
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 291–301
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

291

TAG : Type Auxiliary Guiding for Code Comment Generation

Ruichu Cai1, Zhihao Liang1, Boyan Xu1∗, Zijian Li1, Yuexing Hao2, Yao Chen3

1 School of Computer Science, Guangdong University of Technology, China
2 Rutgers University New Brunswick, USA

3 Advanced Digital Sciences Center, Singapore
cairuichu@gmail.com, zhihaolzh95@gmail.com, hpakyim@gmail.com,

leizigin@gmail.com, yh599@scarletmail.rutgers.edu, yao.chen@adsc-create.edu.sg

Abstract

Existing leading code comment generation ap-
proaches with the structure-to-sequence frame-
work ignores the type information of the in-
terpretation of the code, e.g., operator, string,
etc. However, introducing the type informa-
tion into the existing framework is non-trivial
due to the hierarchical dependence among the
type information. In order to address the is-
sues above, we propose a Type Auxiliary Guid-
ing encoder-decoder framework for the code
comment generation task which considers the
source code as an N-ary tree with type infor-
mation associated with each node. Specifi-
cally, our framework is featured with a Type-
associated Encoder and a Type-restricted De-
coder which enables adaptive summarization
of the source code. We further propose a hier-
archical reinforcement learning method to re-
solve the training difficulties of our proposed
framework. Extensive evaluations demon-
strate the state-of-the-art performance of our
framework with both the auto-evaluated met-
rics and case studies.

1 Introduction

The comment for the programming code is critical
for software development, which is crucial to the
further maintenance of the project codebase with
significant improvement of the readability (Aggar-
wal et al., 2002; Tenny, 1988). Code comment gen-
eration aims to automatically transform program
code into natural language with the help of deep
learning technologies to boost the efficiency of the
code development.

Existing leading approaches address the code
comment generation task under the structure-to-
sequence (Struct2Seq) framework with an encoder-
decoder manner by taking advantage of the inher-
ent structural properties of the code. For instance,
existing solutions leverage the syntactic structure
of abstract syntax trees (AST) or parse trees from

∗∗ Corresponding author

Comment 1:
What is the name of <UNK>

Tree-LSTM Encoder

agg

LSTM

<UNK>

name

LSTM
…

Tree-LSTM Decoder

Select

city where

Compare

equal name ACL

Comment 2:
What is the location of ACL

Type-associated Encoder

ACL

city where

equal name

copy
ACL

Operator

location

generate

LSTM

LSTM

…

Operator
generate

copy

Type-restricted Decoder

stmt

aggagg
col

cond
cmp

str

Select

Compare

(a) Struct2Seq example

Comment 1:
What is the name of <UNK>

Tree-LSTM Encoder

agg

LSTM

<UNK>

name

LSTM

…

Tree-LSTM Decoder

Select

city where

Compare

equal name ACL

Comment 2:
What is the location of ACL

Type-associated Encoder

ACL

city where

equal name

copy
ACL

Operator

location

generate

LSTM

LSTM

…

Operator
generate

copy

Type-restricted Decoder

stmt

aggagg
col

cond
cmp

str

Select

Compare

(b) TAG example

Figure 1: Comment generation frameworks. Different
types are denoted as different colors and shapes in (b).

source code have shown significant improvement to
the quality of the generated comments (Liang and
Zhu, 2018; Alon et al., 2018; Hu et al., 2018; Wan
et al., 2018); Solutions representing source code as
graphs have also shown high-quality comment gen-
eration abilities by taking advantage of extracting
the structural information of the codes (Xu et al.,
2018a,b; Fernandes et al., 2018).

Although promising results were reported, we
observe that the information of the node type in
the code is not considered in these aforementioned
Struct2Seq based solutions. The lack of such es-
sential information lead to the following common
limitations: 1) Losing the accuracy for encoding
the source code with the same structure but has dif-
ferent types. As shown in Fig. 1(a), a Tree-LSTM
(Tai et al., 2015) encoder is illustrated to extract
the structural information, the two subtrees of the
code ‘Select’ and ‘Compare’ in the dashed box
have the same structure but different types, with
the ignorance of the type information, the tradi-
tional encoders illustrate the same set of neural
network parameters to encode the tree, which leads
to an inaccurate generation of the comment. 2)
Losing both the efficiency and accuracy for search-
ing the large vocabulary in the decoding procedure,

292

especially for the out-of-vocabulary (OOV) words
that exist in the source code but not in the target
dictionary. As shown in the Fig. 1(a), missing the
type of ‘ACL’ node usually results in an unknown
word ‘UNK’ in the generated comments. Thus, the
key to tackle these limitations is efficiently utilizing
the node type information in the encoder-decoder
framework.

