
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2681–2691
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

2681

Knowledge Graph Embedding Compression

Mrinmaya Sachan
Toyota Technological Institute at Chicago

mrinmaya@ttic.edu

Abstract

Knowledge graph (KG) representation learn-
ing techniques that learn continuous embed-
dings of entities and relations in the KG have
become popular in many AI applications. With
a large KG, the embeddings consume a large
amount of storage and memory. This is prob-
lematic and prohibits the deployment of these
techniques in many real world settings. Thus,
we propose an approach that compresses the
KG embedding layer by representing each en-
tity in the KG as a vector of discrete codes
and then composes the embeddings from these
codes. The approach can be trained end-to-
end with simple modifications to any existing
KG embedding technique. We evaluate the
approach on various standard KG embedding
evaluations and show that it achieves 50-1000x
compression of embeddings with a minor loss
in performance. The compressed embeddings
also retain the ability to perform various rea-
soning tasks such as KG inference.

1 Introduction

Knowledge graphs (KGs) are a popular way of stor-
ing world knowledge, lending support to a number
of AI applications such as search (Singhal, 2012),
question answering (Lopez et al., 2013; Berant
et al., 2013) and dialog systems (He et al., 2017;
Young et al., 2018). Typical KGs are huge, consist-
ing of millions of entities and relations.

With the growth in use of KGs, researchers have
explored ways to learn better representations of
KGs in order to improve generalization and robust-
ness in downstream tasks. In particular, there has
been interest in learning embeddings of KGs in con-
tinuous vector spaces (Bordes et al., 2011, 2013;
Socher et al., 2013). KG embedding approaches
represent entities as learnable continuous vectors
while each relation is modeled as an operation in
the same space such as translation, projection, etc.

(Bordes et al., 2013; Wang et al., 2014; Lin et al.,
2015; Ji et al., 2015). These approaches give us
a way to perform reasoning in KGs with simple
numerical computation in continuous spaces.

Despite the simplicity and wide-applicability of
KG embedding approaches, they have a few key
issues. A major issue is that the number of embed-
ding parameters grow linearly with the number of
entities. This is challenging when we have millions
or billions of entities in the KG, especially when
there are a lot of sparse entities or relations in the
KG. There is a clear redundancy in the continuous
parameterization of embeddings given that many
entities are actually similar to each other. This over-
parameterization can lead to a drop in performance
due to overfitting in downstream models. The large
memory requirement of continuous representations
also prevents models that rely on them from being
deployed on modest user-facing computing devices
such as mobile phones.

To address this issue, we propose a coding
scheme that replaces the traditional KG embedding
layer by representing each entity in the KG with a
K-way D dimensional code (KD code) (van den
Oord et al., 2017; Chen et al., 2018; Chen and Sun,
2019). Each entity in the KG is represented as a se-
quence ofD codes where each code can take values
in {1 . . .K}. The codes for each entity are learnt in
such a way that they capture the semantics and the
relational structure of the KG – i.e., the codes that
represent similar or related entities are typically
also similar1. The coding scheme is much more
compact than traditional KG embedding schemes.

We learn the discrete codes for entities using
an autoencoder style model which learns a dis-
cretization function that maps continuous entity
representations to discrete codes and a reverse-
discretization function that maps the discrete codes

1For example, Barack Obama = “2-1-3-3” and Michelle
Obama = “2-1-3-2” (for D = 4 and K = 3)

2682

back to continuous entity representations. The dis-
cretization and reverse-discretization functions are
jointly learnt end-to-end. The inherent discrete-
ness of the representation learning problem poses
several learning issues. We tackle these issues by
resorting to the straight-through estimator (Bengio
et al., 2013) or the tempering softmax (Maddison
et al., 2016; Jang et al., 2016) and using guidance
from existing KG embeddings to smoothly guide
learning of the discrete representations.

We evaluate our approach on various standard
KG embedding evaluations and we find that we
can massively reduce the size of the KG embed-
ding layer while suffering only a minimal loss in
performance (if at all). We show that the proposed
approach for learning discrete KG representations
leads to a good performance in the task of link pre-
diction (cloze entity prediction) as well as in the
task of KG reasoning and inference.

2 Preliminaries

2.1 Knowledge Graph Embeddings
A knowledge graph (KG) G ⊆ E ×R× E can be
formalized as a set of triplets (ei, r, ej) composed
of head and tail entities ei and ej (ei, ej ∈ E , E
being the set of entities) and a relation r ∈ R (R
being the set of relations) – ne = |E|, nr = |R|.
The goal of learning KG embeddings is to learn
vector embeddings e ∈ Rde for each entity e ∈ E
(and possibly also relation embeddings r ∈ Rdr).

Typical KG embedding approaches are multi-
layer neural networks which consist of an embed-
ding component and a scoring component. The
embedding component maps each entity to its cor-
responding embedding. The scoring component
learns a scoring function f : E × R × E → R
where f(ei, r, ej) defines the score of the triplet
(ei, r, ej). KG embeddings are learnt by defining a
loss function L and solving the following optimiza-
tion problem:

min
Θ

∑
(ei,r,ej)∈G

LΘ (ei, r, ej) (1)

Here Θ includes all embedding parameters and
any other neural network parameters. The loss
function typically encourages the score of a pos-
itive triplet (ei, r, ej) to be higher than that of a
(corrupted) negative triplet. In Table 1, we summa-
rize the scoring function for several existing KG
embedding approaches as well as their correspond-
ing entity (and relation) representation parameters.

