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Abstract

Model ensemble techniques often increase
task performance in neural networks; however,
they require increased time, memory, and man-
agement effort. In this study, we propose a
novel method that replicates the effects of a
model ensemble with a single model. Our ap-
proach creates K-virtual models within a sin-
gle parameter space using K-distinct pseudo-
tags and K-distinct vectors. Experiments
on text classification and sequence labeling
tasks on several datasets demonstrate that our
method emulates or outperforms a traditional
model ensemble with 1/K-times fewer param-
eters.

1 Introduction

A model ensemble is a promising technique for
increasing the performance of neural network mod-
els (Lars. and Peter., 1990; Anders and Jesper,
1994). This method combines the outputs of multi-
ple models that are individually trained using the
same training data. Recent submissions to natural
language processing(NLP) competitions are primar-
ily composed of neural network ensembles (Bojar
et al., 2018; Barrault et al., 2019). Despite its ef-
fectiveness, a model ensemble is costly. Because it
handles multiple models, it requires increased time
for training and inference, increased memory, and
greater management effort. Therefore, the model
ensemble technique cannot always be applied to
real systems, as many systems, such as edge de-
vices, must work with limited computational re-
sources.

In this study, we propose a novel method that
replicates the effects of the ensemble technique
with a single model. Following the principle
that aggregating multiple models improves per-
formance, we create multiple virtual models in a
shared space. Our method virtually inflates the
training data K times with K-distinct pseudo-tags
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Figure 1: Overview of our proposed method. A single
model processes the same input with distinct pseudo-
tags. Each pseudo-tag defines the k-th virtual model,
and the corresponding vector ok is added to the em-
bedding. Thus, the model function of a singe model
φ (ENC(·)) generates different outputs.

appended to all input data. It also incorporates K-
distinct vectors, which correspond to pseudo-tags.
Each pseudo-tag k ∈ {1, . . . ,K} is attached to the
beginning of the input sentence, and the k-th vector
is added to the embedding vectors for all tokens in
the input sentence. Fig. 1 presents a brief overview
of our proposed method. Intuitively, this opera-
tion allows the model to shift the embedding of the
same data to the k-th designated subspace and can
be interpreted as explicitly creating K virtual mod-
els in a shared space. We thus expect to obtain the
same (or similar) effects as the ensemble technique
composed of K models with our K virtual models
generated from a single model.

Experiments in text classification and sequence
labeling tasks reveal that our method outperforms
single models in all settings with the same param-
eter size. Moreover, our technique emulates or
surpasses the normal ensemble with 1/K-times
fewer parameters on several datasets.

2 Related Work

The neural network ensemble is a widely studied
method (Lars. and Peter., 1990; Anders and Jesper,
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1994; Hashem, 1994; Opitz and Shavlik, 1996);
however studies have focused mainly on improving
performance while ignoring cost, such as computa-
tional cost, memory space, and management cost.

Several methods have overcome the shortcom-
ings of traditional ensemble techniques. For train-
ing Snapshot Ensembles, (Huang et al., 2017) used
a single model to construct multiple models by
converging into multiple local minima along the
optimization path. For inference distillation, (Hin-
ton et al., 2015) transferred the knowledge of the
ensemble model into a single model. These meth-
ods use multiple models either during training or
inference, which partially solves the negative ef-
fects of the traditional ensemble.

The incorporation of pseudo-tags is a standard
technique widely used in the NLP community,
(Rico et al., 2016; Melvin et al., 2017). However,
to the best of our knowledge, our approach is the
first attempt to incorporate pseudo-tags as an iden-
tification marker of virtual models within a single
model.

The most similar approach to ours is dropout
(Srivastava et al., 2014), which stochastically omits
each hidden unit during each mini-batch, and in
which all units are utilized for inference. Huang
et al. (2017) interpreted this technique as implic-
itly using an exponential number of virtual models
within the same network. As opposed to dropout,
our method explicitly utilizes virtual models with a
shared parameter, which is as discussed in Section
5, complementary to dropout.

3 Base Encoder Model

The target tasks of this study are text classification
and sequence labeling. The input is a sequence
of tokens (i.e., a sentence). Here, xt denotes the
one-hot vector of the t-th token in the input. Let
E ∈ RD×|V| be the embedding matrices where D
is the dimension of the embedding vectors and V
is the vocabulary of the input.

