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Abstract
In the last few years, a number of successful
approaches have emerged that are able to ad-
equately model various aspects of natural lan-
guage. In particular, language models based
on neural networks have improved the state of
the art with regard to predictive language mod-
eling, while topic models are successful at cap-
turing clear-cut, semantic dimensions. In this
paper, we explore how these approaches can
be adapted and combined to model the linguis-
tic and literary aspects needed for poetry gen-
eration. The system is exclusively trained on
standard, non-poetic text, and its output is con-
strained in order to confer a poetic character to
the generated verse. The framework is applied
to the generation of poems in both English and
French, and is equally evaluated for both lan-
guages. Even though it only uses standard,
non-poetic text as input, the system yields state
of the art results for poetry generation.

1 Introduction

Automatic poetry generation is a challenging task
for a computational system. For a poem to be mean-
ingful, both linguistic and literary aspects need to
be taken into account. First of all, a poetry gen-
eration system needs to properly model language
phenomena, such as syntactic well-formedness and
topical coherence. Furthermore, the system needs
to incorporate various constraints (such as form
and rhyme) that are related to a particular poetic
genre. And finally, the system needs to exhibit a
certain amount of literary creativity, which makes
the poem interesting and worthwhile to read.

In recent years, a number of fruitful NLP ap-
proaches have emerged that are able to adequately
model various aspects of natural language. In par-
ticular, neural network language models have im-
proved the state of the art in language modeling,
while topic models are successful at capturing clear-
cut, semantic dimensions. In this paper, we explore

how these approaches can be adapted and com-
bined in order to model both the linguistic and
literary aspects that are required for poetry genera-
tion. More specifically, we make use of recurrent
neural networks in an encoder-decoder configura-
tion. The encoder first constructs a representation
of an entire sentence by sequentially incorporating
each word of the sentence into a fixed-size hidden
state vector. The final representation is then given
to the decoder, which emits a sequence of words
according to a probability distribution derived from
the hidden state of the input sentence. By train-
ing the network to predict the next sentence with
the current sentence as input, the network learns
to generate plain text with a certain discourse co-
herence. By modifying the probability distribution
yielded by the decoder, we enforce the incorpora-
tion of poetic constraints, such that the network can
be exploited for the generation of poetic verse. It
is important to note that the poetry system is not
trained on poetic texts; rather, the system is trained
on a corpus of standard, prosaic texts extracted
from the web, and it will be the constraints applied
to the network’s probability distribution that confer
a poetic character to the generated verse.

The rest of this article is structured as follows.
In section 2, we present an overview of related
work on automatic poetry generation. Section 3
describes the different components of our model.
In section 4, we present an extensive human evalua-
tion of our model, as well as a number of examples
generated by the system. Section 5, then, concludes
and discusses some future research directions.

2 Related work

Early computational implementations that go be-
yond mere mechanical creativity have often relied
on rule-based or template-based methods. One of
the first examples is the ASPERA system (Gervás,
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2001) for Spanish, which relies on a complex
knowledge base, a set of rules, and case-based
reasoning. Other approaches include Manurung
et al. (2012), which combines rule-based gener-
ation with genetic algorithms, Gonçalo Oliveira
(2012)’s PoeTryMe generation system, which re-
lies on chart generation and various optimiza-
tion strategies, and Veale (2013), which exploits
metaphorical expressions using a pattern-based ap-
proach.

Whereas poetry generation with rule-based and
template-based models has an inherent tendency
to be somewhat rigid in structure, advances in
statistical methods for language generation have
opened up new avenues for a more varied and
heterogeneous approach to creative language gen-
eration. Greene et al. (2010), for example, use
an n-gram language model in combination with
a rhythmic model implemented with finite-state
transducers. And more recently, recurrent neu-
ral networks (RNNs) have been exploited for po-
etry generation; Zhang and Lapata (2014) use an
encoder-decoder RNN for Chinese poetry genera-
tion, in which one RNN builds up a hidden repre-
sentation of the current line in a poem, and another
RNN predicts the next line word by word, based
on the hidden representation of the current line.
The system is trained on a corpus of Chinese po-
ems. Yan (2016) tries to improve upon the encoder-
decoder approach by incorporating a method of
iterative improvement: the network constructs a
candidate poem in each iteration, and the represen-
tation of the former iteration is used in the creation
of the next one. And Wang et al. (2016) extend the
method using an attention mechanism.