In all the KG embedding models, the number
of parameters grow super-linearly with the number
of entities and relations in the KG as well as the
size of their representations. This number can be
very large and learning KG embeddings can be a
challenge for large, sparse KGs. In this paper, we
present a novel coding scheme that significantly
reduces the number of embedding parameters. We
do so by leveraging recent advances in discrete rep-
resentation learning. We summarize them below.

2.2 Discrete Representation Learning

Typical deep learning methods define an embed-
ding function as F : V → Rd, where V denotes
the vocabulary such as words, sub-words, entities,
relations, etc. and each symbol in the vocabulary
is mapped to a continuous vector in Rd. The em-
bedding function can be trained separate from the
task in a completely unsupervised manner or jointly
with other neural net parameters to optimize the
target loss function. A common specification of
the embedding function in NLP is a lookup table
L ∈ Rn×d with n = |V|. The total number of bits
used to represent this table is O(nd) (32nd if each
real number is represented by 32-bit floating point).
This is problematic for large n and/or d.

Thus, various approaches have been proposed
to compress embedding layers in neural net-
works. These include weight-tying (Press and
Wolf, 2016; Inan et al., 2016; Li et al., 2018),
matrix-factorization based approaches (Acharya
et al., 2019), and approaches that rely on gumbel
softmax (Baevski and Auli, 2018), vector quantiza-
tion (Chen and Sun, 2019) and codebook learn-
ing (Shu and Nakayama, 2017). In this work,
we build on discrete representation learning ap-
proaches (van den Oord et al., 2017; Chen et al.,
2018; Chen and Sun, 2019). Discrete representa-
tion learning gives us a way to mitigate this issue
by representing each symbol v in the vocabulary
as a discrete vector zv = [z

(1)
v , . . . z

(D)
v]. Discrete

representations have another clear benefit that they
are interpretable and are a natural fit for complex
reasoning, planning and predictive learning tasks.

Learning discrete representations is challenging
due to the inherent non-differentiability in the em-
bedding layer. Thus, a number of solutions such as
the gumbel softmax trick (Maddison et al., 2016;
Jang et al., 2016) and the straight-through estimator
(Bengio et al., 2013) have been proposed to tackle
this issue. Making the discrete representation learn-

2683

KG Embedding Model Scoring function f # Ent. Rel. Params
SE (Bordes et al., 2011) ||W(L)

r ei −W
(R)
r ej ||p nede + 2nrdedr

NTN (Socher et al., 2013) uT
r f

(
eiW

[1...k]
r ej + Vr

[
ei

ej

]
+ br

)
nede + nr(kd2e + 2kde + k)

TransE (Bordes et al., 2013) ||ei + r− ej ||p (ne + nr)d
TransH (Wang et al., 2014) ||(ei −wT

r eiwr) + dr − (ej −wT
r ejwr)||22 nede + 2nrdr

TransR (Lin et al., 2015) ||eiWr + r− ejWr||22 nede + nr(dr + d2r)
TransD (Ji et al., 2015) −||(rpei

T
p + I)ei + r− (rpej

T
p + I)ej ||22 2nede + 2nrdr

DistMult (Yang et al., 2014) 〈ei, r, ej〉 (ne + nr)d
ComplEx (Trouillon et al., 2016) Re(〈ei, r, ēj〉) 2(ne + nr)d

HolE (Nickel et al., 2016) 〈r, ei ⊗ ej〉 (ne + nr)d

SimpleE (Kazemi and Poole, 2018) 1
2
(〈e(h)

i , r, e
(t)
j 〉+ 〈e(h)

j , r(inv), e
(t)
i 〉) 2(ne + nr)d

ConvE (Dettmers et al., 2018) 〈σ(vec(σ([ei; r] ◦ ω))W), ej〉 nede + nrdr
RotatE (Sun et al., 2019) -||ei • r− ej ||2 (ne + nr)d

HypER (Balažević et al., 2019a) 〈σ(vec(σ(ei ∗ vec−1(wrH)))W), ej〉 nede + nrdr
TuckER (Balažević et al., 2019b) W ×1 ei ×2 wr ×3 ej nede + nrdr

Table 1: Scoring functions f of some popular knowledge graph embedding approaches in the literature and the
number of entity and relation specific parameters. Here, ne = |E| and nr = |R| respectively denote the number of
entities and relation types and de and dr respectively denote the dimension of entity and relation representations.
d is defined when (as) d = de = dr. 〈x1, . . . , xk〉 =

∑
i x

1
i . . . x

k
i denotes the generalized dot product,¯denotes

the conjugate of a complex number and ⊗ denotes circular correlation, σ denotes an activation function, ◦ denotes
the convolution operator, • denotes the hadamard product and ×k denotes tensor product along the kth mode.

ing process differentiable enables end-to-end learn-
ing of discrete representations via optimizing some
task-specific objectives from language modelling
and machine translation. In this work, we use dis-
crete representation learning to compress KG em-
beddings. We describe it below.