To well utilize the type information, we propose
a Type Auxiliary Guiding (TAG) encoder-decoder
framework. As shown in Fig. 1(b), in the encoding
phase, we devise a Type-associated encoder to en-
code the type information in the encoding of the
N-ary tree. In the decoding phase, we facilitate the
generation of the comments with the help of type
information in a two-stage process naming oper-
ation selection and word selection to reduce the
searching space for the comment output and avoid
the out-of-vocabulary situation. Considering that
there is no ground-truth labels for the operation se-
lection results in the two-stage generation process,
we further devised a Hierarchical Reinforcement
Learning (HRL) method to resolve the training of
our framework. Our proposed framework makes
the following contributions:
• An adaptive Type-associated encoder which

can summarize the information according to
the node type;
• A Type-restricted decoder with a two-stage

process to reduce the search space for the code
comment generation;
• A hierarchical reinforcement learning ap-

proach that jointly optimizes the operation
selection and word selection stages.

2 Related Work

Code comment generation frameworks generate
natural language from source code snippets, e.g.
SQL, lambda-calculus expression and other pro-
gramming languages. As a specified natural lan-
guage generation task, the mainstream approaches
could be categorized into textual based method and
structure-based method.

The textual-based method is the most straight-
forward solution which only considers the sequen-
tial text information of the source code. For in-
stance, Movshovitz-Attias and Cohen (2013) uses
topic models and n-grams to predict comments
with given source code snippets; Iyer et al. (2016)
presents a language model Code-NN using LSTM
networks with attention to generate descriptions

about C# and SQL; Allamanis et al. (2016) predicts
summarization of code snippets using a convolu-
tional attention network; Wong and Mooney (2007)
presents a learning system to generate sentences
from lambda-calculus expressions by inverting se-
mantic parser into statistical machine translation
methods.

The structure-based methods take the structure
information into consideration and outperform the
textual-based methods. Alon et al. (2018) processes
a code snippet into the set of compositional paths in
its AST and uses attention mechanism to select the
relevant paths during the decoding. Hu et al. (2018)
presents a Neural Machine Translation based model
which takes AST node sequences as input and cap-
tures the structure and semantic of Java codes. Wan
et al. (2018) combines the syntactic level represen-
tation with lexical level representation by adopting
a tree-to-sequence (Eriguchi et al., 2016) based
model. Xu et al. (2018b) considers a SQL query
as a directed graph and adopts a graph-to-sequence
model to encode the global structure information.

Copying mechanism is utilized to address the
OOV issues in the natural language generation
tasks by reusing parts of the inputs instead of se-
lecting words from the target vocabulary. See
et al. (2017) presents a hybrid pointer-generator
network by introducing pointer network (Vinyals
et al., 2015) into a standard sequence-to-sequence
(Seq2Seq) model for abstractive text summariza-
tion. COPYNET from Gu et al. (2016) incorporates
the conventional copying mechanism into Seq2Seq
model and selectively copy input segments to the
output sequence. In addition, Ling et al. (2016)
uses the copying mechanism to copy strings from
the code.

Our targeted task is considered as the opposite
process of natural language to programming code
(NL-to-code) task. So some of the NL-to-code
solutions are also taken as our references. Dong
and Lapata (2016) distinguishes types of nodes
in the logical form by whether nodes have child
nodes. Yin and Neubig (2017); Rabinovich et al.
(2017); Xu et al. (2018a) take the types of AST
nodes into account and generate the corresponding
programming codes. Cai et al. (2018) borrows the
idea of Automata theory and considers the specific
types of SQL grammar in Backus-Naur form (BNF)
and generates accurate SQL queries with the help
of it.

Inspired by the methods considering the type

293

��
s

LSTM LSTM LSTM…

…

gencopy

Operation
Selection
Stage

what ofSELECT ACL

Word
Distribution
(Generation)

��� ���

��� ��� �����

Word
Selection
Stage

Word
Distribution

(Copying)

Y N��� = ����?

<start>

����

��

������
��� ���

����
…

 �
Neural Network Pointwise Operation

��(��)

���, ���

���,���
 �

�� ��

��
��� ���

…

��

��

��

��

Operation
Distribution

Encoding Process in Cell

Type–associated Encoder

 tanh

Type-restricted Decoder

Two stages Decoding Process

 � � �

��

(Attention Vector)

�� �� ��

Figure 2: TAG Encoder and Decoder framework.

information of the code, our solution differs from
the existing method with a Type-associated En-
coder that encodes the type information during the
substructure summarization and a Type-restricted
Decoder that can reduce search space for the code
comment generation. In addition, two improve-
ments are developed according to our objectives.
First, we design a type-restricted copying mecha-
nism to reduce the difficulty of extracting complex
grammar structure from the source code. Second,
we use a hierarchical reinforcement learning meth-
ods to train the model in our framework to learn to
select from either copy or other actions, the details
will be presented in Section 3.

3 Model Overview

We first make the necessary definition and formu-
lation for the input data and the code comment
generation problem for our Type Auxiliary Guid-
ing (TAG) encoder-decoder framework.

Definition 1 Token-type-tree. Token-type-tree
Tx,τ represents the source code with the node
set V , which is a rooted N-ary tree. And V =
{v1, v2, .., v|V |} denotes a partial order nodes set
satisfying v1 � v2 � ...,� v|V |. Let internal
node vj = {xj , τj}, where xj denotes the token
sequence and τj denotes a type from grammar type
set T .

Token-type-tree can be easily constructed from
token information of the original source code and
type information of its AST or parse tree. Accord-
ing to Definition 1, we formulate the code comment
generation task as follows.

