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Abstract
Metaphor is a linguistic device in which a con-
cept is expressed by mentioning another. Iden-
tifying metaphorical expressions, therefore, re-
quires a non-compositional understanding of
semantics. Multiword Expressions (MWEs),
on the other hand, are linguistic phenomena
with varying degrees of semantic opacity and
their identification poses a challenge to com-
putational models. This work is the first at-
tempt at analysing the interplay of metaphor
and MWEs processing through the design of
a neural architecture whereby classification of
metaphors is enhanced by informing the model
of the presence of MWEs. To the best of
our knowledge, this is the first “MWE-aware”
metaphor identification system paving the way
for further experiments on the complex inter-
actions of these phenomena. The results and
analyses show that this proposed architecture
reach state-of-the-art on two different estab-
lished metaphor datasets.

1 Introduction

Human language is rife with a wide range of tech-
niques that facilitate communication and expand
the capacities of thinking and argumentation. One
phenomenon of such kind is metaphor. Metaphor is
defined as a figure of speech in which the speaker
makes an implicit comparison between seemingly
unrelated things which nonetheless have certain
common characteristics (Shutova, 2010). This is
done to convey an idea which is otherwise difficult
to express succinctly or simply for rhetorical effect.

As an example, in the sentence she devoured his
novels, the verb devour is used in a metaphorical
sense that implies reading quickly and eagerly. The
literal and metaphorical senses share the element
of intense desire which in turn helps to decode the
meaning of the word in its context.

It is clear that a mere literal understanding of se-
mantics would not result in proper understanding of

a metaphorical expression and a non-compositional
approach would be required (Shutova et al., 2013;
Vulchanova et al., 2019). The human brain is
equipped with the necessary machinery to decode
the intended message behind a metaphorical utter-
ance. This involves mentally linking the seemingly
unrelated concepts based on their similarities (Rapp
et al., 2004).

Verbal MWEs (VMWEs) are another example of
non-literal language in which multiple words form
a single unit of meaning. These two phenomena
share some common ground. Expressions like take
the bull by the horns, go places, kick the bucket,
or break someone’s heart can be categorised as
metaphorical VMWEs. Based on this observa-
tion we hypothesise that a metaphor classification
model can be bolstered by knowledge of VMWEs.

In this work we focus on how identification
of verbal metaphors can be helped by verbal
MWEs. We devise a deep learning model based on
attention-guided graph convolutional neural net-
works (GCNs) that encode syntactic dependen-
cies alongside information about the existence of
VMWEs and we test the model on two established
metaphor datasets.

2 Related Works

The tasks of MWE and metaphor identification
share some similarities. Many idiomatic MWEs
can be considered as lexicalised metaphors.

Idioms are where the overlap becomes clear (Ko-
rdoni, 2018). It is important to note, however, that
not all verbal metaphors are VMWEs. Metaphors
that are less conventionalised and appear in creative
context (e.g. within a poem or a literary piece) and
are not established enough to make it as entries
into dictionaries are examples of such cases. How-
ever, the distinction between these categories is
not always clear, and few precise tests exist for the
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annotators to tell them apart (Gross, 1982). 1

Most state-of-the-art MWE identification models
are based on neural architectures (Ramisch et al.,
2018; Taslimipoor and Rohanian, 2018) with some
employing graph-based methods to make use of
structured information such as dependency parse
trees (Waszczuk et al., 2019; Rohanian et al., 2019).
Top-performing metaphor detection models also
use neural methods (Rei et al., 2017; Gao et al.,
2018), with some utilising additional data such
as sentiment and linguistic information to further
improve performance (Mao et al., 2019; Dankers
et al., 2019).

3 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) (Kipf and
Welling, 2016) are a variation of the classic CNNs
that perform the convolution operation on nodes of
a graph, making them suitable for capturing non-
sequential inter-dependencies in the input.

Using the per-sentence formalism (Marcheg-
giani and Titov, 2017; Rohanian et al., 2019), GCN
can be defined as:

GCN = f(WXTA+ b) (1)

where W , X , A, b, and GCN refer to the weight
matrix, representation of the input sentence, ad-
jacency matrix, bias term, and the output of the
convolution respectively. f is a nonlinearity which
is often the relu function.