Ghazvininejad et al. (2016) combine RNNs (for
syntactic fluency) with distributional similarity (for
the modeling of semantic coherence) and finite
state automata (for imposing literary constraints
such as meter and rhyme). Their system, Hafez, is
able to produce well-formed poems with a reason-
able degree of semantic coherence, based on a user-
defined topic. Hopkins and Kiela (2017) focus on
rhythmic verse; they combine an RNN, trained on a
phonetic representation of poems, with a cascade of
weighted finite state transducers. Lau et al. (2018)
present a joint neural network model for the gen-
eration of sonnets, called Deep-speare, that incor-
porates the training of rhyme and rhythm into the
neural network; the network learns iambic stress
patterns from data, while rhyming word pairs are

separated from non-rhyming ones using a margin-
based loss. And a number of recent papers extend
neural poetry generation for Chinese with various
improvements, such as unsupervised style disentan-
glement (Yang et al., 2018), reinforcement learning
(Yi et al., 2018), and rhetorical control (Liu et al.,
2019).

Note that all existing statistical models are
trained on or otherwise make use of a corpus of
poetry; to our knowledge, our system is the first
to generate poetry with a model that is exclusively
trained on a generic corpus, which means the poetic
character is endowed by the model itself. Secondly,
we make use of a latent semantic model in order to
model topical coherence, which is equally novel.

3 Model

3.1 Neural architecture
The core of the poetry system is a neural network
architecture, trained to predict the next sentence
Si+1 given the current sentence Si. The architec-
ture is made up of gated recurrent units (GRUs; Cho
et al., 2014) that are linked together in an encoder-
decoder setup. The encoder sequentially reads in
each word wi1,...,N of sentence Si (represented by
its word embedding x) such that, at each time step
ti, a hidden state ĥt is computed based on the cur-
rent word’s embedding xt and the previous time
step’s hidden state ĥt−1. For each time step, the
hidden state ĥt is computed according to the fol-
lowing equations:

rt = σ(Wrxt + Urĥt−1) (1)

zt = σ(Wzxt + Uzĥt−1) (2)

h̄t = tanh(Wxt + U(rt � ĥt−1)) (3)

ĥt = (1− zt)� ĥt−1 + zt � h̄t (4)

where rt represents the GRU’s reset gate, zt repre-
sents the update gate, h̄t represents the candidate
update state, and � represents pointwise multipli-
cation.

ĥt can be interpreted as a representation of the
sequence w1, . . . , wt, and the final hidden state ĥN
will therefore be a representation of the entire sen-
tence. This final hidden encoder state is transferred
to the decoder. The decoder then sequentially pre-
dicts the next sentence word by word, conditioned
on the encoder’s final hidden representation; at
each time step ti+1, the decoder equally computes
a hidden state ht based on the current word’s em-
bedding xt (which was predicted by the decoder
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Figure 1: Graphical representation of the poetry generation model. The encoder encodes the current verse, and the
final representation is given to the decoder, which predicts the next verse word by word in reverse. The attention
mechanism is represented for the first time step. The rhyme prior is applied to the first time step, and the topic
prior is optionally applied to all time steps, mediated by the entropy threshold of the network’s output distribution.

in the previous time step) and the previous time
step’s hidden state ht−1 (the first hidden state of
the decoder is initialized by ĥN and the first word
is a symbolic start token). The computations for
each time step ht of the decoder are equal to the
ones used in the encoder (equations 1 to 4).

In order to fully exploit the entire sequence of
representations yielded by the encoder, we augment
the base architecture with an attention mechanism,
known as general attention (Luong et al., 2015).
The attention mechanism allows the decoder to
consult the entire set of hidden states computed by
the encoder; at each time-step—for the generation
of each word in sentence Si+1—the decoder deter-
mines which words in sentence Si are relevant, and
accordingly selects a linear combination of the en-
tire set of hidden states. In order to do so, we first
compute an attention vector at, which attributes a
weight to each hidden state ĥi yielded by the en-
coder (based on the decoder’s current hidden state
ht). according to equation 5:

at(i) =
exp(score(ht, ĥi))∑
i′ exp(score(ht, ĥi′))

(5)

where

score(ht, ĥi) = hTt Waĥi (6)