Formulation 1 Code Comment Generation with
Token-type-tree as the Input. Let S denote train-
ing dataset and labeled sample (Tx,τ ,y) ∈ S,
where Tx,τ is the input token-type-tree, y =
(y1, y2, · · · , yM) is the ground truth comment with
M words. The task of code comment generation
is to design a model which takes the unlabeled
sample Tx,τ as input and predicts the output as its
comment, denoted as y.

Our framework follows the encoder-decoder
manner, and consists of the revised two major com-
ponents, namely the Type-associated Encoder and
Type-restricted Decoder. As shown in Fig. 2.

The Type-associated Encoder, as shown in Fig. 2,
recursively takes the token-type-tree Tx,τ as in-
put, and maintains the semantic information of the
source code in the hidden states. Instead of using
the same parameter sets to learn the whole token-
type-tree, Type-associated Encoder utilizes multi-
ple sets of parameters to learn the different type of
nodes. The parameters of the cells are adaptively
invoked according to the type of the current node
during the processing of the input token-type-tree.
Such a procedure enables the structured semantic
representation to contain the type information of
the source code.

The Type-restricted Decoder, as shown in the
right part of Figure 2, takes the original toke-type-
tree Tx,τ and its semantic representation from en-
coder as input and generates the corresponding
comment. Different from conventional decoders
which generate output only based on the target dic-
tionary, our Type-restricted Decoder considers both

294

input code to the encoder and target dictionary as
the source of output. Attention mechanism is em-
ployed to compute an attention vector which is used
to generate the output words through a two-stage
process: (1) Determine either to copy from the orig-
inal token-type-tree or to generate from the current
hidden state according to the distribution of the op-
eration. (2) If the copying operation is selected, the
words are copied from the selected node from the
token-type-tree Tx,τ with restricted types; other-
wise, the candidate word will be selected from the
target dictionary. The above two-stage process is
guided by the type which is extracted from the hid-
den state of encoder with the help of attention mech-
anism. Such a process enables adaptive switching
between copying and generation processes, and not
only reduces the search space of the generation pro-
cess but also addresses the OOV problem with the
copying mechanism.

Although the proposed framework provides an
efficient solution with the utilization of the type in-
formation in the code, training obstacles are raised
accordingly: (1) No training labels are provided
for the operation selection stage. (2) There is a
mismatch between the evaluation metric and the
objective function. Thus, we further devised an
HRL method to train our TAG model. In the HRL
training, the TAG model feeds back the evaluation
metric as the learning reward to train the two-stage
sampling process without relying on the ground-
truth label of operation selection stage.

4 Type-associated Encoder

The encoder network aims to learn a semantic rep-
resentation of the input source code. The key chal-
lenge is to provide distinct summarization for the
sub-trees with the same structure but different se-
mantics. As shown in the Type-associated Encoder
in Fig. 1, the blue and red dashed blocks have the
same 3-ary substructure. The sub-tree in the blue
box shares the same sub-structure with the tree in
the red box, which is usually falsely processed by
the same cell in a vanilla Tree-LSTM. By introduc-
ing the type information, the semantics of the two
subtrees are distinguished from each other.

Our proposed Type-associated Encoder is de-
signed as a variant N -ary Tree-LSTM. Instead of
directly inputting type information as features into
the encoder for learning, we integrate the type infor-
mation as the index of the learning parameter sets
of the encoder network. More specifically, differ-

ent sets of parameters are defined through different
types, which provides a more detailed summariza-
tion of the input. As is shown in Fig. 1(b), the two
sub-trees in our proposed Type-associated Encoder
are distinguished by the type information. The tree
contains N ordered child nodes, which are indexed
from 1 to N . For the j-th node, the hidden state
and memory cell of its k-th child node is denoted
as hjk and cjk, respectively. In order to effectively
capture the type information, we setWτj and bτj
to be the weight and bias of the j-th node, and
Uτjk be the weight of the k-th child of the j-th
node. The transition equation of the variant N -ary
Tree-LSTM is shown as follow:

ij = σ

(
W (i)

τj φ (xj) +

N∑
l=1

U (i)
τjlhjl + b(i)τj

)
, (1)

fjk = σ

(
W (f)

τjk φ (xj) +

N∑
l=1

U (f)
τjl,khjl + b(f)

τjk

)
, (2)

oj = σ

(
W (o)

τj φ (xj) +

N∑
l=1

U (o)
τjl hjl + b(o)τj

)
, (3)

uj = tanh

(
W (u)

τj φ (xj) +

N∑
l=1

U (u)
τjl hjl + b(u)

τj

)
, (4)

cj = ij � uj +

N∑
l=1

fjl � cjl, (5)

hj = oj � tanh (cj) , (6)

We employ the forget gate (Tai et al., 2015) for
the Tree-LSTM, the parameters for the k-th child
of the j-th node’s is denoted as fjk. Uτjl,k is used
to represent the weight of the type for the l-th child
of the j-th node in the k-th forget gate. The major
difference between our variants and the traditional
Tree-LSTM is that the parameter set (Wτ , Uτ , bτ)
are specified for each type τ .

