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Abstract

Adaptive policies are better than fixed poli-
cies for simultaneous translation, since they
can flexibly balance the tradeoff between trans-
lation quality and latency based on the cur-
rent context information. But previous meth-
ods on obtaining adaptive policies either rely
on complicated training process, or underper-
form simple fixed policies. We design an al-
gorithm to achieve adaptive policies via a sim-
ple heuristic composition of a set of fixed poli-
cies. Experiments on Chinese→English and
German→English show that our adaptive poli-
cies can outperform fixed ones by up to 4
BLEU points for the same latency, and more
surprisingly, it even surpasses the BLEU score
of full-sentence translation in the greedy mode
(and very close to beam mode), but with much
lower latency.

1 Introduction

Simultaneous translation (ST) aims to provide good
translation quality while keeping the latency of
translation process as low as possible. This is very
important for the scenarios that require simultane-
ity, such as international summits and negotiations.
For this, human interpreters usually start transla-
tion before the source sentence ends. However, this
makes the translation process much more challeng-
ing than the full-sentence translation, because to
balance the translation quality and latency, inter-
preters need to make decisions on when to continue
translation and when to stop temporarily to wait
for more source side information, which are diffi-
cult, especially for syntactically divergent language
pairs, such as German and English.

The above decisions can be considered as two
actions: READ (wait for a new source word) and
WRITE (emit a translated target word) (Gu et al.,
2017). Then we only need to decide which action
to choose at each step, and the solution can be repre-
sented by a policy. Earlier works (Yarmohammadi
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Figure 1: An adaptive policy (in bold arrows) com-
posed of three wait-k policies (k = 1, 2, 3).

et al., 2013; Bangalore et al., 2012; Fügen et al.,
2007; Sridhar et al., 2013; Jaitly et al., 2016) study
policies as a part of speech-to-speech ST system,
where the policies usually try to separate the source
sentence into several chunks that can be translated
safely. Recent works focus on obtaining policies
for text-to-text ST, which can be generally divided
into two categories: fixed and adaptive. Fixed poli-
cies (Ma et al., 2019; Dalvi et al., 2018) usually
follow some simple rules to choose actions. For
example, the wait-k policy by Ma et al. (2019) first
chooses k READ actions, and then chooses WRITE
and READ alternatively. This kind of policies do
not utilize the context information and can be ei-
ther too aggressive or too conservative in different
cases.

By contrast, adaptive policies try to make deci-
sions on the fly using the currently available infor-
mation. It is obvious that this kind of policies is
more desirable for ST than the fixed ones, and dif-
ferent methods are explored to achieve an adaptive
policy. The majority of such methods (Grissom II
et al., 2014; Cho and Esipova, 2016; Gu et al., 2017;
Alinejad et al., 2018; Zheng et al., 2019a) are based
on full-sentence translation models, which may be
simple to use but cannot outperform fixed poli-
cies applied with “genuinely simultaneous” mod-
els trained for ST (Ma et al., 2019). Other meth-
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ods (Arivazhagan et al., 2019; Zheng et al., 2019b)
try to learn a policy together with the underlying
translation model, but they rely on complicated and
time-consuming training process.

In this paper, we propose to achieve an adap-
tive policy via a much simpler heuristic composi-
tion of a set of wait-k policies (e.g., k = 1∼ 10).
See Fig. 1 for an example. To further improve the
translation quality of our method, we apply ensem-
ble of models trained with different wait-k poli-
cies. Our experiments on Chinese→English and
German→English translation show that our method
can achieve up to 4 BLEU points improvement over
the wait-k method for same latency. More interest-
ingly, compared with full-sentence translation, our
method achieves higher BLEU scores than greedy
search but with much lower latency, and is close to
the results from beam search.