The next step is to compute a global context vector
ct, which is a weighted average (based on attention

vector at) of all of the encoder’s hidden states. The
resulting context vector is then combined with the
original decoder hidden state in order to compute a
new, attention-enhanced hidden state h̃t.

h̃t = tanh(Wc[ct;ht]) (7)

where [·; ·] represents vector concatenation. Finally,
this resulting hidden state h̃t is transformed into
a probability distribution p(wt|w<t, Si) over the
entire vocabulary using a softmax layer.

p(wt|w<t, Si) = softmax(Wsh̃t) (8)

As an objective function, the sum of the log-
probabilities of the next sentence is optimized, con-
ditioned on the hidden state representation of the
current sentence.

Jt =
∑

(Si,Si+1)∈C

− log p(Si|Si+1) (9)

At inference time, for the generation of a verse,
each word is then sampled randomly according
to the output probability distribution. Crucially,
the decoder is trained to predict the next sentence
in reverse, such that the last word of the verse is
the first one that is generated. This reverse opera-
tion is important for an effective incorporation of
rhyme, as will be explained in the next section. A
graphical representation of the architecture, which
includes the constraints discussed below, is given
in Figure 1.
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3.2 Poetic constraints as a priori distributions

As the neural architecture described above is
trained on generic text, its output will in no way
resemble poetic verse. In order to endow the gen-
erated output with a certain poetic character, we
modify the neural network’s output probability dis-
tribution through the application of a prior probabil-
ity distribution, that constrains the standard output
probability distribution, and boosts the probability
of words that are a good fit within the defined con-
straints. We will consider two kinds of constraints:
a rhyme constraint and a topical constraint.

3.2.1 Rhyme constraint
In order to adequately model the rhyme constraint,
we make use of a phonetic representation of words,
extracted from the online dictionary Wiktionary.1

For each word of the vocabulary, we determine
its rhyme sound (i.e. the final group of vowels,
optionally followed by a group of consonants), as
well as the group of consonants that precedes the
group of vowels. A sample of rhymes that are thus
extracted is represented in Table 1.

word rhyme

embrace (mbô, eIs)
suitcase (tk, eIs)
sacrifice (f, aIs)
paradise (d, aIs)

reproduit (d4, i)
thérapie (p, i)
examen (m, Ẽ)
canadien (dj, Ẽ)

Table 1: A number of rhyme examples extracted from
Wiktionary, for both English and French.

The next step then consists in creating a probability
distribution for a particular rhyme sound that we
want the verse to adhere to:

prhyme(w) =
1

Z
x with

{
xi = 1 if i ∈ R
xi = ε otherwise

(10)
where R is the set of words that contain the re-
quired rhyme sound, ε is a small value close to zero,
used for numerical stability, and Z is a normaliza-
tion factor in order to ensure a probability distribu-
tion. We can now use prhyme(w) as a prior proba-
bility distribution in order to reweight the neural
network’s standard output probability distribution—
according to Equation 11—each time the rhyme

1www.wiktionary.org

scheme demands it:

pout(w) =
1

Z
(p(wt|w<t, Si)� prhyme(w)) (11)

where � represents pointwise multiplication.2 As
we noted before, each verse is generated in reverse;
the reweighting of rhyme words is applied at the
first step of the decoding process, and the rhyme
word is generated first. This prevents the generation
of an ill-chosen rhyme word that does not fit well
with the rest of the verse.

3.2.2 Topical constraint
For the modeling of topical coherence, we make
use of a latent semantic model based on non-
negative matrix factorization (NMF; Lee & Se-
ung, 2001). Previous research has shown that non-
negative factorization methods are able to induce
clear-cut, interpretable topical dimensions (Mur-
phy et al., 2012). As input to the method, we con-
struct a frequency matrix A, which captures co-
occurrence frequencies of vocabulary words and
context words.3 This matrix is then factorized into
two non-negative matrices W and H,

Ai×j ≈Wi×kHk×j (12)

where k is much smaller than i, j so that both in-
stances and features are expressed in terms of a few
components. Non-negative matrix factorization en-
forces the constraint that all three matrices must
be non-negative, so all elements must be greater
than or equal to zero. Using the minimization of
the Kullback-Leibler divergence as an objective
function, we want to find the matrices W and H
for which the divergence between A and WH (the
multiplication of W and H) is the smallest. The
factorization is carried out through the iterative ap-
plication of update rules. Matrices W and H are
randomly initialized, and the rules in 13 and 14 are
iteratively applied—alternating between them. In
each iteration, each vector is adequately normal-
ized, so that all dimension values sum to 1.