3 Discrete KG Representation Learning

In order to learn discrete KG representations, we de-
fine a quantization function Q : Rd → Rd, which
(during training) takes raw KG embeddings and
produces their quantized representations. Q =
D ◦R is composed of two functions:

1. A discretization function D : Rde → ZD
that maps the continuous KG embedding into
a K-way D-dimensional discrete code with
cardinality |Z| = K (we call this KD code)

2. A reverse-discretization function R :
ZD → Rde that maps the KD code back to
the continuous embedding.

During training, bothD andR are learned. Then,
every entity in the KG is represented by a KD code
via applying the discretization function D to save
space (compression). The continuous embeddings
and the parameters of the discretization function
are then no longer needed. In the test/inference
stage, the reverse-discretization functionR is used
to decode the KD codes into regular embedding
vectors for every entity. We use vector quantiza-
tion (Chen et al., 2018; Chen and Sun, 2019) and

codebook learning (Cai et al., 2010) to define the
discretization and reverse-discretization functions
D andR. We describe them below.

3.1 Discretization Function D
The goal of the discretization function is to map
continuous KG embedding vectors into KD codes.
We model the discretization function using nearest
neighbor search (Cayton, 2008). Given continuous
KG embeddings {ei|i = 1 . . . ne} as query vectors,
we define a set of K key vectors {kk|k = 1 . . .K}
where kk ∈ Rde .

In order to learn D-dimensional discrete codes,
we partition the query and key vectors into D par-
titions where each partition corresponds to one
of the D discrete codes – e

(j)
i ∈ Rn×de/D and

k
(j)
k ∈ RK×de/D, j = 1 . . . D.

Vector Quantization (VQ): Our first alternative
for discretization is vector-quantization (Ballard,
1997), a classical quantization technique for data
compression. We assume that the jth discrete code
of the ith entity z(j)

i can be computed by calcu-
lating distances between the corresponding query
vector partition e

(j)
i and various corresponding key

vector partitions {k(j)
k }, and choosing the one with

the minimum distance:

z
(j)
i = arg min

k
dist

(
e

(j)
i ,k

(j)
k

)
(2)

We use the Euclidean distance function:

2684

dist(a,b) = ||a − b||22 in our experiments.
Note that the argmin operation is inherently non-
differentiable. The resulting quantization function
Q has no gradient towards the input query vectors.
Thus, we use the straight-through estimator (Ben-
gio et al., 2013) to compute a pseudo gradient. This
means that during the forward pass, we computeQ
as defined here, but during the backward pass, we
use the gradient of the query vectors.
Tempering Softmax (TS): Vector quantization is
a popular method for learning discrete representa-
tions. Yet another popular approach is continuous
relaxation of (2) via the tempering softmax (Maddi-
son et al., 2016; Jang et al., 2016). We again use dot
product and softmax for computing the proximity
between query and key vectors:

z
(j)
i = arg max

k

exp
(
〈e(j)
i ,k

(j)
k 〉/τ

)
∑
k′

exp
(
〈e(j)
i ,k

(j)
k′ 〉/τ

)
Here, τ is the temperature and 〈a,b〉 = aTb de-

notes the dot product operation. Note that this func-
tion still carries an inherent non-differentiability.
Hence, we relax the above and compute probability
vectors z̄(j)

i which represent the probability distri-
bution of the jth dimension of the discrete code
for the ith entity taking a particular value (say k).
Given probabilistic vectors z̄(j)

i , we can compute
the discrete codes z(j)

i simply by taking the argmax.
To compute discrete KD codes, we set a small value
of τ . As τ → 0, the softmax becomes spiky con-
centrated on the true z(j)

i -th dimension. We again
estimate pseudo gradients by setting a very small τ
in the forward pass (i.e. close to the discrete case
(eq. 1)) and τ = 1 in the backward pass.

3.2 Reverse-discretization FunctionR
The goal of the reverse-discretization function is to
map discrete KD codes into continuous KG embed-
ding vectors. We model the reverse-discretization
process first by a simple linear model which maps
the discrete codes to continuous vectors by looking
up a learnt codebook. Then, we present an alterna-
tive – a non-linear model for reverse-discretization
based on recurrent neural networks.
Codebook Lookup (CL): We first define the
reverse-discretization function in a simple man-
ner where we substitute every discrete code with
a continuous vector from a codebook. Let C be a

set of codebooks. C consists of a number of code-
books – a separate codebook C(j) for each position
j = 1 . . . D in the KD code. We model each code-
book simply as a set of vectors: C(j) = {c(j)

i |i =

1 . . .K} where c
(j)
i ∈ Rde/D. We simply compute

the embedding vector for the jth dimension of the
ith entity as:

e
(j)
i = c

(j)
i

The final entity embedding vector ei is achieved
by the concatenation of the embedding vectors for
each dimension: ei = [e

(1)
i . . . e

(D)
i].

Non-linear Reconstruction (NL): While the
codebook lookup approach is simple and efficient,
due to its linear nature, the capacity of the gen-
erated KG embedding may be limited. Thus, we
also employ neural network based non-linear ap-
proaches for embedding reconstruction. We pro-
pose a non-linear embedding reconstruction ap-
proach based on the Bi-LSTM network.

Given the KD code zi as a sequence of codes
z

(1)
i , . . . , z

(D)
i , we map the KD code to a contin-

uous embedding vector by feeding the code to a
Bi-LSTM followed by mean pooling.

Let (h
(1)
i , . . . ,h

(D)
i) =

Bi-LSTM
(
z

(1)
i , . . . , z

(D)
i

)
be the hidden state rep-

resentations for the various Bi-LSTM cells. Finally,
we reconstruct the entity embedding êi by mean-
pooling the code embedding vectors followed by a
linear transformation: ei = WT

rev

(∑
j h

(j)
i

)
.