2 Preliminaries

Full-sentence translation. Neural machine
translation (NMT) model usually consists of two
components: an encoder, which encodes the source
sentence x = (x1, . . . , xm) into a sequence of
hidden states, and a decoder, which sequentially
predicts target tokens conditioned on those hidden
states and previous predictions. The probability
of the predicted target sequence y = (y1, . . . , yn)
will be

p(y | x) =
∏|y|

t=1 p(yt | x, y<t)

where y<t = (y1, . . . , yt−1) denotes the target se-
quence predicted before step t.

Simultaneous translation. Ma et al. (2019) pro-
pose a prefix-to-prefix framework to train models
to make predictions conditioned on partial source
sentences. In this way, the probability of predicted
sequence y becomes

pg(y | x) =
∏|y|

t=1 p(yt | x≤g(t), y<t)

where g(t) is a monotonic non-decreasing function
of t, denoting the number of processed source to-
kens when predicting yt. This function g(t) can be
used to represent a policy for ST. Ma et al. (2019)
introduce a kind of fixed policies, called wait-k
policy, that can be defined by the following

gk(t) = min{|x|, t+ k − 1}.

Intuitively, this policy first waits k source tokens
and then outputs predicted tokens concurrently
with the rest of source sentence.
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Figure 2: Choose actions based on model confidence.
In this example, we will choose an action based on the
top probability ptop, and apply a new policy (the dotted
arrows) after the chosen action.

3 Obtaining an Adaptive Policy

Assume we have a set of wait-k policies and the
corresponding models Mk (k = kmin . . . kmax).
We can obtain an adaptive policy, whose lag at
each step is between kmin and kmax, meaning that
at each step, the target sequence falls behind the
source sequence at most kmax tokens and at least
kmin tokens. At each step, there is a wait-k policy
synchronizing the adaptive policy, meaning that
they have the same lag at that step. Specifically,
at any step t, if the lag of the adaptive policy is
k′, then we apply the NMT model with the wait-k′

policy and force it to predict existing target tokens
until step t, when the model will make a new pre-
diction as the output of step t.

However, the above method only shows how to
simulate the adaptive policy to make a prediction at
one step if we would like to write at that step, but it
does not tell us at which steps we should write. We
utilize the model confidence to make such a deci-
sion. Specifically, we set a probability threshold ρk
for each wait-k policy. At each step, if the NMT
model follows a wait-k′ policy, and predicts the
most likely token with probability higher than the
threshold ρk′ , then we consider the model is confi-
dent on this prediction, and choose WRITE action;
otherwise, we choose READ action. Figure 2 gives
an example for this process.



2849

We define the process of applying a wait-k
modelMk with a wait-k policy on a given sequence
pair (x,y) by the following

ytop, ptop ← Pk(Mk,x,y)

which forces model Mk to predict y, and returns
the top token ytop at the final step with the corre-
sponding probability ptop. The process of reading
and returning a new source token is denoted by
READ(), and expression x ◦ x represents to ap-
pend an element x to the end of sequence x. We
denote by <s> and </s> the start symbol and end
symbol of a sequence. Then Algorithm 1 gives the
pseudocode of the above method.

Algorithm 1 ST decoding with an adaptive policy

Input: two integers kmin and kmax, a set of
NMT models Mk, and a sequence of
thresholds ρk for kmin ≤ k ≤ kmax.

while x|x| 6= </s> and y|y| 6= </s> do
k ← |x| − |y|
ytop, ptop ← Pk(Mk,x,y)
if k ≥ kmax or (k ≥ kmin and ptop ≥ ρk)

y ← y ◦ ytop . Write action
else

x← x ◦ READ() . Read action
while y|y| 6= </s> do

ytop, ptop ← Pkmax(Mkmax ,x,y)
y ← y ◦ ytop . Write action

return y

4 Ensemble of Wait-k Models

Using the corresponding model Mk with each wait-
k policies may not give us the best performance. If
we have a set of models trained independently with
different wait-k policies, then we can apply ensem-
ble of those models (Dietterich, 2000; Hansen and
Salamon, 1990) to improve the translation qual-
ity, which is also used to improve the translation
quality of full-sentence translation (Stahlberg and
Byrne, 2017). However, there may be two issues
to apply ensemble of all models: (1) the runtime
for each prediction could be longer, resulting in
higher latency; and (2) the translation accuracy
may be worse, for the best model for one policy
may give bad performance when doing inference
with another policy. To avoid these, we propose to
apply ensemble of the top-3 models for each pol-
icy. That is, we first generate distribution with the
top-3 models independently with the same policy,

and then take the arithmetic average of the three
distributions as the final token distribution at that
step.