Haµ ← Haµ

∑
iWia

Aiµ

(WH)iµ∑
kWka

(13)

Wia ←Wia

∑
µHaµ

Aiµ

(WH)iµ∑
vHav

(14)

2Such a multiplicative combination of probability distribu-
tions is also known as a Product of Experts (Hinton, 2002).

3The raw frequencies are weighted using pointwise mutual
information (Turney and Pantel, 2010).

www.wiktionary.org
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Tables 2 and 3 present a number of example dimen-
sions induced by the model, for both English and
French.

dim 13 dim 22 dim 28

sorrow railway planets
longing trains planet

admiration rail cosmic
earnest station universe

Table 2: Three example dimensions from the NMF
model for English (4 words with highest probability)

dim 1 dim 20 dim 25

tendresse gare hypocrisie
joie bus mensonge

bonheur métro accuser
sourires rer hypocrite

Table 3: Three example dimensions from the NMF
model for French (4 words with highest probability)

The factorization that comes out of the
NMF model can be interpreted probabilistically
(Gaussier and Goutte, 2005; Ding et al., 2008):
matrix W can be considered as p(w|k), i.e. the
probability of a word given a latent dimension k.
In order to constrain the network’s output to a cer-
tain topic, it would be straightforward to simply use
p(w|k) as another prior probability distribution ap-
plied to each output. Initial experiments, however,
indicated that such a blind modification of the out-
put probability distribution for every word of the
output sequence is detrimental to syntactic fluency.
In order to combine syntactic fluency with topical
consistency, we therefore condition the weighting
of the output probability distribution on the entropy
of that distribution: when the output distribution’s
entropy is low, the neural network is certain of
its choice for the next word in order to generate
a well-formed sentence, so we will not change it.
On the other hand, when the entropy is high, we
will modify the distribution by using the topical
distribution p(w|k) for a particular latent dimen-
sion as prior probability distribution—analogous
to Equation 11—in order to inject the desired topic.
The entropy threshold, above which the modified
distribution is used, is set experimentally.

Note that the rhyme constraint and the topical
constraint can straightforwardly be combined in
order to generate a topical rhyme word, through
pairwise multiplication of the three relevant distri-
butions, and subsequent normalization in order to

ensure a probability distribution.

3.3 A global optimization framework

The generation of a verse is embedded within a
global optimization framework. There are two rea-
sons to integrate the generation of a verse within an
optimization procedure. First of all, the generation
of a verse is a sampling process, which is subject to
chance. The optimization framework allows us to
choose the best sample according to the constraints
presented above. Secondly, the optimization allows
us to define a number of additional criteria, that as-
sist in the selection of the best verse. For each final
verse, the model generates a considerable number
of candidates; each candidate verse is then scored
according to the following criteria:

• the log-probability score of the generated
verse, according to the encoder-decoder ar-
chitecture (section 3.1);

• compliance with the rhyme constraint (sec-
tion 3.2.1); additionally, the extraction of the
preceding group of consonants (cf. Table 1) al-
lows us to give a higher score to rhyme words
with disparate preceding consonant groups,
which elicits more interesting rhymes;

• compliance with the topical constraint (sec-
tion 3.2.2); the score is modeled as the sum of
the probabilities of all words for the defined
dimension;

• the optimal number of syllables, modeled as
a Gaussian distribution with mean µ and stan-
dard deviation σ;4

• the log-probability score of a standard n-gram
model.

The score for each criterion is normalized to the
interval [0, 1] using min-max normalization, and
the harmonic mean of all scores is taken as the
final score for each candidate.5 After generation
of a predefined number of candidates, we keep the
candidate with the highest score, and append it to
the poem.

4We equally experimented with rhythmic constraints based
on meter and stress, but initial experiments indicated that the
system had a tendency to output very rigid verse. Simple
syllable counting tends to yield more interesting variation.