We also tried to map the KD code to a continu-
ous embedding vector by feeding the code to varia-
tions of a character level CNN (Kim et al., 2016).
However, the Char CNN model always performed
worse than the Bi-LSTM model in our experiments.
This was because our discretization function which
discretizes contiguous partitions of the continuous
representation better suits the Bi-LSTM reconstruc-
tion model. In the future, we would like to consider
more complex discretization functions with other
complex non-linear reconstruction models.
Storage Efficiency: A key motivation of learning
discrete representations is that we can significantly
compress the embedding layer at test time. The
size of the embedding layer for typical KG repre-
sentations is 32nede (assuming a 32 bit represen-
tation) – this can be very large. In contrast, with
discrete representation learning, we only need to
store code embeddings {zi} and the parameters
used in the reverse-discretization function such as

2685

the codebooks C or the parameters of the embed-
ding reconstruction Bi-LSTM {ΘLSTM,Wrev}.

The entity codes require neD log2K bits.
The codebook lookup approach needs to also

maintain codebooks which require 32Kde param-
eters and the non-linear reconstruction approach
requires Dd′ × 6 parameters (two set of parameter
matrices each for the input, output and forget gates)
for the Bi-LSTM and ded′ parameters for storing
Wrev – a total of (6D + de)d

′ parameters. Here,
d′ is the size of the code embedding vectors.

In both codebook lookup and non-linear re-
construction formulations, discrete representation
learning neatly decouples the KG size (number of
entities) and dimensionality of the continuous em-
beddings. Thus, the discrete embedding layer can
be compactly stored as typically D and log2K are
smaller than 32de (considering only the dominating
term ne).
Test Time Inference of Embeddings: At test
time, we retrieve continuous embeddings for an
entity by looking up the codebook or running in-
ference on the reconstruction model using its dis-
crete representation. For codebook lookup, the
steps involved are (a) looking up a simple index for
each code, and (b) concatenation. Since only index
lookups and concatenation are needed, the extra
computation complexity and memory footprint are
very small - O(D) time and memory. In the non-
linear reconstruction setting, we need to run infer-
ence on the Bi-LSTM model. This requires O(D)
matrix vector multiplications (to compute various
LSTM gates) which takes O(Dded

′) time. Finally,
we have another linear transformation Wrev – this
takes O(ded

′) time.
We can further cache the embedding lookups and

various intermediate results such as matrix vector
products to improve performance. We show in
our results that the test time inference overhead is
typically very small.
Learning: Similar to previous continuous KG rep-
resentation learning methods, we learn discrete en-
tity representations by minimizing the triplet loss
function. We extend equation 1 as:

min
{ze},θ,Θ

∑
(ei,r,ej)∈G

L{ze},θ,Θ (ei, r, ej |θ,Θ) (3)

Here, ze are code embeddings, θ are the param-
eters of the reverse-discretization function (C or
{θLSTM ,Wrev}) and Θ denotes parameters of the
KG embedding approaches (listed in Table 1). The

aforementioned loss function (eq 3) is differen-
tiable w.r.t. the embedding parameters and pa-
rameters of entity representation learning meth-
ods. However, the discrete codes introduce a non-
differentiability. Thus, we use straight-through
(Bengio et al., 2013) or the tempering softmax
(Maddison et al., 2016; Jang et al., 2016) to esti-
mate pseudo-gradients as described before (section
3.1).
Guidance from KG embeddings: We find that
even with sophisticated discrete representation
learning methods, solving the above optimization
problem can be challenging in practice. Due to
discreteness of the problem, this can lead to a sub-
optimal solution where discrete codes are not as
good. Therefore, we also use guidance from contin-
uous KG embeddings to solve (3) when provided2.
The key idea is that in addition to optimizing (3),
we can encourage the reconstructed embeddings
from the learnt discrete codes to mimic continuous
embeddings.

In order to provide this guidance from continu-
ous embeddings, during the training, instead of us-
ing the reconstructed embedding vector generated
from the discrete code, we use a weighted average
of the reconstructed embeddings and continuous
embeddings obtained using methods described in
Table 1: (1 − λ)D ◦ R(e) + λe. Here λ ∈ (0, 1)
is a linear interpolant for selecting between recon-
structed embeddings and pre-learnt continuous em-
beddings. We initialize λ to 1 and gradually de-
crease λ as training proceeds. This enables the
method to gradually rely more and more on recon-
struction from discrete embeddings. We also add
a regularization term ||D ◦ R(e)− e||22 during the
training to encourage the reconstructed embeddings
to match the pre-learnt continuous embeddings.
This procedure is similar to knowledge-distillation
guidance (Hinton et al., 2015) in previous discrete
representation learning works (Chen et al., 2018).

Here λ ∈ (0, 1) is a linear interpolant for se-
lecting between reconstructed embeddings and pre-
learnt continuous embeddings. We initialize λ to
1 and gradually decrease λ as training proceeds.
This enables the method to gradually rely more and
more on reconstruction from discrete embeddings.
We also add a regularization term ||D◦R(e)−e||22
during the training to encourage the reconstructed
embeddings to match the pre-learnt continuous em-

2We show in our experiments that this guidance, while
helpful, is not always needed.

2686

Dataset Entities Relations Train Valid Test
FB15k 14,951 1,345 483,142 50,000 59,071

FB15k-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5,000 5,000

WN18RR 40,943 11 86,835 3,034 3,134

Table 2: A summary of dataset statistics

beddings.