5 Experiments

Datasets and models. We conduct experi-
ments on Chinese→English (ZH→EN) and
German→English (DE→EN) translation. For
ZH→EN, we use NIST corpus (2M sentence pairs)
as training set, NIST 2006 as dev set, and NIST
2008 as test set. For DE→EN, we use WMT15
parallel corpus for training, newstest-2013 for vali-
dation and newstest-2015 for testing. All datasets
are tokenized and segmented into sub-word units
with byte-pair encoding (Sennrich et al., 2016). We
take Transformer-base (Vaswani et al., 2017) as
our model architecture, and follow Ma et al. (2019)
to train our model with wait-k policies for integer
1 ≤ k ≤ 10. In the following experiments, we
only use catchup (Ma et al., 2019) for DE→EN
translation, where we read one additional source
token after every 6 predictions. We use BLEU (Pa-
pineni et al., 2002) as the translation quality metric,
and Average Lagging (AL) (Ma et al., 2019) as
the latency metric, which measures the lag behind
source in terms of the number of source tokens.

Performance with different policies. We first
evaluate the performance of each model with dif-
ferent policies, which helps us to choose models
for different policies. Specifically, we apply each
model with ten different wait-k policies on dev set
to compare the performance. Fig. 3 shows the re-
sults of five models. We find the best model for
one policy may not be the one trained with that
policy. For example, on ZH→EN translation, the
best model for wait-1 policy is the one trained with
wait-3 policy. Further, there is no one model could
achieve the best performance for all policies.

Comparing different methods. We compare
our method with others from literature: wait-k
method (Ma et al., 2019) (train and test mod-
els with the same wait-k policy), test-time wait-
k method (Ma et al., 2019) (apply full-sentence
model with wait-k policies), wait-if-diff (Cho and
Esipova, 2016) (start with s0 source tokens, choose
to read only if top token at t-th step diffs from that
at (t− δ)-th step), and wait-if-worse (Cho and Es-
ipova, 2016) (start with s0 source tokens, choose to
read only if the top probability at t-th step is smaller
than that at (t− δ)-th step). For wait-if-diff we set
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Figure 3: Performance of models with different policies on dev set. Each model is trained with one wait-k policy
(i.e. wait-k model) and tested with ten different wait-k′ policies for integer 1 ≤ k′ ≤ 10. Each line corresponds to
one model. H I: full-sentence translation with greedy search and beam search (beam size = 10) respectively.
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Figure 4: Performance of different methods on test set. Our single method achieves better BLEU scores than
wait-k method with same latency. And our ensemble top-3 method achieves the highest BLEU scores with same
latency, and outperforms full-sentence greedy search with AL < 9. H I: full-sentence translation with greedy
search and beam search (beam size = 10) respectively.

s0 ∈ {4, 6} and δ ∈ {2, 4}; and for wait-if-worse
we set s0 ∈ {1, 2, 4, 6} and δ ∈ {1, 2}.

For our method, we test three different cases:
(1) single, where for each policy we apply the cor-
responding model that trained with the same pol-
icy; (2) ensemble top-3, where for each policy we
apply the ensemble of 3 models that achieve the
highest BLEU scores with that policy on dev set;
(3) ensemble all, where we apply the ensemble of
all 10 models for each policy. For thresholds, we
first choose ρ1 and ρ10, and the other thresholds are
computed in the following way: ρi = ρ1−d·(i−1)
for integer 1 ≤ i ≤ 10 and d = (ρ1 − ρ10)/9. We
test with ρ1 ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9}, ρ10 = 0 and ρ1 = 1, ρ10 ∈ {0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, totally 18 differ-
ent settings in our experiments. The reason behind
these settings is that we assume our adaptive policy
cannot be either too aggressive or too conservative
(as mentioned at the beginning of Section 3). The
policy is the most aggressive for k = 1, so we set
ρ1 as the largest; while for k = 10 the policy is the
most conservative, so we set ρ10 the smallest.