3.1 Multi-head Self-attention
Attention is a mechanism inspired by human vi-
sual attention which aims to encode sequences by
emphasising their most informative parts through
weighting. Self-attention (Cheng et al., 2016), also
referred to as intra-attention, is a special case of the
attention mechanism which relates different parts
of the same sequence and relies only on informa-
tion from the same sequence. When the sequence
is a series of words, this means encoding the sen-
tence by learning correlations between words in
the sentence. Self-attention is a powerful method
to learn long-range dependencies in a sequence.

In this work, we use a particular form of self-
attention introduced by Vaswani et al. (2017) in
which the weighting is determined by scaled dot
product. Given the input representation X , three
smaller sized vectors are created. These are Query,

1See PARSEME annotation guidelines at
https://parsemefr.lis-lab.fr/parseme-st-guidelines/1.1/

Key, and Value which are represented with Q, K,
and V respectively. The output of self-attention is
computed with:

Att(Q,K, V ) = softmax(
QKT

√
d

)V (2)

N different self-attention mechanisms are ac-
tivated in parallel. This approach is known as
N -headed self-attention, where each head Hi =
Att(QWQ

i ,KW
K
i , V ) and the projections WQ

i

and WK
i are parameter matrices. The outputs from

these individual heads are later used in GCN lay-
ers (Guo et al., 2019).

3.2 Attention Guided Adjacency
Central to GCN is the adjacency matrix where the
relations between nodes are defined. Converting
the graph of relations to an adjacency matrix in-
volves a rule-based hard pruning strategy and po-
tentially results in discarding valuable information
due to the sparsity of the matrix. Influenced by
Guo et al. (2019), in this work we consider depen-
dency parse information as an undirected graph
with adjacency A. To obtain Ã, we combine ma-
trix A with matrices H0, H1,..., HN−1 induced by
the N -headed self-attention mechanism defined in
Section 3.1.

Given an N -headed attention, each A is con-
verted to several Ãis where i ∈ {1, 2, ..N} and
each Ãi is a linear combination of A and Hi.

Ãi = α×Hi + (1− α)×A (3)

Each Ãi can be interpreted as a fully connected
graph where the relation strength between every
two nodes is determined by a weight value. In this
case, a higher weight signifies a stronger relation
and a value close to zero would signal a lack of
connection. These edge-weighted graphs are then
fed to separate GCNs. A consolidated representa-
tion is finally achieved by a linear combination of
the outputs from these N different GCNs.

The use of attention within the GCN network is
motivated by the assumption that multi-hop paths
between distantly related nodes could potentially
be captured this way. We stack n layers of attention-
guided GCNs using residual connections with n be-
ing a hyper-parameter that is tuned independently
in each dataset.

Graph Attention (GAT) (Veličković et al., 2017)
is a closely related work where the scope of atten-
tion is the neighbourhood of each node, whereas
we make use of the entire sentence.



2892

3.3 MWE-Aware GCN

In order to inform the model of the structural hi-
erarchy within the sentence and encode informa-
tion about MWEs, our attention-guided GCN com-
ponent integrates information from two separate
sources; namely, the dependency parse information
and token-level relations between components of
existing MWEs in the sentence. These correspond
to adjacencies ÃDEP and ÃMWE which are fed
each into separate GCNs and the output is a con-
catenation of the outputs from both components:

GCN = concat[GCNsMWE ;GCNsDEP ] (4)

4 Experiments

We describe the datasets used in the experiments
and then provide details of the overall system.

4.1 Datasets

We apply the systems on two different metaphor
datasets: MOH-X, and TroFi, which contain an-
notations for verb classification. Both of these
datasets contain a set of sentences in which a single
verb token is labelled as metaphorical or not. There
is also an index provided that specifies the location
of the target token in the sentence.

MOH-X. MOH-X is based on earlier work by Mo-
hammad et al. (2016). It consists of short ‘example’
sentences from WordNet (Fellbaum, 1998)2 with
labels for metaphorical verbs along with associated
confidence scores. Shutova et al. (2016) created a
subset of this dataset, referred to as MOH-X, and
added annotations for each verb and its argument.
This dataset has 214 unique verbs.