5 Type-restricted Decoder

Following with the Type-associated Encoder, we
propose a Type-restricted Decoder for the decod-
ing phase, which incorporates the type information
into its two-stage generation process. First of all,
an attention mechanism is adopted in the decod-
ing phase which takes hidden states from the en-
coder as input and generates the attention vector.
The resulted attention vector is used as input to
the following two-stage process, named operation
selection stage and word selection stage, respec-
tively. The operation selection stage selects be-
tween generation operation and copying operation

295

for the following word selection stage. If the gener-
ation operation is selected, the predicted word will
be generated from the targeted dictionary. If the
copying operation is selected, then a type-restricted
copying mechanism is enabled to restrict the search
space by masking down the illegal grammar types.
Furthermore, a copying decay strategy is illustrated
to solve the issue of repetitively focusing on spe-
cific nodes caused by the attention mechanism. The
details of each part are given below.

Attention Mechanism: The encoder extracts
the semantic representation as the hidden state of
the rooted nodes, denoted as hr, which are used to
initialize the hidden state of the decoder, z0 ← hr.
At time step m, given output ym−1 and the hidden
state of the decoder zm−1 at last time step m− 1,
the hidden state zm is recursively calculated by the
LSTM cells in the decoder,

zm = LSTM(zm−1, ym−1). (7)

The attention vector q is calculate with:

αmj =
exp

(
h>j zm

)
∑|Vx|

j=1 exp
(
h>j zm

) ,
q̃m =

|Vx|∑
j=1

αmjhj ,

qm = tanh (Wq [q̃, zm]) ,

(8)

whereWq is the parameters of the attention mech-
anism. The attention vector contains the token and
type information, which is further facilitated in the
following operation selection and word selection
stages.

Operation Selection Stage: Operation Selec-
tion Stage determines either using the copying oper-
ation or the generation operation to select the words
based on the attention vector and hidden states from
the encoder. Specifically, given the attention vec-
tor qm at time step m, Operation Selection Stage
estimates the conditional probabilities as the dis-
tribution of the operation p(âm|ŷ<m;Tx,τ), where
âm ∈ {0, 1} and 0 and 1 represents the copy and
the generation operations, respectively. A fully con-
nected layer followed by a softmax is implemented
to compute the distribution of the operations.

p(âm|ŷ<m;Tx,τ) = softmax(Wsqm), (9)

The Ws in the Eq. 9 is the trainable parameters.
Since there is no ground-truth label for operation

selection, we employ an HRL method to jointly
train the operation selection stage and the following
stage, the details are provided in Section 6.

Word Selection Stage: Word Selection Stage
also contains two branches. The selection between
them is determined by the previous stage. If the
generation operation is selected in the Operation
Selectoin Stage, the attention vector will be fed
into a softmax layer to predict the distribution of
the target word, formulated as

p(ym|âm = 1, ŷ<m;Tx,τ) = softmax (Wgqm) ,
(10)

whereWg is the trainable parameters of the output
layer. Otherwise, if the copy operation is selected,
we employ the dot-product score function to calcu-
late score vector sm of the hidden state of the node
and the attention vector. Similarly, score vector
sm will be fed into a softmax layer to predict the
distribution of the input word, noted as:

sm =
[
h1,h2, · · · ,h|Vx|

]>
qm

p(ym|âm = 0; ŷ<m;Tx,τ) = softmax (sm) .

(11)

One step further, to filter out the illegally copied
candidates, we involve a grammar-type based mask
vector dm ∈ R|Vx| at each decoding step m. Each
dimension of dm corresponds to each node of the
token-type-tree. If the mask of the node in token-
type-tree indicates the node should be filtered out,
then the corresponding dimension is set as nega-
tive infinite. Otherwise, it is set to 0. Thus, the
restricted copying stage is formulated as

p(ym|âm = 0, ŷ<m;Tx,τ) = softmax (sm + dm) .
(12)

The word distribution of the two branches is rep-
resented with a softmax over input words or target
dictionary words in Eq. 10 and Eq. 12. At each
time step, the word with the highest probability in
the word distribution will be selected.

Copying Decay Strategy: Similar to the con-
ventional copying mechanism, we also use the at-
tention vector as a pointer to guide the copying
process. The type-restricted copying mechanism
tends to pay more attention to specific nodes, re-
sulting in the ignorance of other available nodes,
which makes certain copied tokens repeatedly ac-
tive in a short distance in a single generated text,
lead to a great redundancy of the content.

So we design a Copying Decay Strategy to
smoothly penalize certain probabilities of outstand-

296

ingly copied nodes. We define a copy time-based
decay rate λmi for the i-th tree node xi in the m-th
decoding step. If one node is copied in time step
m, its decay rate is initialized as 1. In the next time
step m+ 1, it is scaled by a coefficient γ ∈ (0, 1):

λm+1,i = γλm,i (13)

The overall formulation for the Type-restricted
Decoder is:

p(ym|âm = 0, ŷ<m;Tx,τ) =

softmax (sm + dm)� (1− λm)
(14)

6 Hierarchical Reinforcement Learning

There remain two challenges to train our proposed
framework, which are 1) the lack of ground truth la-
bel for the operation selection stage and 2) the mis-
match between the evaluation metric and objective
function. Although it is possible to train our frame-
work by using the maximum likelihood estimation
(MLE) method which constructs pseudo-labels or
marginalize all the operations in the operation selec-
tion stage (Jia and Liang, 2016; Gu et al., 2016), the
loss-evaluation mismatch between MLE loss for
training and non-differentiable evaluation metrics
for testing lead to inconsistent results (Keneshloo
et al., 2019; Ranzato et al., 2015). To address these
issues, we propose a Hierarchical Reinforcement
Learning method to train the operation selection
stage and word selection stage jointly.