The comparison is provided in Fig. 4 (the cor-
responding numeric scores are provided in Ap-
pendix A). Compared with wait-k method, our
single method achieves improvement of up to 2
BLEU point, and our ensemble top-3 achieves im-
provement up to 4 BLEU points. Compared with
full-sentence translation, our ensemble top-3 sur-
prisingly outperforms greedy search with much
lower latency (AL< 9), and achieves BLEU scores
close to that from beam search (see Table 2). We
also give one ZH→EN translation example from
dev set in Table 1 to compare different methods,
showing that our method achieves an adaptive pol-
icy with low latency and good translation quality.

Efficiency. To evaluate the efficiency, we present
in Table 3 the averaged time needed to predict one
token for different methods. These methods are
tested on one GeForce GTX TITAN-X GPU for
ZH→EN test set. We can see that our ensemble
top-3 method needs about 0.2 seconds to make
a prediction on average. However, if the source
sentence is revealed in the same speed as general
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pinyin wǒmén xiàng shòuhàizhě de jiāshǔ biǎoshı̀ zuı̀ chéngzhı̀ de tóngqı́ng hé āi dào

input “我们 向 受害者 的 家属 表示 最 诚挚 的 同情 和 哀- 悼 . ”
gloss we to victim ’s family express most sincere ’s sympathy and condolence

ensemble top-3
ρ1=1, ρ10=0

(AL=7) “ we
express

our

most sincere
sympathy

and
condol- ences to the

families of the victims . ”
ensemble top-3
ρ1=0.4, ρ10=0

(AL=2.8) “ we

express
the most
sincere

sympathy
to the

families of
the victims . ”

wait-3 (AL=3.72) “ we have offered our best wishes to the families of the victims , ” he said .

full-sentence
translation
(AL=16)

“ we express the most
sincere sympathy and
condol- ences to the

families of the victims . ”

Table 1: One example from ZH→EN dev set. Although wait-3 method has low latency, it makes anticipations on
“offered” and “wishes”, and adds additional words “he said”, which are not accurate translation. Our ensemble
top-3 method could provide better translation with lower latency.

Method
ZH→EN DE→EN

BLEU AL BLEU AL
Full-sentence (greedy) 39.47 29.551 29.74 28.581
Full-sentence (beam) 40.71 29.551 30.24 28.581

Ensemble Top-3 40.15 8.209 30.15 8.766

Table 2: Compare our method with full-sentence trans-
lation. Our ensemble top-3 method could outperform
the greedy search and get close to beam search (beam
size = 10) with lower latency.

speech, which is about 0.6 seconds per token in
Chinese (Zheng et al., 2019c), then our method
is still faster than that (which means that it could
be used for real-time). Further, we believe the
efficiency of our method could be improved with
other techniques, such as parallelizing the running
of three models in the ensemble, making it less an
issue.

Method Time per Token
Full-sentence 0.0122 s

Wait-3 0.0162 s
Single (ρ1 = 0.4, ρ10 = 0) 0.1057 s

Ensemble Top-3 (ρ1 = 0.4, ρ10 = 0) 0.2085 s

Table 3: Averaged time needed by different methods to
predict one token on ZH→EN test set.

6 Conclusions

We have designed a simple heuristic algorithm to
obtain an adaptive policy based on a set of wait-k
policies, and applied ensemble in our method to
improve the translation quality while maintaining
low latency. Experiments show that our method
not only outperforms the original wait-k method
with relatively large gap, but also surpasses greedy
full-sentence translation with much lower latency.
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A Appendices

We provide the complete results of Figure 4 from
Section 5 in the following tables, where AL is Av-
erage Lagging. Note that for ZH→EN, we use 4-
reference BLEU; while for DE→EN we use single-
reference BLEU.