We obtain the embedding vector et at position
t by et = Ext. Here, we introduce the notation
e1:T to represent the list of vectors (e1, e2, . . . , eT )
that correspond to the input sentence, where T is
the number of tokens in the input. Given e1:T ,
the feature (or hidden) vectors ht ∈ RH for all
t ∈ {1, . . . , T} are computed as an encoder neural
network ENC(·), where H denotes the dimensions
of the feature vector. Namely,

h1:T = ENC (e1:T ) . (1)

Finally, the output ŷ given input x1:T is estimated
as ŷ = φ (h1:T ) where φ (·) represents the task
dependent function (e.g., a softmax function for
text classification and a conditional random field
layer for sequence labeling). It should be noted
that the form of the output ŷ differs depending on
the target task.

4 Single Model Ensemble using
Pseudo-Tags and Distinct Vectors

In this section, we introduce the proposed method,
which we refer to as SINGLEENS. Fig. 1 presents
an overview of the method. The main principle of
this approach is to create different virtual models
within a single model.

We incorporate pseudo-tags and predefined
distinct vectors. For the pseudo-tags, we add spe-
cial tokens {`k}Kk=1 to the input vocabulary, where
hyper-parameter K represents the number of vir-
tual models. For the predefined distinct vectors,
we leverage mutually orthogonal vectors {ok}Kk=1,
where the orthogonality condition requires satisfy-
ing ok · ok′ ' 0 for all (k, k′) when k 6= k′.

Finally, we assume that all input sentences start
from one of the pseudo-tags. We then add the cor-
responding orthogonal vector ok of the attached
pseudo-tag `k to the embedding vectors at all po-
sitions. The new embedding vector ẽ0:T is written
in the following form:

ẽ
(k)
0:T = (`k, e1 + ok, e2 + ok, . . . , eT + ok).

(2)

We substitute e1:T in Eq. 1 by ẽ
(k)
0:T in the proposed

method.
An intuitive explanation of the role of pseudo-

tags is to allow a single model to explicitly recog-
nize differences in homogeneous input, while the
purpose of orthogonal vectors is to linearly shift
the embedding to the virtual model’s designated
direction. Therefore, by combining these elements,
we believe that we can define virtual models within
a single model and effectively use the local space
for each virtual model. Aggregating these virtual
models can then result in imitation of ensemble.

5 Experiments

To evaluate the effectiveness of our method, we
conducted experiments on two tasks: text classifi-
cation and sequence labeling. We used the IMDB
(Andrew et al., 2011), Rotten (Bo and Lillian,
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Dataset Model Method # params Accuracy
SINGLE 12 M 87.03

TFM: 1/K ENS 14 M 81.93 (−5.10)
GLOVE SINGLEENS 12 M 87.30 (+0.27)

IMDB NORMALENS 108 M 87.67 (+0.64)
SINGLE 400 M 91.99

TFM: 1/K ENS 1000 M 90.63 (−1.36)
BERT SINGLEENS 400 M 92.91 (+0.92)

NORMALENS 3600 M 92.75 (+0.76)
SINGLE 400 M 81.75

TFM: 1/K ENS 1000 M 82.67 (+0.92)
Rotten BERT SINGLEENS 400 M 85.01 (+3.26)

NORMALENS 3600 M 82.57 (+0.82)
SINGLE 400 M 87.18

TFM: 1/K ENS 1000 M 80.27 (−6.91)
RCV1 BERT SINGLEENS 400 M 89.16 (+1.98)

NORMALENS 3600 M 90.01 (+2.83)

Table 1: Test accuracy and parameter size for text clas-
sification tasks. Our method, SINGLEENS, outper-
formed SINGLE and 1/K ENS on all datasets. Most no-
tably, SINGLEENS surpassed NORMALENS on IMDB
and Rotten with 1/9 fewer parameters.

2005), and RCV1 (Yiming et al., 2004) datasets for
text classification, and the CoNLL-2003 (Sang and
Meulder, 2003) and CoNLL-2000 datasets (Sang
and Sabine, 2000) for sequence labeling.