5The harmonic mean is computed as n∑n
i=1

1
xi

; we choose

this measure in order to balance the different scores.
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4 Results and evaluation

4.1 Implementational details
We train two different models for the generation
of poetry in both English and French. The neural
architecture is trained on a large corpus of generic
web texts, constructed on the basis of the Com-
monCrawl corpus.6 In order to filter out noise and
retain clean, orderly training data, we apply the
following filtering steps:

• we only keep sentences written in the relevant
language;

• we only keep sentences of up to 20 words;

• we only keep sentences that contain at least
one function word from a predefined list—the
idea again is to filter out noisy sentences, and
only keep well-formed, grammatical ones; we
create a list of about 10 highly frequent func-
tion words, specific to each language;

• of all the sentences that remain after these fil-
tering steps, we only keep the ones that appear
successively within a document.

Using the filtering steps laid out above, we con-
struct a training corpus of 500 million words for
each language. We employ a vocabulary of 15K

words (those with highest frequency throughout
the corpus); less frequent words are replaced by
an <unk> token, the probability of which is set to
zero during generation.

Both encoder and decoder are made up of two
GRU layers with a hidden state of size 2048, and
the word embeddings are of size 512. Encoder, de-
coder, and output embeddings are all shared (Press
and Wolf, 2017). Model parameters are optimized
using stochastic gradient descent with an initial
learning rate of 0.2, which is divided by 4 when the
loss does no longer improve on a held-out valida-
tion set. We use a batch size of 64, and we apply
gradient clipping. The neural architecture has been
implemented using PyTorch (Paszke et al., 2017),
with substantial reliance on the OpenNMT mod-
ule (Klein et al., 2017). For the application of the
topical constraint, we use an entropy threshold of
2.70.

The n-gram model is a standard Kneser-
Ney smoothed trigram model implemented using
KenLM (Heafield, 2011), and the NMF model is
factorized to 100 dimensions. Both the n-gram

6commoncrawl.org

model and the NMF model are trained on a large,
10 billion word corpus, equally constructed from
web texts without any filtering steps except for lan-
guage identification. For syllable length, we use
µ = 12, σ = 2.

We generate about 2000 candidates for each
verse, according to a fixed rhyme scheme (ABAB
CDCD). Note that no human selection whatsoever
has been applied to the poems used in the evalua-
tion; all poems have been generated in a single run,
without cherry picking the best examples. Four
representative examples of poems generated by the
system are given in Figure 2.

4.2 Evaluation procedure

Quantitatively evaluating creativity is far from
straightforward, and this is no less true for creative
artefacts that are automatically generated. Auto-
matic evaluation measures that compute the overlap
of system output with gold reference texts (such as
BLEU or ROUGE), and which might be used for the
evaluation of standard generation tasks, are of little
use when it comes to creative language generation.
The majority of research into creative language
generation therefore makes use of some form of hu-
man evaluation, even though one needs to keep in
mind that the evaluation of textual creativity is an
inherently subjective task, especially with regard
to poetic value. For a discussion of the subject, see
Gonçalo Oliveira (2017).

We adopt the evaluation framework by Zhang
and Lapata (2014), in which human annotators are
asked to evaluate poems on a five point scale with
regard to a number of characteristics, viz.

• fluency: is the poem grammatical and syntac-
tically well-formed?

• coherence: is the poem thematically struc-
tured?

• meaningfulness: does the poem convey a
meaningful message to the reader?

• poeticness: does the text display the features
of a poem?

Additionally, we ask annotators to judge if the
poem is written by a human or a computer.

In total, we evaluate four different sets of poems,
yielded by different model instantiations. The dif-
ferent sets of poems considered during evaluation
are:

commoncrawl.org
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At the moment it seems almost impossible
Yet life is neither good nor evil
The divine mind and soul is immortal
In other words, the soul is never ill

So far, it has barely lost its youthful look
But no man is ever too young for the rest
He thought deeply, and yet his heart shook
At that moment he seemed utterly possessed

~

Malgré mon enthousiasme, le chagrin s’allonge
Le bonheur est toujours superbe
Toi, tu es un merveilleux songe
Je te vois rêver de bonheur dans l’herbe

Tu trouveras le bonheur de tes rêves
Je t’aime comme tout le monde
Je t’aime mon amour, je me lève
Je ressens pour toi une joie profonde

~

The moon represents unity and brotherhood
The earth stands in awe and disbelief
Other planets orbit the earth as they should
The universe is infinite and brief