TroFi. Similar to MOH-X, TroFi (Birke and
Sarkar, 2006) has annotations for target verbs in
each sentence. It has a comparatively longer aver-
age sentence length with 28.3 words per sentence
compared to MOH-X’s 8.0. The sentences in TroFi
are constructed from the Wall Street Journal Corpus
(Charniak et al., 2000). There are only 50 unique
target verbs in this dataset.

4.2 MWE Identification

We extract MWEs using the GCN-based system
proposed by Rohanian et al. (2019). Since we are
focusing on verbal metaphors in this study, we
train the system on the PARSEME English dataset

2Examples are sentences after the gloss that show in-
context usage

TroFi MOH-X
verbal metaphor 1627 315
MWE 257 77

Table 1: Number of predicted MWEs among target
verbs.

(Ramisch et al., 2018), which is annotated for ver-
bal MWEs. As a result, predicted MWE labels
in our target datasets are IOB formatted, where B
and I denote the beginning and inside tokens of
an MWE and O signifies tokens not belonging to
MWEs.

We encode the relations between components of
MWEs in each sentence using an adjacency matrix.
Tokens of a sentence are nodes of the adjacency
matrix; edges exist between tokens of an MWE. Re-
lation matrices are then fed to the attention guided
system as explained in Section 4.3.

The numbers of verbal MWEs in correlation with
target verbs in metaphor datasets are shown in Ta-
ble 1. As can be seen, almost 16% of metaphors
in TroFi and 24% of metaphors in MOH-X are au-
tomatically labelled as VMWEs. This provides a
strong motivation for incorporating this informa-
tion into the metaphor identification system.

4.3 System Description

For our experiments, we devise two strong base-
lines and compare them against our proposed
model. All three systems are built on top of a pre-
trained BERT architecture (Devlin et al., 2019).

The starting baseline (BERTBaseline) is vanilla
pre-trained BERT with a classification layer added
on top. The other two models (BERT+GCN and
BERT+MWE-Aware GCN) are created by adding
extra layers with trainable parameters on top of the
BERT model, augmenting its original structure. 3

BERT+GCN is BERT plus an attention-guided
GCN that uses dependency parse information. Fi-
nally, BERT+MWE-Aware GCN refers to the sys-
tem that uses BERT along with the added MWE-
aware GCN component that utilises both depen-
dency and VMWE information as detailed in Sec-
tion 3.3.

Adam (Kingma and Ba, 2014) is used for opti-
mising the network; the learning rate is controlled
with a linear warmup scheduler in which the rate

3For all the experiments we use the pre-trained BERT
model, bert-base-uncased, from the transformers li-
brary (Wolf et al., 2019).
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MOH-X TroFi
Models Acc P R F1 Acc P R F1
Gao et al. (2018) 78.5 75.3 84.3 79.1 73.7 68.7 74.6 72.0
RNN-HG (Mao et al., 2019) 79.7 79.7 79.8 79.8 74.9 67.4 77.8 72.2
RNN-MHCA (Mao et al., 2019) 79.8 77.5 83.1 80.0 75.2 68.6 76.8 72.4
BERTBaseline 78.04 78.38 77.87 77.82 70.38 70.54 68.89 68.84
BERT+GCN 79.44 79.79 79.36 79.31 72.01 72.32 70.45 70.65
BERT+MWE-Aware GCN 80.47 79.98 80.40 80.19 73.45 73.78 71.81 72.78

Table 2: Performance of MWE-Aware GCN against baselines and state-of-the-art on MOH-X and TroFi

decreases linearly after increasing during a warmup
period. In all the models, given the verb index in
the dataset4, and before passing the token-level out-
put of the GCN to the softmax layer, we slice the
output tensor based on the provided index and only
select for the representation of the token of inter-
est and subsequently pass this sliced tensor to the
classification layer.

5 Results

We report the results in terms of accuracy, preci-
sion, recall and F1-score, macro averaged over the
measures obtained from 10 fold cross-validation.
As can be seen in Table 2, our proposed model
outperforms the baselines and also surpasses state-
of-the-art in terms of F1-score and precision in
both datasets. As a whole, the results obtained for
the two datasets are more homogeneous across the
four metrics compared to previous state-of-the-art.