Hyper-parameters
ZH→EN DE→EN

BLEU AL BLEU AL

w
ai

t-
if

-d
iff s0 = 4, δ = 2 28.52 5.493 22.16 5.121

s0 = 6, δ = 2 30.02 6.108 22.56 5.731
s0 = 4, δ = 4 33.91 9.764 25.16 8.763
s0 = 6, δ = 4 34.13 10.075 25.45 9.177

en
se

m
bl

e
to

p-
3

ρ1 = 0.2, ρ10 = 0.0 32.10 2.880 24.55 2.171
ρ1 = 0.3, ρ10 = 0.0 33.94 3.729 25.63 2.592
ρ1 = 0.4, ρ10 = 0.0 35.92 4.762 26.52 3.068
ρ1 = 0.5, ρ10 = 0.0 37.43 5.710 27.20 3.523
ρ1 = 0.6, ρ10 = 0.0 38.56 6.538 27.97 4.096
ρ1 = 0.7, ρ10 = 0.0 38.96 7.109 28.71 4.628
ρ1 = 0.8, ρ10 = 0.0 39.82 7.675 29.06 5.101
ρ1 = 0.9, ρ10 = 0.0 40.15 8.209 29.40 5.616
ρ1 = 1.0, ρ10 = 0.0 40.35 8.520 29.62 6.038
ρ1 = 1.0, ρ10 = 0.1 40.18 9.013 29.88 6.482
ρ1 = 1.0, ρ10 = 0.2 40.36 9.462 29.80 6.923
ρ1 = 1.0, ρ10 = 0.3 40.32 9.848 29.84 7.379
ρ1 = 1.0, ρ10 = 0.4 40.56 10.185 29.99 7.882
ρ1 = 1.0, ρ10 = 0.5 40.61 10.480 30.04 8.347
ρ1 = 1.0, ρ10 = 0.6 40.52 10.739 30.15 8.766
ρ1 = 1.0, ρ10 = 0.7 40.51 10.939 30.16 9.182
ρ1 = 1.0, ρ10 = 0.8 40.41 11.134 30.17 9.582
ρ1 = 1.0, ρ10 = 0.9 40.36 11.310 30.15 10.023

en
se

m
bl

e
al

l

ρ1 = 0.2, ρ10 = 0.0 26.81 1.231 24.55 2.383
ρ1 = 0.3, ρ10 = 0.0 32.61 3.536 25.74 2.851
ρ1 = 0.4, ρ10 = 0.0 35.96 5.219 26.46 3.367
ρ1 = 0.5, ρ10 = 0.0 37.31 6.270 26.97 3.973
ρ1 = 0.6, ρ10 = 0.0 38.40 6.959 27.20 4.666
ρ1 = 0.7, ρ10 = 0.0 38.64 7.590 27.63 5.241
ρ1 = 0.8, ρ10 = 0.0 39.10 8.134 27.78 5.828
ρ1 = 0.9, ρ10 = 0.0 39.18 8.523 27.89 6.290
ρ1 = 1.0, ρ10 = 0.0 38.80 8.761 27.89 6.650
ρ1 = 1.0, ρ10 = 0.1 38.67 9.264 27.94 7.151
ρ1 = 1.0, ρ10 = 0.2 38.62 9.682 27.86 7.594
ρ1 = 1.0, ρ10 = 0.3 38.62 10.029 27.98 8.014
ρ1 = 1.0, ρ10 = 0.4 38.62 10.274 28.17 8.395
ρ1 = 1.0, ρ10 = 0.5 38.57 10.477 28.17 8.710
ρ1 = 1.0, ρ10 = 0.6 38.60 10.632 28.23 8.989
ρ1 = 1.0, ρ10 = 0.7 38.59 10.770 28.31 9.253
ρ1 = 1.0, ρ10 = 0.8 38.58 10.890 28.32 9.517
ρ1 = 1.0, ρ10 = 0.9 38.56 11.029 28.34 9.830

Table 4: Complete results of wait-if-diff, ensemble
top-3 and ensemble all.