4 Experiments

We compare the baseline continuous representa-
tions described earlier in Table 1 with four discrete
representation learning techniques described in this
paper:

• VQ-CL: D = VQ andR = CL

• VQ-NL: D = VQ andR = NL

• TS-CL: D = TS andR = CL

• TS-NL: D = TS andR = NL

4.1 Datasets
We evaluate our approach on four standard link
prediction datasets:

• FB15k (Bordes et al., 2013) is a subset of
Freebase.

• FB15k-237 (Toutanova et al., 2015) is a sub-
set of the FB15k dataset created by removing
inverse relations that cause test leakage.

• WN18 (Bordes et al., 2013) is a subset of
WordNet.

• WN18RR (Dettmers et al., 2018) is a subset
of the WN18 dataset created by removing in-
verse relations.

We summarize all the data statistics in Table 2. We
also use the Countries dataset (Bouchard et al.,
2015) for some in-depth analysis of inference abili-
ties of discrete representations.

4.2 Implementation Details
We implement discrete KG representation learning
by extending OpenKE (Han et al., 2018), an open-
source framework for learning KG embeddings
implemented on PyTorch 3. We train and test all
our models on a single 2080Ti system. We setK =
32 and D = 10 in our experiments unless stated
otherwise. For the linear embedding transformation
function in the non-linear reconstruction approach,
we use a hidden layer of 100 hidden units. We

3https://github.com/thunlp/OpenKE

set λ as λ = 1√
t

at the tth epoch. We tune the
regularization coefficient using grid search on the
validation set.

4.3 Results
Link Prediction: We learn discrete representa-
tions corresponding to various continuous KG rep-
resentations (described in Table 1) and compare the
obtained discrete representations with their continu-
ous counterparts. We use the same hyper-parameter
settings as in the original KG embedding papers.
We generate ne candidate triples for each test triple
by combining the test entity-relation pair with all
possible entities E . We use the filtered setting (Bor-
des et al., 2013), i.e. all known true triples are
removed from the candidate set except for the cur-
rent test triple. We use standard evaluation metrics
previously used in the literature: mean reciprocal
rank (MRR) and hits@10 (H@10). Mean recipro-
cal rank is the average of the inverse of the mean
rank assigned to the true triple over all candidate
triples. Hits@10 measures the percentage of times
a true triple is ranked within the top 10 candidate
triples. In addition, in order to report the compres-
sion efficiency of the discrete representations, we
also report the compression ratio which is com-
puted as follows:

CR =
Storage(continuous)

Storage(discrete)

Here, Storage(continuous) is the storage used to
store full continuous KG representations. Stor-
age(discrete) is the storage used in the discrete
representation learning method (during the testing
stage). This includes discrete KG representations
as well as parameters of the reverse-discretization
function (i.e. codebook or Bi-LSTM parameters).

Tables 3, 4, 5 and 6 show our results on the link
prediction task on the four datasets respectively. In
Table 3, we compare various continuous representa-
tions with the four discrete representation learning
techniques described in this paper. We find that the
discrete representations sustain only minor losses
in performance (and are sometimes actually better
than their continuous counterparts) in terms of both
evaluation metrics: MRR and H@10, while being
able to obtain significant embedding compression
(42x-585x). Table 3 also compares the different
discrete representation learning approaches. We
observe that TS-NL which uses tempering softmax
and non-linear reconstruction performs the best in
most of the settings. This observation was also

https://github.com/thunlp/OpenKE

2687

Continuous CR VQ-CL TS-CL CR VQ-NL TS-NL
MRR H@10 (CL) MRR H@10 MRR H@10 (NL) MRR H@10 MRR H@10

TransE 0.463 0.749 46.3 0.462 0.748 0.467 0.749 42.6 0.463 0.746 0.477 0.755
DistMult 0.798 0.893 77.6 0.750 0.859 0.775 0.864 71.4 0.756 0.868 0.790 0.882

HolE 0.524 0.739 112.6 0.515 0.708 0.517 0.711 103.8 0.517 0.717 0.525 0.726
ComplEx 0.692 0.840 262.3 0.651 0.802 0.653 0.814 228.4 0.670 0.818 0.678 0.833

ConvE 0.657 0.831 77.6 0.618 0.774 0.620 0.798 71.4 0.626 0.793 0.644 0.820
RotatE 0.797 0.884 585.3 0.765 0.840 0.782 0.876 495.2 0.789 0.878 0.798 0.881
HypER 0.790 0.734 177.5 0.743 0.706 0.754 0.715 161.1 0.758 0.718 0.763 0.726
TuckER 0.795 0.741 177.5 0.773 0.714 0.782 0.729 161.1 0.787 0.723 0.783 0.726

Table 3: Results of several models and our proposed discrete counterparts evaluated on the FB15K dataset

Continuous Discrete (TS-NL)
MRR H@10 CR MRR H@10

TransE 0.495 0.943 103.3 0.499 0.940
DistMult 0.797 0.946 143.2 0.774 0.921

HolE 0.938 0.949 228.6 0.938 0.929
ComplEx 0.941 0.947 437.1 0.934 0.936

ConvE 0.943 0.956 143.2 0.933 0.936
RotatE 0.949 0.959 952.6 0.946 0.952
HypER 0.951 0.947 327.9 0.946 0.942
TuckER 0.953 0.949 327.9 0.924 0.920

Table 4: Results of several models and our proposed
discrete counterpart (TS-NL) evaluated on the WN18
dataset