We used the Transformer model (Vaswani et al.,
2017) as the base model for all experiments, and
its token vector representations were then em-
powered by pretrained vectors of GloVe, (Jeffrey
et al., 2014), BERT (Devlin et al., 2018), or ELMo
(Matthew et al., 2018). The models are referred to
as TFM:GLOVE, TFM:BERT, and TFM:ELMO,
respectively.1 For TFM:BERT, we incorporated
the feature (or hidden) vectors of the final layer in
the BERT model as the embedding vectors while
adopting drop-net technique (Zhu et al., 2020). All
the models have dropout layers to assess the com-
plementarity of our method and dropout.

We compared our method (SINGLEENS) to
a single model (SINGLE), a normal ensemble
(NORMALENS), and a normal ensemble in which
each component has approximately 1/K parame-
ters2 (1/K ENS).3 Although other ensemble-like
methods discussed in Section 2 could have been
compared (e.g., snapshot ensemble, knowledge dis-
tillation, or dropout during testing to generate pre-
dictions and aggregate them), they are imitations of
a normal ensemble, and we assumed that the results
of a normal ensemble were upper-bound. We used
K = 9 for reporting the primary results of NOR-

1See Appendix A for detailed experimental settings.
2Because BERT requires a fixed number of parameters, we

did not reduce the parameters accurately for 1/K TFM:BERT.
3See Appendix A for detailed experimental settings.

Dataset Model Method # params F1 Score
SINGLE 100 M 91.93

CoNLL TFM: 1/K ENS 150 M 91.65 (−0.28)
2003 ELMO SINGLEENS 100 M 92.37 (+0.44)

NORMALENS 900 M 92.86 (+0.93)
SINGLE 100 M 96.42

CoNLL TFM: 1/K ENS 150 M 95.67 (−0.75)
2000 ELMO SINGLEENS 100 M 96.56 (+0.14)

NORMALENS 900 M 96.67 (+0.25)

Table 2: Test F1 score and parameter size for se-
quence labeling tasks. Similarly to NORMALENS, SIN-
GLEENS improved the score even at high performance
levels.

MALENS, 1/K ENS, and SINGLEENS. We thus pre-
pared nine pseudo-tags {`k}9k=1 in the same train-
ing (trainable) and initialization manner as other
embeddings. We created untrainable distinct vec-
tors {ok}9k=1 using the implementation by Saxe
et al. (2013) that was prepared in PyTorch’s default
function, torch.nn.init.orthogonal. We
empirically determined the correct scaling for the
distinct vectors as 1 out of 1, 3, 5, 10, 30, 50, 100,
and the scale that was closest to the model’s em-
bedding vectors. We obtained the final predictions
of K ensemble models by averaging and voting the
outputs of individual models for text classification
and sequence labeling, respectively. The results
were obtained by the averaging five distinct runs
with different random seeds.

5.1 Evaluation of text classification

Data We followed the settings used in the imple-
mentation by Kiyono et al. (2018) for data parti-
tion.4 Our method, SINGLEENS inflates the train-
ing data by K times. During the inflation, the k-th
subset is sampled by bootstrapping (Efron and Tib-
shirani, 1993) with the corresponding k-th pseudo-
tag. For NORMALENS and 1/K ENS, we attempted
both bootstrapping and normal sampling, and a
higher score was reported.

Results Table 1 presents the overall results eval-
uated in terms of accuracy. For both TFM:GLOVE

and TFM:BERT, SINGLEENS outperformed SIN-
GLE with the same parameter size. In our exper-
iments, SINGLEENS achieved the best scores on
IMDB and Rotten with TFM:BERT; it recorded
92.91% and 85.01%, which was higher than NOR-
MALENS by 0.16 and 2.44, respectively with 89%
fewer parameters. The standard deviation of the
results for the IMDB dataset was, 0.69 and 0.14

4See Appendix B for data statistics.
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IMDB CoNLL-2003
Setting Accuracy F1 Score
SINGLE 91.99 91.93
1) Only pseudo-tags 89.84 92.20
2) Random distinct vectors 92.06 92.21
3) Random noise 92.38 92.32
SINGLEENS 92.91 92.37

Table 3: Comparison of proposed method (pseudo-tags
+ corresponding distinct vectors) with other settings.
Pseudo-tags and distinct vectors appear to complement
each other.

for SINGLE and SINGLEENS, respectively, for
TFM:GLOVE, and 0.34 and 0.11, respectively, for
TFM:BERT. These results support the claim that
explicit operations for defining K virtual models
have a significant effect for a single model and are
complementary to normal dropout. Through the
series of experiments, we observed that the num-
ber of iterations of SINGLEENS was 1.0 ˜1.5 times
greater than that of SINGLE.