In order to have a fair comparison with the previ-
ous state-of-the-art, it is important to consider their
architectures. Gao et al. (2018), which our model
outperforms in most criteria across the two datasets,
is a BiLSTM-based system that uses a combination
of ELMo and GLoVe vectors for input representa-
tion. The two models by Mao et al. (2019) are more
competitive, especially in accuracy and precision
for the TroFi dataset. RNN-HG and RNN-MHCA
are BiLSTM-based systems grounded in linguistic
theories of Selectional Preference Violation (SPV)
(Wilks, 1978) and Metaphor Identification Proce-
dure (MIP) (Steen et al., 2007) which are based
on the semantic contrast between the metaphori-
cal word and its context or between the literal and
contextualised meanings of a target token. These
two models also make use of contextualised em-
beddings.

4An index specifies the location of the target token.

6 Discussion

The larger portion of annotated VMWEs in both
datasets are figurative and thus provide a valuable
signal to metaphoricity. TroFi proved to be more
challenging as sentences can be as long as 118
tokens with several different VMWEs and only a
single token of interest which could be labelled as
literal. On the other hand, MOH-X is more focused
and VMWEs, for the most part, coincide with the
target verb.

A notable pattern in the results is when the base-
lines miss a metaphor and the proposed model cor-
rectly identifies it due to the presence of a non-
compositional VMWE. A typical example is given
below where tack together, identified initially as an
MWE, signals metaphoricity:5

(1) He tacked together some verses.

There are examples of sentences falsely classi-
fied by BERT+GCN as metaphorical which are
correctly identified as not by BERT+MWE-Aware
GCN. This shows the model has picked up infor-
mative cues and general patterns. There are also
metaphors missed by BERT+GCN that do not have
explicitly tagged VMWEs, but the proposed model
is still able to capture them. Example 2 is an in-
stance of such case:

(2) The residents of this village adhered to
Catholicism.

Due to their correlation with metaphoricity,
VMWE information equips the model with the
ability to identify metaphorical usage, which is
reflected in the superior precision scores. However,
this correlation is not always definitive, and in cer-
tain cases where a VMWE is realised in its literal
meaning, the model might incorrectly associate its

5Target tokens are boldfaced
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presence with metaphor. The following two sen-
tences from MOH-X are examples of false positives
influenced by VMWEs. Here, jam the brake and
land in are VMWEs with literal meanings which
can be idiomatic in other contexts:

(3) The driver jammed the brake pedal to the
floor.

(4) The ship landed in Pearl Harbor

There are only a few such cases in MOH-X, how-
ever in TroFi, the problem is exacerbated by longer
sentences with multiple target tokens. One possi-
ble remedy could be to not attend to all the tokens
in each sentence but instead look at a certain win-
dow around the target token. We did not explore
this idea in this work as it would defeat the pur-
pose of attention-guided GCNs, but are open to
considering it in future in such a way that accuracy
is improved without hurting the precision scores
which are higher in both datasets than previous
state-of-the-art.

7 Conclusions and Future Work

In this work, we presented a neural model to clas-
sify metaphorical verbs in their sentential context
using information from the dependency parse tree
and annotations for verbal multiword expressions.
To the best of our knowledge, this is the first MWE-
aware metaphor identification system, that demon-
strates how the knowledge of MWEs can enhance
the performance of a metaphor classification model.
Experiments showed that the resulting system sets
a new state-of-the-art in several criteria across two
benchmark metaphor datasets. The code used in
the experiments will be made publicly available 6.

For future work, we plan to add VMWE annota-
tions to the VU Amsterdam Corpus (Steen, 2010)
which is the largest metaphor dataset and extend
our experiments using that resource. Directional-
ity of edges did not result in improvement in our
models in this work, however for future, we plan to
develop GCNs that incorporate edge typing, which
would enable us to differentiate between different
MWE types and dependency relations while com-
paring them against the current models.

6https://github.com/omidrohanian/
metaphor_mwe
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