The sky has been so bright and beautiful so far
See the moon shining through the cosmic flame
See the stars in the depths of the earth you are
The planet the planet we can all see the same

Rien ne prouve qu’il s’indigne
Dans le cas contraire, ce n’est pas grave
Si la vérité est fausse, c’est très mauvais signe
Il est vrai que les gens le savent

Et cela est faux, mais qu’importe
En fait, le mensonge, c’est l’effroi
La négation de l’homme en quelque sorte
Le tort n’est pas de penser cela, il est magistrat

Figure 2: Four representative examples of poems generated by the system; the left-hand poems, in English, are
respectively generated using dimensions 13 and 28 (cf. Table 2); the right-hand poems, in French, are generated
using dimensions 1 and 25 (cf. Table 3).

• rnn: poems generated by the neural architec-
ture defined in section 3.1, without any added
constraints;

• rhyme: poems generated by the neural archi-
tecture, augmented with the rhyme constraint;

• nmfrand: poems generated by the neural archi-
tecture, augmented with both the rhyme con-
straint and the topical constraint, where one
of the automatically induced NMF dimensions
is selected randomly;

• nmfspec: poems generated by the neural archi-
tecture, augmented with both the rhyme con-
straint and the topical constraint, where one
of the automatically induced NMF dimensions
is specified manually.7

For a proper comparison of our system, we equally
include:

• random: poems yielded by a baseline model
where, for each verse, we select a random sen-
tence (that contains between 7 and 15 words)
from a large corpus; the idea is that the lines
selected by the baseline model should be fairly
fluent (as they come from an actual corpus),
but lacking in coherence (due to their random
selection);

7This can be regarded as manually defining the theme of
the generated poem. The specified dimension is selected for
its poetic character.

• human: poems written by human poets; the
scores on this set of poems function as an
upper bound;

• Hafez and Deep-speare: poems generated by
two state of the art poetry generation sys-
tems for English, respectively by Ghazvinine-
jad et al. (2016) and Lau et al. (2018); we
use the code made available by the respec-
tive authors.8 Note that we only compare to
other poetry generation systems for English,
as no other readily available systems exist for
French.

4.3 Results for English

For English, 22 annotators evaluated 40 poems in
total (5 poems for each of the different sets consid-
ered in the evaluation; each poem was evaluated by
at least 4 annotators). The annotators consist of na-
tive speakers of English, as well as master students
in English linguistics and literature. For the human
set, we select five poems by well-established En-
glish poets that follow the same rhyme scheme as
the generated ones.9 For nmfspec, we select dimen-
sion 13 of Table 2. The results of the evaluation for
English are presented in the upper part of Table 4.

First of all, note that all our model instantia-
tions score better than the random baseline model,

8Hafez needs to be initialized with user-defined topics; for
a fair comparison, we seed the system with the top words of
the NMF dimension used for our best performing model.

9The selected poets are W.H. Auden, E.E. Cummings,
Philip Larkin, Sarojini Naidu, and Sylvia Plath.
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English

model fluency coherence meaningfulness poeticness written by human (%)

rnn 2.95 2.50 2.45 2.55 0.18
rhyme 3.41 2.77 2.82 2.95 0.59
nmfrand 3.32 3.09 2.86 2.95 0.32
nmfspec 3.64 3.41 3.27 3.86 0.55

random 2.68 2.09 1.91 2.41 0.14
Deep-speare 2.11 2.00 2.00 3.00 0.22
Hafez 3.44 3.11 3.11 3.50 0.53
human 3.73 3.73 3.68 4.00 0.73

French

model fluency coherence meaningfulness poeticness written by human (%)

rnn 3.45 2.73 2.59 2.55 0.27
rhyme 3.82 2.55 2.18 3.23 0.14
nmfrand 3.64 3.32 3.09 2.86 0.27
nmfspec 3.82 3.82 3.55 3.95 0.45

random 2.95 1.86 1.68 2.18 0.00
human 4.59 4.59 4.50 4.81 0.95

Table 4: Results of the human evaluation (mean score of all annotators) for English and French; values in bold
indicate best performance of all generation models