5.2 Evaluation of sequence labeling

Data We followed the instructions of the task set-
tings used in CoNLL-2000 and CoNLL-2003.5 We
inflated the training data by nine times for SIN-
GLEENS, and normal sampling was used for NOR-
MALENS and 1/K ENS. Because bootstrapping
was not effective for the task, the results were omit-
ted.

Results As displayed in Table 2, SINGLEENS

surpassed SINGLE by 0.44 and 0.14 on CoNLL-
2003 and CoNLL-2000, respectively, for
TFM:ELMO with the same parameter size.
However, NORMALENS produced the best results
in this setting. The standard deviations of the
single model and our methods were 0.08 and 0.05,
respectively, on CoNLL-2000. Through the series
of experiments, we observed that the number
of iterations of SINGLEENS was 1.0 ˜1.5 times
greater than that of SINGLE.

6 Analysis

In this section, we investigate the properties of our
proposed method. Unless otherwise specified, we
use TFM:BERT and TFM:ELMO on IMDB and
CoNLL-2003 for the analysis.

Significance of pseudo-tags and distinct vectors
To assess the significance of using both pseudo-

5The statistics of the datasets are presented in Appendix
B.

IMDB CoNLL-2003
Setting Accuracy F1 Score
SINGLE 91.99 91.93
1) Emb (SINGLEENS) 92.91 92.37
2) Hidden 90.68 92.45
1) + 2) 92.64 92.19

Table 4: Test metrics on IMDB and CoNLL-2003 with
the pattern of three vector addition operations. Adding
distinct vectors to only embeddings is the best or sec-
ond best approach.

tags and distinct vectors, we conducted an ablation
study of our method, SINGLEENS. We compared
our method with the following three settings: 1)
Only pseudo-tags, 2) Random distinct vectors, and
3) Random noise. In detail, the first setting (Only
pseudo-tags) attached the pseudo-tags to the input
without adding the corresponding distinct vectors.
The second setting (Random distinct vectors) ran-
domly shuffles the correspondence between the
distinct vectors and pseudo-tags in every iteration
during the training. Additionally, the third setting
(Random noise) adds random vectors as the replace-
ment of the distinct vectors to clarify whether the
effect of incorporating distinct vectors is essentially
identical to the random noise injection techniques
or explicit definition of virtual models in a single
model.

Table 3 shows the results of the ablation study.
This table indicates that using both pseudo-tags and
distinct vectors, which matches the setting of SIN-
GLEENS, leads to the best performance, while the
effect is limited or negative if we use pseudo-tags
alone or distinct vectors and pseudo-tags without
correspondence. Thus, this observation explains
that the increase in performance can be attributed
to the combinatorial use of pseudo-tags and distinct
vectors, and not merely data augmentation.

We can also observe from Table 3 that the per-
formance of SINGLEENS was higher than that of
3) Random noise. Note that the additional vec-
tors by SINGLEENS are fixed in a small number K
while those by Random noise are a large number of
different vectors. Therefore, this observation sup-
ports our claim that the explicit definition of virtual
models by distinct vectors has substantial positive
effects that are mostly irrelevant to the effect of
the random noise. This observation also supports
the assumption that SINGLEENS is complementary
to dropout. Dropout randomly uses sub-networks
by stochastically omitting each hidden unit, which
can be interpreted as a variant of Random noise.
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Figure 3: F1 score depending on the number of models
for each ensemble method on CoNLL-2003.

Moreover, it has no specific operations to define
an explicitly prepared number of virtual models as
SINGLEENS has. We conjecture that this differ-
ence yields the complementarity that our proposed
method and dropout can co-exist.