We set the objective of the HRL as maximiz-
ing the expectation of the reward R(ŷ,y) between
the predicted sequence ŷ and the ground-truth se-
quence y, denoted as Lr. It could be formulated as
a function of the input tuple {Tx,τ ,y} as,

Lr =
1

|S|
∑

(Tx,τ ,y)∈S

Eŷ∼p(ŷ|Tx,τ)[R(ŷ,y)]

=
1

|S|
∑

(Tx,τ ,y)∈S

∑
ŷ∈Y

p(ŷ|Tx,τ)R(ŷ,y),
(15)

Here, Y is the set of the candidate comment
sequences. The reward R((̂y),y) is the non-
differentiable evaluation metric, i.e., BLEU and
ROUGE (details are in Section 7). The expecta-
tion in Eq. (15) is approximated via sampling ŷ
from the distribution p(ŷ|Tx,τ). The procedure of
sampling ŷ from p(ŷ|Tx,τ) is composed of the sub-
procedures of sampling ŷm from p(ŷm|ŷ<m;Tx,τ)
in each decoding step m.

As mentioned above, the predicted sequence ŷ
comes from the two branches of Word Selection
Stage, depending on the Operation Selection Stage.
a is defined as the action of the Operation selection
stage. After involving the action am in time stepm,
Eq. (15) can be constructed by the joint distribution
of the two stages:

1

|S|
∑

(Tx,τ ,y)∈S

∑
ŷ∈Y

p(ŷ|Tx,τ)R(ŷ,y)

=
1

|S|
∑
...

∑
ŷ∈Y

(

M∏
m=1

∑
âm

p(ŷm, âm|ŷ<m;Tx,τ)︸ ︷︷ ︸
Two-stage Joint Distribution

)R(ŷ,y)

= ... p(ŷm|âm;ŷ<m;Tx,τ)︸ ︷︷ ︸
Word Distribution

p(̂am|ŷ<m;Tx,τ)︸ ︷︷ ︸
Operation Distribution

...

(16)

As shown in Eq. (16), the model finally selects
the word ŷm in time step m from the word distri-
bution conditioned on ŷ<m, Tx,τ and the operation
âm which is determined in the operation selection
stage. In other words, there is a hierarchical de-
pendency between the word selection stage and the
operation selection stage.

As mentioned above, Y represents the space
for all candidate comments, which is too large to
practically maximize Lr. Since decoding is con-
structed via sampling from p(ŷm|âm, ŷ<m;Tx,τ)
and p(âm|ŷ<m;Tx,τ), We adopt the Gumbel-Max
solution (Gumbel, 1954) for the following sam-
pling procedure:

âm ∼ p(âm|ŷ<m;Tx,τ),
ŷm ∼ p(ŷm|âm, ŷ<m;Tx,τ).

(17)

Through the maximum sampling step M, Eq.
(16) could be further approximated as the following
equation:

L̂r =
1

|S|
∑
y∈S

R(ŷ,y) (18)

The objective in Eq. (18) remains another chal-
lenge: for the entire sequence ŷ, there is only a
final reward R(ŷ,y) available for model training,
which is a sparse reward and leads to inefficient
training of the model. So we introduce reward
shaping (Ng et al., 1999) strategy to provide inter-
mediate rewards to proceed towards the training
goal, which adopts the accumulation of the inter-
mediate rewards to update the model.

To further stabilize the HRL training process,
we combine our HRL objective with the maximum-
likelihood estimation(MLE) function according to

297

Wu et al. (2018a, 2016); Li et al. (2017); Wu et al.
(2018b):

Le =
1

|S|
∑

(Tx,τ ,y)∈S

∑
ŷ∈Y

logp(y|Tx,τ)

L = µLe + (1− µ)L̂r,
(19)

where µ is a variational controlling factor that con-
trols the trade-off between maximum-likelihood
estimation function and our HRL objective. In the
current training step tr, µ varies according to the
training step tt as follows:

µ = 1− tr

tt
(20)

7 Evaluation and Analysis

7.1 Experimental Setup

7.1.1 Datasets
We evaluate our TAG framework on three widely
used benchmark data sets, which are WikiSQL
(Zhong et al., 2017), ATIS (Dong and Lapata,
2016) and CoNaLa (Yin et al., 2018). WikiSQL
is a dataset of 80654 hand-annotated examples of
SQL query and natural language comment pairs
distributed across 24241 tables from Wikipedia.
These SQL queries are further split into training
(56355 examples), development (8421 examples)
and test (15878 examples) sets. ATIS is in the form
of lambda-calculus, which is a set of 5410 inquiries
for flight information containing 4434 training ex-
amples, 491 development examples and 448 test
examples. CoNaLa is a python related dataset. Its
original version is used which includes 2879 snip-
pet/intent pairs crawled from Stack Overflow, split
into 2379 training and 500 test examples. We ex-
tract 200 random examples from its training set as
the development set.