Continuous Discrete (TS-NL)
MRR H@10 CR MRR H@10

TransE 0.294 0.465 43.1 0.298 0.463
DistMult 0.241 0.419 71.8 0.241 0.422

HolE 0.318 0.430 104.0 0.316 0.428
ComplEx 0.247 0.428 228.5 0.238 0.411

ConvE 0.325 0.501 71.8 0.321 0.488
RotatE 0.338 0.533 495.2 0.336 0.528
HypER 0.341 0.252 161.3 0.332 0.286
TuckER 0.358 0.266 161.3 0.331 0.279

Table 5: Results of several models and our proposed
discrete counterpart (TS-NL) evaluated on the FB15K-
237 dataset.

made on the other three datasets. Hence, in Ta-
bles 4, 5 and 6, we only compare TS-NL with the
continuous representations. We again observe that
TS-NL compresses the KG embeddings (71x-952x)
while suffering only a minor loss in performance.
Logical Inference with Discrete representa-
tions: KG embeddings give us a way to perform
logical inference and reason about knowledge. In
this experiment, we explore if discrete represen-
tations retain the ability to perform inference and
reasoning in KGs. We evaluate our models on the
countries dataset (Bouchard et al., 2015) which was
designed to test the logical inference capabilities
of KG embedding models. We use the same eval-
uation protocol as in (Nickel et al., 2016) for our

Continuous Discrete (TS-NL)
MRR H@10 CR MRR H@10

TransE 0.226 0.501 105.2 0.230 0.498
DistMult 0.430 0.490 143.8 0.423 0.476

HolE 0.338 0.438 228.8 0.346 0.435
ComplEx 0.440 0.510 437.2 0.433 0.494

ConvE 0.430 0.520 143.8 0.431 0.500
RotatE 0.476 0.571 952.6 0.452 0.546
HypER 0.465 0.436 328.0 0.460 0.437
TuckER 0.470 0.443 328.0 0.452 0.442

Table 6: Results of several models and our pro-
posed discrete counterpart (TS-NL) evaluated on the
WN18RR dataset

experiments. The countries dataset contains 2 re-
lations and 272 entities (244 countries, 5 regions
and 23 subregions) and 3 tasks are posed, requiring
subsequently longer and harder inference than the
previous one:

1. Task S1 poses queries of the form locatedIn(c;
?), and the answer is one of the five regions.

2. Task S2 poses queries of the form neighbo-
rOf(c1; c2) ∧ locatedIn(c2; r) =⇒ locate-
dIn(c1; r)

3. Task S3 poses queries of the form neighbo-
rOf(c1; c2) ∧ locatedIn(c2; s) ∧ locatedIn(s;
r) =⇒ locatedIn(c1; r):

We use the AUC-PR metric, which was also used
in previous works (Bouchard et al., 2015; Nickel
et al., 2016). Table 7 shows our results. We find that
TS-NL is a very good KG representation for KG
inference. Infact, we find that TS-NL outperforms
many of their continuous counterparts.
Additional Inference Cost: A tradeoff in learning
discrete KG representations is that the inference
time increases as we need to decompress discrete
representations into continuous embeddings for ev-
ery entity before using them by looking up the

2688

S1 S2 S3
Ct. Dis. Ct. Dis. Ct. Dis.

TransE 0.93 0.95 0.56 0.59 0.34 0.41
DistMult 1.00 0.97 0.72 0.71 0.52 0.55

HolE 1.00 0.97 0.77 0.80 0.70 0.74
ComplEx 0.97 0.97 0.57 0.56 0.43 0.45

ConvE 1.00 1.00 0.99 0.96 0.86 0.87
RotatE 1.00 1.00 1.00 0.98 0.95 0.91
HypER 1.00 0.97 0.76 0.80 0.68 0.75
TuckER 1.00 1.00 0.85 0.88 0.75 0.79

Table 7: Results of several continuous representations
(ct.) and discrete TS-NL (dis.) evaluated on the three
tasks (S1, S2 and S3) of logical inference on countries
dataset.

codebook or running inference on the LSTM re-
construction model. In practice, we found that this
additional inference cost was very small. For exam-
ple, the additional inference cost of running TransE
on the entire FB15K test set was ≈ 1 minute for
codebook lookup and ≈ 2.5 minutes for non-linear
reconstruction approach on our single 2080Ti sys-
tem. The additional inference cost for the other
continuous KG representations were similarly low.
VaryingK andD: There is an evident tradeoff be-
tween the extent of compression (which is dictated
by the choice of K and D) and model performance.
In order to explore this tradeoff, we plot heatmaps
of performance (MRR) and compression ratio (CR)
on the FB15K test set as we vary K and D for
TransE in Figure 1. Not surprisingly, the perfor-
mance drops as the compression increases. Plotting
these heat maps would allow the end user to pick
K and D depending on their tolerance to loss in
performance.
Dependence on guidance from continuous em-
beddings: We evaluate the contribution of the guid-
ance from continuous embeddings in learning dis-
crete KG representations. Figure 2 compares the
test MRR for TS-NL as training proceeds on the
FB-15K dataset when we do or do not have guid-
ance from the continuous representation (TransE).
We observe that learning in the unguided model
is much slower than the guided model. However,
the guided model achieves almost similar perfor-
mance in the end. Thus, we conclude that while
guidance helps us achieve faster and more stable
convergence, it is not necessary to learn discrete
representations.
Quality of the Discrete representations: We also
assess the quality of the learnt discrete entity rep-
resentations directly as features for the link predic-

5 10 25

D

2

8

32

128

K

0.451 0.456 0.462

0.465 0.468 0.480

0.473 0.477 0.483

0.477 0.480 0.486 0.455

0.460

0.465

0.470

0.475

0.480

0.485

M
RR

5 10 25

D

2

8

32

128

K

440.2 217.7 100.2

148.3 72.4 39.7

82.4 42.6 29.8

51.8 26.6 14.7
50

100

150

200

250

300

350

400

M
RR

Figure 1: Heatmaps of performance (MRR) and CR for
TS-NL on FB15K dataset as we vary K and D – darker
is better.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Te
st

 M
RR

Training Epoch
with guidance without guidance

Figure 2: Test MRR for TS-NL as training proceeds on
FB-15K dataset with and without guidance from con-
tinuous embeddings.