Hyper-parameters
ZH→EN DE→EN

BLEU AL BLEU AL

w
ai

t-
if

-w
or

se

s0 = 1, δ = 1 31.67 6.857 21.77 4.930
s0 = 2, δ = 1 32.28 7.170 22.26 5.005
s0 = 4, δ = 1 33.36 7.964 23.30 5.697
s0 = 6, δ = 1 34.78 9.319 24.27 6.914
s0 = 1, δ = 2 36.28 12.731 26.52 10.268
s0 = 2, δ = 2 36.62 13.133 26.39 10.138
s0 = 4, δ = 2 36.89 13.629 26.68 10.806
s0 = 6, δ = 2 37.50 14.662 27.09 11.877

si
ng

le

ρ1 = 0.2, ρ10 = 0.0 31.24 3.335 22.72 1.989
ρ1 = 0.3, ρ10 = 0.0 32.96 3.781 23.85 2.211
ρ1 = 0.4, ρ10 = 0.0 34.39 4.455 25.05 2.672
ρ1 = 0.5, ρ10 = 0.0 36.23 5.254 25.61 3.047
ρ1 = 0.6, ρ10 = 0.0 36.75 5.750 26.73 3.627
ρ1 = 0.7, ρ10 = 0.0 36.95 6.526 27.21 4.187
ρ1 = 0.8, ρ10 = 0.0 37.67 7.030 27.84 4.785
ρ1 = 0.9, ρ10 = 0.0 38.41 7.604 28.41 5.330
ρ1 = 1.0, ρ10 = 0.0 37.89 8.021 28.81 5.813
ρ1 = 1.0, ρ10 = 0.1 38.45 8.458 29.02 6.169
ρ1 = 1.0, ρ10 = 0.2 38.20 8.839 29.20 6.596
ρ1 = 1.0, ρ10 = 0.3 38.59 9.386 29.32 7.042
ρ1 = 1.0, ρ10 = 0.4 38.81 9.805 29.19 7.581
ρ1 = 1.0, ρ10 = 0.5 38.77 10.141 29.29 8.079
ρ1 = 1.0, ρ10 = 0.6 38.75 10.463 29.21 8.589
ρ1 = 1.0, ρ10 = 0.7 38.76 10.733 29.25 9.044
ρ1 = 1.0, ρ10 = 0.8 38.51 10.944 29.19 9.491
ρ1 = 1.0, ρ10 = 0.9 38.49 11.201 29.10 9.972

w
ai

t-
k

k = 1 28.30 2.968 21.31 1.695
k = 2 30.74 3.519 23.10 2.652
k = 3 32.45 5.076 25.22 3.768
k = 4 33.80 5.896 26.29 4.697
k = 5 34.67 7.041 27.42 5.771
k = 6 35.80 8.175 27.73 6.658
k = 7 36.77 9.033 28.53 7.569
k = 8 37.49 9.542 28.64 8.548
k = 9 38.17 10.560 28.92 9.379
k = 10 38.44 11.337 29.06 10.261

te
st

-t
im

e
w

ai
t-
k

k = 1 27.54 2.884 21.84 3.204
k = 2 29.57 3.873 22.64 3.954
k = 3 30.70 5.103 22.96 4.729
k = 4 31.37 5.941 23.60 5.558
k = 5 32.67 6.993 24.48 6.412
k = 6 33.92 8.051 24.92 7.298
k = 7 34.16 8.850 25.23 8.144
k = 8 34.95 9.720 25.48 9.025
k = 9 35.34 10.566 26.05 9.867
k = 10 35.87 11.383 26.28 10.699

Table 5: Complete results of wait-if-worse, single,
wait-k and test-time wait-k.