even with regard to grammatical fluency. The good
scores on fluency for the constrained models in-
dicate that the applied constraints do not disrupt
the grammaticality of the generated verse (rhyme is
significantly different10 with p < 0.05; nmfrand and
nmfspec with p < 0.01; recall that the baseline con-
sists of actual sentences from a corpus). Secondly,
we note that the rhyme constraint seems to improve
poeticness (though not significantly), while the top-
ical constraint seems to improve both coherence
(p < 0.01 for nmfspec) and meaningfulness (not
significantly). Interestingly, a large proportion of
the poems produced by the rhyme model are la-
beled as human, even though the other scores are
fairly low. The score for poeticness is considerably
higher (p < 0.01) for nmfspec (with a manually
specified theme selected for its poeticness) than for
nmfrand (with a randomly selected topic, which will
often be more mundane). And the best scores on
all criteria are obtained with the nmfspec model, for
which more than half of the poems are judged to be
written by a human; moreover, the difference be-
tween nmfspec and human poetry is not significant.
Finally, our poetry generation compares favourably
to previous work: nmfspec scores markedly and sig-
nificantly better than Deep-speare (which does not
differ significantly from the random baseline), and
it equally attains better scores than Hafez on all

10Significance testing is carried out using a two-tailed per-
mutation test.

four criteria (though not significantly so).

4.4 Results for French
The setup of the French evaluation is analogous
to the English one: an equal number of 22 annota-
tors have evaluated a total of 30 poems (5 poems
for each of the six sets considered in the evalua-
tion; each poem was evaluated by at least 4 an-
notators). The annotators are all native speakers
of French. For the human poems, we select five
poems with the same rhyme scheme as the gen-
erated ones, among the highest ranked ones on
short-edition.com—a website with submis-
sions by amateur poets. For nmfspec, we select
dimension 1 of Table 3. The results for French are
presented in the lower part of Table 4.

Generally speaking, we see that the results for
French confirm those for English. First of all, all
model instantiations obtain better scores than the
random baseline model, even with regard to fluency
(p < 0.01), again confirming that the application of
the rhyme constraint and topical constraint are not
detrimental to the grammaticality of the verse. Sec-
ondly, the rhyme constraint significantly improves
the score for poeticness (p < 0.05 compared to
rnn), while the topical constraint improves both co-
herence (p < 0.05) and meaningfulness (p < 0.01).
Contrary to the English results, only a small propor-
tion of poems from the rhyme model are thought
to be human. We do again see that the score for
poeticness is considerably higher (p < 0.01) for

short-edition.com
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nmfspec than for nmfrand, which seems to indicate
that the topic of a poem is an important factor in
people’s judgements on poeticness. Finally, we
again see that the best scores on all criteria are ob-
tained with nmfspec, for which almost half of the
poems are judged to be written by a human.

5 Conclusion

We presented a system for automatic poetry gener-
ation that is trained exclusively on standard, non-
poetic text. The system uses a recurrent neural
encoder-decoder architecture in order to generate
candidate verses, incorporating poetic and topical
constraints by modifying the output probability dis-
tribution of the neural network. The best verse
is then selected for inclusion in the poem, using
a global optimization framework. We trained the
system on both English and French, and equally
carried out a human evaluation for both languages.
The results indicate that the system is able to gener-
ate credible poetry, that scores well with regard to
fluency and coherence, as well as meaningfulness
and poeticness. Compared to previous systems, our
model achieves state of the art performance, even
though it is trained on standard, non-poetic text. In
our best setup, about half of the generated poems
are judged to be written by a human.

We conclude with a number of future research
avenues. First of all, we would like to experiment
with different neural network architectures. Specif-
ically, we believe hierarchical approaches (Serban
et al., 2017) as well as the Transformer network
(Vaswani et al., 2017) would be particularly suit-
able to poetry generation. Secondly, we would like
to incorporate further poetic devices, especially
those based on meaning. Gripping poetry often
relies on figurative language use, such as symbol-
ism and metaphor. A successful incorporation of
such devices would mean a significant step towards
truly inspired poetry generation. And finally, we
would like to adapt the model for automatic poetry
translation—as we feel that the constraint-based ap-
proach lends itself perfectly to a poetry translation
model that is able to adhere to an original poem in
both form and meaning.

In order to facilitate reproduction of the results
and encourage further research, the poetry genera-
tion system is made available as open source soft-
ware. The current version can be downloaded at
https://github.com/timvdc/poetry.
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