Vector addition We investigated the patterns
with which distinct vectors should be added: 1)
Emb, 2) Hidden, and 3) Emb + Hidden. Emb adds
distinct vectors only to the embedding, while Hid-
den adds distinct vectors only to the final feature
vectors. Emb + Hidden adds distinct vectors to
both the embedding and final feature vectors. As
illustrated in Table 4, adding vectors to the em-
bedding is sufficient for improving performance,
while adding vectors to hidden vectors has as ad-
verse effect. This observation can be explained by
the architecture of Transformer. The distinct vec-
tors in the embedding are recursively propagated
through the entire network without being absorbed
as non-essential information since the Transformer
employs residual connections (He et al., 2015).

Comparison with normal ensembles To evalu-
ate the behavior of our method, we examined the
relationship between the performance and the num-
ber of models used for training. Our experiments
revealed that having more than nine models did
not result in significant performance improvement;
thus, we only assessed the results up to nine mod-
els. Figs 2 and 3 present the metrics on Rotten and
CoNLL-2003, respectively. The performance of
our method increased with the number of models,
which is a general feature of normal ensemble. No-
tably, on Rotten, the accuracy of our method rose
while that of other methods did not. Investigation
of this behavior is left for future work.

7 Conclusion

In this paper, we propose a single model ensem-
ble technique called SINGLEENS. The principle of
SINGLEENS is to explicitly create multiple virtual
models in a single model. Our experiments demon-
strated that the proposed method outperformed
single models in both text classification and se-
quence labeling tasks. Moreover, our method with
TFM:BERT surpassed the normal ensemble on the
IMDB and Rotten datasets, while its parameter size
was 1/K-times smaller. The results thus indicate
that explicitly creating virtual models within a sin-
gle model improves performance. The proposed
method is not limited to the two aforementioned
tasks, but can be applied to any NLP as well as
other tasks such as machine translation and image
recognition. Further theoretical analysis can also
be performed to elucidate the mechanisms of the
proposed method.
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A Hyper-parameters and Ensemble Strategy

Text Classification Sequence Labeling
TFM:GLOVE TFM:BERT TFM:ELMO

Embedding dimension 200 768 256
Hidden dimension 200 768 256
Number of layers 6 6 6
Number of attention heads 8 8 8
Frozen vectors GloVe 200 BERT-Large ELMo 1024

- - 0.5(Emb)
0.2 (Residual) 0.5 (Residual) 0.2 (Residual)

Dropout 0.1 (Attention) - 0.1 (Attention)
- - 0.1 (FF)

Label smoothing 0.1 0.1 -
Optimizer Adam Adam Adam
Initial learning rate 0.0001 0.0001 0.0001
Batch size 64 128 32
Gradient Clipping 1.0 1.0 5.0
Aggrgation Strategy Averaging Averaging Voting
Sampling strategy Normal & Bootstrapping Normal & Bootstrapping Normal

Table 5: Hyper-parameters and ensemble strategies for SINGLE, NORMALENS and SINGLEENS. For TFM:BERT,
we followed the model architecture of Zhu et al. (2020). For TFM:ELMO on sequence labeling, we referenced
the architecture of Matthew et al. (2018) with replacing the encoder with Transformer. It should be noted that for
TFM:ELMO, we add Linear→ Relu→ LayerNorm between embedding and self-attention.

Text Classification Sequence Labeling
TFM:GLOVE TFM:BERT TFM:ELMO

Embedding dimension 50 64 370
Hidden dimension 50 64 128
Frozen vectors GloVe 50 BERT-Base ELMo 256
Number of layers 3 3 4
Number of attention heads 10 8 8
Feed forward dimension 128 128 128
Aggregation Strategy Averaging Averaging Voting
Sampling strategy Normal Normal Normal

Table 6: Hyper-parameters and ensemble strategies for 1/K ENS. The other values are same as Table 5. It should
be noted that we ensemble K models of each sub model for final prediction.

B Data Statistics

Task Dataset Train Valid Test
IMDB 21,246 3,754 25,000

Text Classification Rotten 8,636 960 1,066
RCV 1 14,007 1,557 49,838

Sequence Labeling CoNLL-2003 14,987 3,466 3,684
CoNLL-2000 8,926 2,012 2,012

Table 7: Summary of the datasets. The values are the number of sentences contained in each dataset.