We transfer the SQL queries of WikiSQL into
ASTs with 6 types according to the Abstract Syntax
Description Language (ASDL) grammar, where
the ASDL grammar for SQL queries is proposed
in Yin and Neubig (2017). We transfer the lambda-
calculus logical forms of ATIS to tree structure
with 7 types according to the method proposed in
Dong and Lapata (2016). The python snippets of
CoNaLa are transformed into ASTs with 20 types,
following the official ASDL grammar of python1.
The data of the ASTs of these datasets is shown
in Table 1, where the maximum depth of ASTs
(Max-Tree-Depth), the maximum number of child

1https://docs.python.org/3.5/library/ast.html

nodes in ASTs (Max-Child-Count) and the average
number of tree nodes in ASTs (Avg-Tree-Node-
Count) are shown.

Dataset WikiSQL ATIS CoNaLa

Max Tree Depth 5 18 28
Max Child Num 4 15 10

Avg Tree Node Count 11.11 33.54 28.37

Table 1: Statistics of ASTs on the datasets.

7.1.2 Baselines Frameworks
We choose the representative designs for code com-
ment generation as our baselines for comparison.
Code-NN (Iyer et al., 2016) is chosen because of
it is the first model to transform the source code
into sentences. Pointer Generator (See et al., 2017)
(P-G) is a seq2seq based model with a standard
copying mechanism. In addition, we choose the at-
tention based Tree-to-Sequence (Tree2Seq) model
proposed by Eriguchi et al. (2016). Moreover, we
also add the copying mechanism into Tree2Seq
model as another baseline (T2S+CP). We choose
Graph-to-Sequence (Graph2Seq) (Xu et al., 2018b)
as a graph-based baseline for comparison. Since
the authors have not released the code for data-
preprocessing, we convert the tree-structured rep-
resentation for the source code of SQL data into
directed graphs for our replication.

7.1.3 Hyperparameters
Code-NN uses embedding size and hidden size
both as 400, and applies random uniform initializer
with 0.35 initialized weight, and adopts stochastic
gradient descent algorithm to train the model with
a learning rate at 0.5. P-G uses 128 embedding size,
256 hidden size and applies random uniform initial-
izer with 0.02 initialized weights for initialization
and Adam optimizer to train the model with 0.001
learning rate. Graph2Seq uses 100 embedding size,
200 hidden size and applies the truncated normal
initializer for initialization. Adam optimizer is used
to train the model with a 0.001 learning rate.

We use the Xavier initializer (Glorot and Bengio,
2010) to initialize the parameters of our proposed
TAG framework. The size of embeddings is equiv-
alent to the dimensions of LSTM states and hidden
layers, which is 64 for ATIS and CoNaLa and 128
for WikiSQL. TAG is trained using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.001. In order to reduce the size of the vocabu-
lary, low-frequency words are not kept in both the

298

Model
WikiSQL (SQL) ATIS (lambda-calculus) CoNaLa (Python)

BLEU-4 ROUGE-2 ROUGE-L BLEU-4 ROUGE-2 ROUGE-L BLEU-4 ROUGE-2 ROUGE-L

Code-NN 6.7 9.7 30.9 37.1 43.28 59.4 8.1 12.2 26.1
P-G 25.7 29.2 50.1 41.9 47.3 60.5 10.0 13.8 28.0

Tree2Seq 22.0 22.0 43.4 40.1 47.2 60.9 6.6 9.2 25.2
Graph2Seq 17.6 24.3 45.7 34.6 41.8 58.3 10.4 14.1 28.2

T2S+CP 31.0 36.8 54.5 39.0 43.7 58.4 13.3 18.5 31.5

TAG(B) 35.8 41.0 57.8 42.4 47.4 61.2 14.1 19.4 31.8
TAG(R) 35.2 41.1 58.1 40.6 47.1 61.5 12.6 19.7 32.2

Table 2: Comparisons with baseline models on different test sets.

vocabulary for the source codes and the vocabulary
for target comments. Specifically, the minimum
threshold frequency for WikiSQL and ATIS is set
as 4 while for CoNaLa it is set as 2. The hyperpa-
rameters of Tree2Seq and T2S+CP is equivalent to
ours. The minibatch size of all the baseline models
and ours are set to 32.

7.1.4 Evaluation Metric
We illustrate the n-gram based BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) evaluations to
evaluate the quality of our generated comments and
also use them to set the reward in the HRL based
training. Specifically, BLEU-4, ROUGE-2 and
ROUGE-L are used to evaluate the performance of
our model since they are the most representative
evaluation metric for context-based text generation.