MRR H@10
TransE 0.472 0.740

DistMult 0.778 0.870
HolE 0.497 0.706

ComplEx 0.654 0.816
ConvE 0.596 0.797
RotatE 0.743 0.828
HypER 0.722 0.694
TuckER 0.742 0.705

Table 8: Transfer results on FB15K dataset.

2689

Code Entities

W
N

3-7-0-6-X animalize, work animal, farm animal, animal husbandry, offspring, animal, invertebrate,
marine animal, animal kingdom, predator

5-3-0-X-1 jabalpur, calcutta, bombay, hyderabad, chennai, lucknow, mysore
FB

2-X-7-4-1 novelist, dramatist, actor, writer, cartoonist, poet, songwriter, musician
2-5-X-4-1 albert einstein, voltaire, isaac newton, nikola tesla

Table 9: Example learned codes (K=8, D=5, X ∈ {0, 7}) for Freebase (FB) and Wordnet (WN). Similar entities
are assigned to close-by codes.

tion task. In this case, we only retain the discrete
entity representations learnt by TS-NL and learn a
new LSTM based non-linear reverse-discretization
on the validation set. Then, we obtain the link-
prediction performance on the test set as before (see
Table 8 for transfer results on the FB15K dataset).
We observe that the performance of this “transfer”
model is close to that of the original model which
used a pre-trained reverse-discretization model
(compare Table 8 with the shaded part of Table 3).
Note that, in the “transfer” setting, we can achieve
much higher compression as we do not even need
to store the reverse-discretization model.
Interpretability of discrete representations:
The discrete codes provide us with additional in-
terpretability which continuous representations can
lack. In Table 9, we show a sample of learned codes
for the two datasets. We observe that semantically
similar entities are assigned to close-by codes.

5 Related Work

Deep learning model compression has attracted
many research efforts in the last few years (Han
et al., 2015). These efforts include network prun-
ing (Reed, 1993; Castellano et al., 1997), weight
sharing (Ullrich et al., 2017), quantization (Lin
et al., 2016), low-precision computation (Hwang
and Sung, 2014; Courbariaux et al., 2015) and
knowledge distillation (Hinton et al., 2015) These
techniques can also be used for embedding com-
pression. Press and Wolf (2016) and Inan et al.
(2016) propose weight-tying approaches that learn
input and output representations jointly. Matrix
factorization-based methods (Acharya et al., 2019;
Shu and Nakayama, 2017; Li et al., 2018) have also
been proposed which approximate an embedding
matrix with smaller matrices or clusters. Closest
to our work are (Shu and Nakayama, 2017; Chen
et al., 2018; Chen and Sun, 2019) who present
similar approaches to learn discrete codings for
word embeddings using multiple codebooks, i.e.
product quantization (Jegou et al., 2010). Similar

techniques have used been used by van den Oord
et al. (2017) who extend VAEs to learn discrete rep-
resentations using vector quantization in the image
domain. This allows the VAE model to circumvent
its well known issues of “posterior collapse”. All
these previous works have been applied to the im-
age domain, and sometimes in language to learn
discrete word embeddings. In this work, we present
the first results on compressing KG embeddings
and also show how the compressed embeddings
can be used to support various knowledge based
applications such as KG inference.

6 Conclusion

The embedding layer contains majority of the pa-
rameters in any representation learning approach
on knowledge graphs. This is a barrier in success-
ful deployment of models using knowledge graphs
at scale on user-facing computing devices. In this
work, we proposed novel and general approaches
for KG embedding compression. Our approaches
learn to represent entities in a KG as a vector of dis-
crete codes in an end-to-end fashion. At test time,
the discrete KG representation can be cheaply and
efficiently converted to a dense embedding and then
used in any downstream application requiring the
use of a knowledge graph. We evaluated our pro-
posed methods on different link prediction and KG
inference tasks and show that the proposed meth-
ods for KG embedding compression can effectively
compress the KG embedding table without suffer-
ing any significant loss in performance. In this
work, we only considered the problem of learning
discrete entity representations. In the future, we
would like to jointly learn discrete representations
of entities as well as relations.

Acknowledgments

MS would like to thank the anonymous reviewers,
along with Karen Livescu, Kevin Gimpel and Shun-
ing Jin for their valuable comments and suggestions
on this work.

2690

References
Anish Acharya, Rahul Goel, Angeliki Metallinou, and

Inderjit Dhillon. 2019. Online embedding compres-
sion for text classification using low rank matrix fac-
torization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6196–
6203.

Alexei Baevski and Michael Auli. 2018. Adaptive in-
put representations for neural language modeling.
arXiv preprint arXiv:1809.10853.

Ivana Balažević, Carl Allen, and Timothy M
Hospedales. 2019a. Hypernetwork knowledge
graph embeddings. In International Conference
on Artificial Neural Networks, pages 553–565.
Springer.

