate diverse augmented data with various formality
style transfer knowledge. The augmented data can
significantly help improve the performance when it
is used for pre-training the model and leads to the
state-of-the-art results in the formality style transfer
benchmark dataset.

Acknowledgements

We thank all the reviewers for providing the con-
structive suggestions. This work is partly supported
by Beijing Academy of Artificial Intelligence. Xu
Sun is the corresponding author of this paper.

References
Albert C Baugh and Thomas Cable. 1993. A history of

the English language. Routledge.



3226

Kyunghyun Cho, Bart van Merrienboer, Çaglar
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A Details of Human Evaluation

We describe the grading standard of the three crite-
ria we present in the main paper for FST: formality,
fluency and meaning preservation. The outputs
are rated on a discrete scale of 0 to 2. We hire
two annotators who major in Linguistics and have
received Bachelor degree.
Formality Given the informal source sentence and
an output, the annotators are asked to rate the for-
mality of a sentence according to the formality im-
provement level, regardless of fluency and meaning.
If the output shows significant formality improve-
ment over the input, it will be rated 2 points. If the
output is just slightly more formal than the input,
it will be rated 1 point. If the output shows no im-
provement in the formality or even decreases the
formality, it will be rated 0 point.
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Fluency Given the outputs, the annotators are
asked to evaluate the fluency of each sentence in
isolation. A sentence is considered to be fluent if
it makes sense and is grammatically correct. The
sentences satisfying the requirements will be rated
2 points. The sentences with minor errors will be
rated 1 point. If the errors lead to confusing mean-
ing, we give it 0 point.
Meaning preservation Given the output sentence
and the corresponding source sentence, the annota-
tors are asked to estimate how much information is
preserved of the output compared to the input sen-
tences. If the output sentence and the input exactly
convey the same idea, the corresponding system of
the output gets 2 points. If they are mostly equiva-
lent but different in some trivial details, the corre-
sponding system gets 1 point. If the output omits
some important details that affect the sentence’s
meaning, the system will get no credit.

For inter-annotator agreement, we calculate the
Pearson correlation coefficient of two annotators
over the three criteria. The Pearson correlation
over the formality criteria is 0.62. For fluency and
meaning preservation, the correlation scores are
0.69 and 0.61, respectively.