7.2 Results and Analysis

7.2.1 Comparison with the Baselines
Table 2 presents the evaluation results of the base-
line frameworks and our proposed ones. Since
our HRL could be switched to different reward
functions, we evaluate both the BLEU oriented
and ROUGE oriented training of our framework,
denoted as TAG(B) and TAG(R). The results of
TAG(B) and TAG(R) varies slightly compared to
each other. However, both of them are significantly
higher than all the selected counterparts, which
demonstrates the state-of-the-art generation quality
of our framework on all the datasets with different
programming languages.

Specifically, TAG improves over 15% of BLEU-
4, over 10% of ROUGE-2 and 6% of ROUGE-L
on WikiSQL when compared to T2S+CP, which
is the best one among all the baseline target for
all the evaluations. For the lambda-calculus re-
lated corpus, TAG improves 1.0% of BLEU, 0.2%
ROUGE-2 and 0.5% ROUGE-L on ATIS. The per-
formance is more difficult to be improved on ATIS

Model BLEU-4 ROUGE-2 ROUGE-L

TAG-TA 34.8(-1.4) 41.0(-1.3) 57.8(-1.6)
TAG-MV 35.2(-1.0) 41.1(-1.2) 58.1(-1.3)
TAG-CD 33.5(-2.7) 40.0(-2.3) 57.1(-2.3)
TAG-RL 34.6(-1.6) 41.4(-0.9) 58.7(-0.7)

TAG(B) 36.2 42.0 58.8
TAG(R) 35.6 42.3 59.4

Table 3: Ablation study of TAG framework.

than the other two corpora due to the great dissim-
ilarity of sub-trees of the lambda-calculus logical
forms in it. In terms of the python related corpus,
TAG improves 6% of BLEU, 6.4% of ROUGE-2
and 2.2% of ROUGE-L on CoNaLa when com-
pared to the best one in our baselines. The low
evaluation score and improvement of CoNaLa are
due to the complex grammatical structures and lack
of sufficient training samples, i.e., 20 types across
only 2174 training samples, which result in an in-
adequately use of the advantage of our approach.
However, our TAG framework still outperforms all
the counterparts on these two datasets.

7.2.2 Ablation Study
To investigate the performance of each component
in our model, we conduct ablation studies on the
development sets. Since all the trends are the same,
we omit the results on the other data sets and only
present the ones of WikiSQL. The variants of our
model are as follows:
• TAG-TA: remove Type-associated Encoder,

use Tree-LSTM instead.
• TAG-MV: remove the mask vector dm.
• TAG-CD: remove Copying Decay Strategy.
• TAG-RL replace HRL with MLE, marginalize

the actions of the operation selection.
The results of the ablation study are given in

Table 3. Overall, all the components are necessary
to TAG framework and providing important con-
tributions to the final output. When compared to
TAG-TA, the high performance of standard TAG

299

Code Comment

SQL: SELECT MAX(Capacity) FROM table
WHERE Stadium = “Otkrytie Arena”

Ground-Truth: What is the maximum capacity of the Otkrytie Arena Stadium ?
Code-NN: What is the highest attendance for ?
P-G: Who is the % that ’s position at 51 ?
Tree2Seq: What is the highest capacity at <unk> at arena ?
Graph2Seq: What is the highest capacity for arena arena ?
T2S+CP: What is the highest capacity for the stadium ?
TAG: What is the highest capacity for the stadium of Otkrytie Arena ?

Python: i: d [i] for i in d if i != ’c’

Ground-Truth: remove key ’c’ from dictionary ’d’
Code-NN: remove all keys from a dictionary ’d’
P-G: select a string ’c’ in have end of a list ’d’
Tree2Seq: get a key ’key’ one ’,’ one ’,’ <unk>
Graph2Seq: filter a dictionary of dictionaries from a dictionary ‘d’

where a dictionary of dictionaries ’d’
T2S+CP: find all the values in dictionary ’d’ from a dictionary ’d’
TAG: remove the key ’c’ if a dictionary ’d’

Table 4: Case study comparisons.

benefits from the Type-associated Encoder which
adaptively processes the nodes with different types
and extracts a better summarization of the source
code. The downgraded performance of TAG-MV
and TAG-CD indicates the advantages of the type-
restricted masking vector and Copying Decay Strat-
egy. These together ensure the accurate execution
of the copy and word selection. The comparison of
TAG and TAG-RL shows the necessity of the HRL
for the training of our framework.

7.2.3 Case Study
In order to show the effectiveness of our framework
in a more obvious way, some cases generated by
TAG are shown in Table 4. SQL and Python are
taken as the targeted programming languages. The
comments generated by TAG show great improve-
ments when compared to the baselines. Specifi-
cally, for the case in SQL, the keyword “Otkry-
tie Area” is missing in all the baselines but accu-
rately generated by our framework. For the case in
Python, the comment generated by TAG is more
readable than the others. These cases demonstrate
the high quality of the comments generated by our
TAG framework.

8 Conclusion

In this paper, we present a Type Auxiliary Guiding
encoder-decoder framework for the code comment
generation task. Our proposed framework takes full
advantage of the type information associated with
the code through the well designed Type-associated
Encoder and Type-restricted Decoder. In addition,
a hierarchical reinforcement learning method is
provided for the training of our framework. The ex-

perimental results demonstrate significant improve-
ments over state-of-the-art approaches and strong
applicable potential in software development. Our
proposed framework also verifies the necessity of
the type information in the code translation related
tasks with a practical framework and good results.
As future work, we will extend our framework to
more complex contexts by devising efficient learn-
ing algorithms.