Ivana Balažević, Carl Allen, and Timothy M
Hospedales. 2019b. Tucker: Tensor factorization
for knowledge graph completion. arXiv preprint
arXiv:1901.09590.

Dana H Ballard. 1997. An introduction to natural com-
putation. MIT Press.

Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. arXiv preprint arXiv:1308.3432.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Twenty-Fifth AAAI
Conference on Artificial Intelligence.

Guillaume Bouchard, Sameer Singh, and Theo Trouil-
lon. 2015. On approximate reasoning capabilities of
low-rank vector spaces. In 2015 AAAI Spring Sym-
posium Series.

Hongping Cai, Fei Yan, and Krystian Mikolajczyk.
2010. Learning weights for codebook in image clas-
sification and retrieval. In 2010 IEEE Computer So-
ciety Conference on Computer Vision and Pattern
Recognition, pages 2320–2327. IEEE.

Giovanna Castellano, Anna Maria Fanelli, and Mar-
cello Pelillo. 1997. An iterative pruning algorithm
for feedforward neural networks. IEEE transactions
on Neural networks, 8(3):519–531.

Lawrence Cayton. 2008. Fast nearest neighbor re-
trieval for bregman divergences. In Proceedings of
the 25th international conference on Machine learn-
ing, pages 112–119. ACM.

Ting Chen, Martin Renqiang Min, and Yizhou Sun.
2018. Learning k-way d-dimensional discrete codes
for compact embedding representations. arXiv
preprint arXiv:1806.09464.

Ting Chen and Yizhou Sun. 2019. Differentiable prod-
uct quantization for end-to-end embedding compres-
sion.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. 2015. Low precision arithmetic for deep
learning. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Workshop Track Proceedings.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Song Han, Huizi Mao, and William J Dally. 2015.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149.

Xu Han, Shulin Cao, Lv Xin, Yankai Lin, Zhiyuan Liu,
Maosong Sun, and Juanzi Li. 2018. Openke: An
open toolkit for knowledge embedding. In Proceed-
ings of EMNLP.

He He, Anusha Balakrishnan, Mihail Eric, and Percy
Liang. 2017. Learning symmetric collaborative dia-
logue agents with dynamic knowledge graph embed-
dings. arXiv preprint arXiv:1704.07130.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Kyuyeon Hwang and Wonyong Sung. 2014. Fixed-
point feedforward deep neural network design us-
ing weights +1, 0, and -1. In SiPS, pages 174–179.
IEEE.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying word vectors and word classifiers:
A loss framework for language modeling. arXiv
preprint arXiv:1611.01462.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-
ical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Herve Jegou, Matthijs Douze, and Cordelia Schmid.
2010. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and
machine intelligence, 33(1):117–128.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge graph embedding via
dynamic mapping matrix. In Proceedings of the

http://arxiv.org/abs/1908.09756
http://arxiv.org/abs/1908.09756
http://arxiv.org/abs/1908.09756
http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1412.7024

2691

53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 687–696.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In Advances in Neural Information Processing Sys-
tems, pages 4284–4295.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Zhongliang Li, Raymond Kulhanek, Shaojun Wang,
Yunxin Zhao, and Shuang Wu. 2018. Slim embed-
ding layers for recurrent neural language models. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Darryl Lin, Sachin Talathi, and Sreekanth Anna-
pureddy. 2016. Fixed point quantization of deep
convolutional networks. In International Confer-
ence on Machine Learning, pages 2849–2858.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In
Twenty-ninth AAAI conference on artificial intelli-
gence.

Vanessa Lopez, Christina Unger, Philipp Cimiano, and
Enrico Motta. 2013. Evaluating question answering
over linked data. Web Semantics Science Services
And Agents On The World Wide Web, 21:3–13.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous relax-
ation of discrete random variables. arXiv preprint
arXiv:1611.00712.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In Thirtieth Aaai conference on artifi-
cial intelligence.

Aaron van den Oord, Oriol Vinyals, et al. 2017. Neu-
ral discrete representation learning. In Advances
in Neural Information Processing Systems, pages
6306–6315.

Ofir Press and Lior Wolf. 2016. Using the output
embedding to improve language models. arXiv
preprint arXiv:1608.05859.

Russell Reed. 1993. Pruning algorithms-a survey.
IEEE transactions on Neural Networks, 4(5):740–
747.

Raphael Shu and Hideki Nakayama. 2017. Compress-
ing word embeddings via deep compositional code
learning. arXiv preprint arXiv:1711.01068.

Amit Singhal. 2012. Introducing the knowledge graph:
things, not strings. 2012 (accessed: 16 May 2012).

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in neural information processing systems,
pages 926–934.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embed-
ding by relational rotation in complex space. arXiv
preprint arXiv:1902.10197.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1499–1509.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Com-
plex embeddings for simple link prediction. In In-
ternational Conference on Machine Learning, pages
2071–2080.

Karen Ullrich, Edward Meeds, and Max Welling. 2017.
Soft weight-sharing for neural network compression.
arXiv preprint arXiv:1702.04008.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Twenty-Eighth AAAI con-
ference on artificial intelligence.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575.

Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou,
Subham Biswas, and Minlie Huang. 2018. Aug-
menting end-to-end dialogue systems with common-
sense knowledge. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

https://doi.org/10.1016/j.websem.2013.05.006
https://doi.org/10.1016/j.websem.2013.05.006
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