Acknowledgments

This research was supported in part by Natural Sci-
ence Foundation of China (61876043, 61976052),
Natural Science Foundation of Guangdong
(2014A030306004, 2014A030308008), Science
and Technology Planning Project of Guangzhou
(201902010058). Besides, this project is also partly
supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its Cam-
pus for Research Excellence and Technological En-
terprise (CREATE) programme. This research was
also made possible by NPRP grant NPRP10-0208-
170408 from the Qatar National Research Fund (a
member of Qatar Foundation). The findings herein
reflect the work, and are solely the responsibility
of the authors.

References
Krishan K Aggarwal, Yogesh Singh, and Jitender Ku-

mar Chhabra. 2002. An integrated measure of soft-
ware maintainability. In Annual Reliability and
Maintainability Symposium. 2002 Proceedings (Cat.
No. 02CH37318), pages 235–241. IEEE.

Miltiadis Allamanis, Hao Peng, and Charles Sutton.

300

2016. A convolutional attention network for ex-
treme summarization of source code. In Inter-
national Conference on Machine Learning, pages
2091–2100.

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-
hav. 2018. code2seq: Generating sequences from
structured representations of code. arXiv preprint
arXiv:1808.01400.

Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang,
Zijian Li, and Zhihao Liang. 2018. An encoder-
decoder framework translating natural language to
database queries. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence,
pages 3977–3983. AAAI Press.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neu-
ral machine translation. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
823–833, Berlin, Germany. Association for Compu-
tational Linguistics.

Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. 2018. Structured neural summariza-
tion. arXiv preprint arXiv:1811.01824.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statis-
tics, pages 249–256.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Emil Julius Gumbel. 1954. Statistical theory of ex-
treme values and some practical applications: a se-
ries of lectures, volume 33. US Government Print-
ing Office.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018.
Deep code comment generation. In Proceedings
of the 26th Conference on Program Comprehension,
pages 200–210. ACM.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2073–2083, Berlin, Germany. Association for
Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and
Chandan K Reddy. 2019. Deep reinforcement learn-
ing for sequence-to-sequence models. IEEE Trans-
actions on Neural Networks and Learning Systems.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean,
Alan Ritter, and Dan Jurafsky. 2017. Adversarial
learning for neural dialogue generation. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2157–2169,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Yuding Liang and Kenny Qili Zhu. 2018. Automatic
generation of text descriptive comments for code
blocks. In Thirty-Second AAAI Conference on Ar-
tificial Intelligence.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomáš Kočiský, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
599–609, Berlin, Germany. Association for Compu-
tational Linguistics.

Dana Movshovitz-Attias and William W. Cohen. 2013.
Natural language models for predicting program-
ming comments. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 35–40,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Andrew Y Ng, Daishi Harada, and Stuart Russell.
1999. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In
ICML, volume 99, pages 278–287.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation

https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/D17-1230
https://doi.org/10.18653/v1/D17-1230
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057
https://www.aclweb.org/anthology/P13-2007
https://www.aclweb.org/anthology/P13-2007
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P17-1105

301

and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1139–
1149, Vancouver, Canada. Association for Computa-
tional Linguistics.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566, Beijing, China. Association for
Computational Linguistics.

Ted Tenny. 1988. Program readability: Procedures ver-
sus comments. IEEE Transactions on Software En-
gineering, 14(9):1271–1279.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems, pages 2692–2700.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S Yu. 2018. Im-
proving automatic source code summarization via
deep reinforcement learning. In Proceedings of the
33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pages 397–407. ACM.

Yuk Wah Wong and Raymond Mooney. 2007. Genera-
tion by inverting a semantic parser that uses statisti-
cal machine translation. In Human Language Tech-
nologies 2007: The Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference,
pages 172–179, Rochester, New York. Association
for Computational Linguistics.

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-
Yan Liu. 2018a. A study of reinforcement learning
for neural machine translation. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3612–3621, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Lijun Wu, Yingce Xia, Fei Tian, Li Zhao, Tao Qin,
Jianhuang Lai, and Tie-Yan Liu. 2018b. Adversar-
ial neural machine translation. In Asian Conference
on Machine Learning, pages 534–549.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng,
and Vadim Sheinin. 2018a. SQL-to-text generation
with graph-to-sequence model. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 931–936, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng,
Michael Witbrock, and Vadim Sheinin. 2018b.
Graph2seq: Graph to sequence learning with
attention-based neural networks. arXiv preprint
arXiv:1804.00823.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In 2018 IEEE/ACM 15th Interna-
tional Conference on Mining Software Repositories
(MSR), pages 476–486. IEEE.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://www.aclweb.org/anthology/N07-1022
https://www.aclweb.org/anthology/N07-1022
https://www.aclweb.org/anthology/N07-1022
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.18653/v1/D18-1112
https://doi.org/10.18653/v1/D18-1112
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041

